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ABSTRACT

Inhomogeneous fluid-saturated porous materials are often probed with diffusion waves to estimate
their effective conductivity and diffusivity. Analysis of diffusion wave fields in randomly inhomoge-
neous poroelastic structures provides new insight how fluctuations of the compressible constituents
affect the effective diffusivity. Based on the method of statistical smoothing an effective wave number
of the coherent diffusion wave field is computed. From this wave number both an effective conduc-
tivity and diffusivity are identified. The correspondence between this conductivity and that estimated
from unsteady flow through porous media based on Darcy’s law is elucidated. It is shown that in the
limits of low and high frequencies these effective conductivities are identical.

INTRODUCTION

Probing complex structures with diffusion waves has become a powerful technique in various physical dis-
ciplines (Mandelis, 2001). In particular, diffusion waves are used to characterize transport properties of
fluid-saturated porous solids (Rice and Cleary, 1976). If the porous material has a deformable frame, the
transport properties can be affected by the compressibility of the solid as well as fluid phase. This effect
can be analyzed using Biot’s theory of poroelasticity (Biot, 1962). In particular, Biot’s theory predicts the
existence of so-called Biot’s slow wave, which in the low-frequency (i.e., quasi-static) limit is governed by
the diffusion equation (Chandler and Johnson, 1981). The corresponding diffusion coefficient depends on
compressibilities of the fluid and solid phases as well as permeability and fluid viscosity.

Transport properties of porous materials are particularly affected by spatial heterogeneity. The study
of these effects usually employs the concept of random media, and requires an analysis of field equations
with random coefficients. One method that can be applied in this context is method of statistical smoothing
(Karal and Keller, 1964), which has been widely used in the analysis of wave propagation in random media
as well as flow through random rigid porous media (King, 1987; Keller, 2001).

In this letter we will employ the method of statistical smoothing to compute the effective diffusivity
of randomly inhomogeneous porous media. The medium is assumed to be governed by the low-frequency
version of Biot’s equations of poroelasticity where the slow compressional wave is a diffusion wave char-
acterized by the wave number

k0 =
√
iω/D0 (1)

with diffusivity D0 (Norris, 1985). Neglecting the interaction with other wave modes, we analyze the
coherent diffusion wave field only. We derive an expression for the effective diffusion wave number from
which we extract the effective transport properties.
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STATISTICAL SMOOTHING IN POROELASTIC MEDIA

In random poroelastic media all parameters are represented by random fields of the formX = X̄ +
X̃ = X̄(1 + εX) , whereX̄ is a constant background value and̃X(r) is the fluctuating part. Parameter
εX = X̃/X̄ denotes the relative fluctuations and has zero mean (〈εX〉 = 0), autocorrelation function
BXX(δr) = 〈εX( r + δr)εX( r)〉, and variance

〈
ε2X
〉

= BXX(0) = σ2
XX . The starting point of our ana-

lysis is the poroelastic Dyson integral equation for the mean Green’s function of Biot’s equations (Müller
and Gurevich, 2005) in the random porous medium. By neglecting all contributions from the fast compres-
sional and shear waves, we can write Dyson’s equation for the matrix containing the mean Green’s tensors
Ḡ in the form

Ḡ = G0 +
∫ ∫

G0QḠ , (2)

where G0 denotes the matrix of Green’s function for the homogeneous background (Müller and Gurevich,
2005)

G0 =
κ0

4πiω
∂i∂j

exp(ik0R)
R

[
−C2

H2
C
H

C
H −1

]
, (3)

whereR denotes the distance from source to observation point and∂i denotes partial spatial derivative.Q
is the matrix of the kernel-of-mass operators

Q =
〈
L̃G0L̃ +

∫
L̃G0L̃G0L̃ +

∫
...

〉
, (4)

whereL̃ denotes the matrix of the perturbing operators

L̃ =
[
∂iH̃∂j ∂iC̃∂j
∂iC̃∂j iωp̃δij + ∂iM̃∂j

]
(5)

with the identity tensorδij . The method of statistical smoothing consists now in truncatingQ after the
first term. In Eqs. (3) and (5)H is the undrained, low-frequencyP -wave modulus given by Gassmann’s
equationH = Pd + α2M whereM is the pore space modulusM = [(α − φ)/Kg + φ/Kf ]−1 and
Pd = Kd + 4/3µ is theP -wave modulus of the drained frame,α = 1 −Kd/Kg is the Biot-Willis coef-
ficient,C = αM . Kg, Kd, andKf denote the bulk moduli of the solid phase, the drained frame, and the
fluid phase, whileµ denotes the porous-material shear modulus. In (3) the conductivity is denoted asκ0

while in (5) p̃ denotes the fluctuating part of the reciprocal conductivityp = 1/κ0. The diffusivity in (1)
can be expressed throughD0 = κ0N whereN = MPd/H.

Eq. (2) contains a double convolution which in the spatial Fourier domain yields a set of algebraic equa-
tions. Retaining only terms of orderO(ε2) a simpler equation for the[2, 2] component of̄G is obtained:

ḡ = g0 + (8π3)2g0qḡ , (6)

whereg0 and andq are the Fourier transforms of the corresponding components ofG0 andQ, respectively.
Assuming that the mean Green’s functionḡ is of the same functional form asg0, but involving an effective
wave numberk∗, we can solve equation (6) fork∗. The truncated kernel-of-mass operator matrix element
q can be evaluated for statistically isotropic random media and yields the following approximation for the
square of the effective wave number

k∗2 = k2
0[1 + ∆sξ(ω)] , (7)

where

ξ(ω) = 1 + k2
0

∫ ∞

0

rB(r) exp(ik0r)dr (8)

and

∆s =

〈(
α2M

Pd
εα − εKf

+ εφ

)2
〉

+
σ2
pp

3
. (9)
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Figure 1: Normalized difference of real and imaginary part of the effective wave number versus frequency.

The method of statistical smoothing is precise for weak fluctuations only, and therefore, Eq. (7) is ap-
plicable if ∆s < 1. The physical interpretation of the effective diffusion wave number is straightforward.
Due to multiple scattering, or in terms of diffusion wave terminology (Mandelis, 2001), due to accumu-
lation and depletion processes at randomly spaced inhomogeneities, an initially homogeneous diffusion
wave withk0 becomes at finite frequencies an inhomogeneous diffusion wave characterized byk∗ (i.e.,
<{k∗} 6= ={k∗}). In the limits of zero and infinite frequency the diffusion wave becomes homogeneous
again with the effective wave numbersk∗(ω → 0) = k0(1+∆s) andk∗(ω →∞) = k0, respectively. The
frequency dependence of this phenomenon is illustrated in Figure 1.

EFFECTIVE DIFFUSIVITY AND CONDUCTIVITY

Effective wave number (7) can be used to construct approximation of the effective transport properties.
Assuming that the effective wave numberk∗ involves an effective diffusivityD∗ such thatk∗ =

√
iω/D∗,

we obtain
D∗ = D0[1−∆sξ(ω)] . (10)

Figure 2 illustrates the frequency dependence of the effective diffusivity for varying∆s in a model of
a porous sandstone where the inhomogeneities are statistically characterized by a correlation function of
the formB(r) = exp(−|r|/a) wherea is the correlation length [shown is the real part ofD∗ as a function
of the dimensionless frequencykRa wherekR denotes the real part ofk0]. As can be seen from Figure
2, the presence of inhomogeneities reduces the effective diffusivity below the background diffusivity. In
the zero frequency limit we haveD∗(ω → 0) = D0(1 − ∆s), whereas for infinite high frequency the
background value is obtained,D∗(ω → ∞) = D0. The magnitude of the diffusivity dispersion is con-
trolled by ∆s which contains the second order moments of the random fields ofα, φ, Kf andp. The
role of cross-correlations is particularly interesting. For example, negative cross-correlation between the
Biot-Willis coefficient and the fluid bulk modulus, i.e. if there is a stiff fluid in the pore-space of a very
compressible porous solid, produces an enhanced diffusivity dispersion.

Analogously toD∗, we can construct an effective conductivityκ∗ by assuming thatk∗ is of the form
k∗ =

√
iω/κ∗N , i.e.,N is constant. In this case the calculations outlined above can be performed in all

space dimensions and we obtain

κ∗ = κ0

[
1−

σ2
pp

m

(
1− 4

∫
k4
R

4k4
R +K4

Φ(K)dK
)]

(11)



212 Annual WIT report 2005

 1

 0.9

 0.8

 0.7

 0.6
 0.01  0.1  1  10  100

D
* / D

0 

kR a

∆s=0   
∆s=0.3
∆s=0.6
∆s=0.9

Figure 2: Normalized effective diffusivity versus frequency for a porous sandstone model.

in m-dimensional space (m=1, 2 or 3) whereΦ(K) denotes the fluctuation spectrum. This result is dis-
played in Figure 3. The effective conductivity is bounded by

κH ≤ κ∗ ≤ κA , (12)

whereκH andκA denote the harmonic and arithmetic averages, respectively. In the low-frequency limit
the lower bound becomes an identity form = 1 only, whereas at infinitely high frequencies the upper
bound is reached exactly in all space dimensions.

RELATION TO UNSTEADY FLOW IN POROUS MEDIA

For a poroelastic continuum the diffusion wave mode (Biot’s slow wave) in the limit of zero frequency is
equivalent to the quasi-static flow (Chandler and Johnson, 1981). It is therefore interesting to compare our
results with estimates of an effective conductivity in random porous media based on Darcy’s law (Hristop-
ulos and Christakos, 1997; Keller, 2001). Time-dependent, i.e. unsteady, flow analyzed on the basis of
Darcy’s law in conjunction with the time-dependent continuity equation yields a diffusion equation for the
pore pressure of the formS∂tP = ∇·(κ∇P ), whereS is the specific storativity (Dagan, 1982; Indelmann,
1996). In statistically isotropicm-dimensional random media an averaged Darcy law allows to define an ef-
fective conductivity. The latter can be explicitly computed for weakly inhomogeneous structures involving
only the spatial correlation of the conductivity fluctuations (Indelmann, 1996):

κ∗flow = κ0

[
1− σ2

κκ

m

∫
K2

k2
R +K2

Φ(K)dK
]
. (13)

This effective conductivity is also displayed in Figure 3. Note that the low and high frequency limits as
well as the inflection point ofκ∗ andκ∗flow [Eqs. (11) and (13)] are identical. Also, both approaches show
that in the weak fluctuation case the effective conductivity does not depend on the compressibilities of the
porous material and the fluid phase.

CONCLUSIONS

In conclusion, the main result of this letter is the expression for the effective diffusivity (10). It depends not
only on the the second-order statistics of the conductivity but also on that of the poroelastic moduli. There-
fore, for accurate estimation of the effective conductivity from diffusion wave characteristics, fluctuations
of the compressibilities of the porous material must be accounted for.
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Figure 3: Normalized effective conductivity versus frequency.
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