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ABSTRACT

The Zero-Offset (ZO) Common-Reflection-Surface (CRS) stack is a macro-model independent seis-
mic reflection imaging method that simulates a ZO volume or section from multi-coverage reflection
pre-stack data. This method has been established as an improvement and alternative of the con-
ventional Normal-Moveout/Dip-Moveout (NMO/DMO) processing. Over the past years it has been
successfully applied both to 2-D and 3-D synthetic and real seismic data. It provides important wave-
field attributes or parameters for several applications, e.g. migration, inversion and interpretation. It
uses as operator a second-order hyperbolic traveltime approximation in the vicinity of a central ray.
In 3-D, for a normal or ZO central ray, this operator depends on eight parameters that are determined
by means of coherence analyzes procedures. In this work, we examine the 3-D ZO CRS operator for
reflection and diffraction events with its respective true traveltimes. The results of these comparisons
demonstrate that the 3-D ZO CRS operator has a good fit with the true traveltime surface.

INTRODUCTION

In the last years a lot of macro-model independent imaging methods have appeared. The CRS Stack tech-
nique is in this group. The section or volume simulated by the CRS presents better signal-to-noise ratio
and resolution then conventional methods, e.g NMO/DMO. The conventional methods are based on sup-
positions of 1-D velocity model and it use traveltime approximations only applicable on CMP (common-
midpoint) data. The only one parameter that this conventional approximation, called NMO velocity stack,
have a limited use in others attributes extraction of the seismic media or for depth velocity model inver-
sion.The CRS method uses all multi-coverage seismic data and provides, additionally, important parameters
from these data. It can be performed without any macro velocity model estimation, It is only necessary the
velocity close to surface.
The CRS method have been demonstrate be more efficient then conventional methods when applied on syn-
thetic and real data sets (e.g. Cristini et al. (2001); Bergler et al. (2002)). The ZO-CRS operator is based
on a second order traveltime hyperbolic approximation in the vicinity of a normal central ray that depends
on eight parameters in 3-D case. This stack parameters, obtained to make a CRS volume, describe the nor-
mal ray direction and wavefront curvatures of the normal (N) and normal incident point (NIP) wavefronts
Hubral (1983). This parameters, that are also called wavefront attributes, have important applications, e.g.
migration, inversion and interpretation. It can be determined by automatic search process with coherence
analysis of the pre-stack seismic data. The first results of the 3-D CRS stack applied in synthetic data were
presented by Cristini et al. (2001). In real data sets, the first results were presented by e.g. Cristini et al.
(2002); and Bergler et al. (2002).
The CRS method is also efficient when applied on strong lateral velocity variations media data, structural
complexity, low signal/noise ratio and poor data coverage. For a 3-D data set with very reduced azimuth,
the number of parameters reduce to four Chira (2003), six to marine case Cardone et al. (2003).
In Chira-Oliva et al. (2003) we find the formalism and application examples of the 3-D ZO-CRS stack
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operator for reflection events, and the operator for diffraction events, that depends on five parameters.
In this work we present the first numeric results about 3-D ZO-CRS traveltime surfaces associated with a
reflected and diffracted central ray. This approximated 3-D ZO-CRS surfaces are compared with respec-
tive true traveltimes, calculated by ray tracing. This results are important for development of strategies to
provide the eight 3-D CRS parameters and the consequent implementation of 3-D CRS stack to make ZO
sections or volumes simulations.

THEORETICAL ASPECTS

Wavefront curvatures

In this work we used a 3-D model constituted by isovelocities layers separated for curved interfaces (Figure
1). The wavefront curvatures in any point of the same can be expressed analytically in term of the seismic
parameters along the ray that connects the observation point with the origin of the ray (Hubral and Krey,
1980). Three laws requested for the calculation of the curvatures of the wave fronts along an arbitrary ray
are presented. These curvature laws can be used to supply approximated direct solutions for the behavior
of the amplitude of the body and head waves by ray method (Cerveny and Ravindra, 1971). The wavefront
in any point of the same can be approximate for a surface in movement represented by

z =
−1
2

X Â XT , (1)

where

X = (x, y) , Â =
(
a11 a12

a12 a22

)
, (2)

being Â the curvature matrix of the wavefront that is symmetric. Particularly,ÂI , ÂT and ÂR, refer
to the curvature matrix of reflected, refracted and incidents in a interface point wavefronts related to the
system in movement in this point. Previously the(xF , xF , zF ) system is defined as an auxiliary system
in all refraction and reflection points in the interface. Each interface can be approximate in a point of
intersection of the ray in relation to the auxiliary system for the following second-order polynomial:

zF =
−1
2

XF B̂ XT
F , (3)

where

XF = (xF , yF ) , B̂ =
(
b11 b12
b12 b22

)
, (4)

B̂ is the interface curvature matrix and it is also symmetrical. The inverse matrixR̂A = Â−1 are the
curvature radii matrix.

Curvature propagation law

To calculate the curvature inP1 we should meet the curvature matrixX0 in P0 and the distance ofP0 to
P1. The distance is given byv ∆t, wherev is the velocity and∆t the time that the wavefront travels from
P0 to P1. I is the2× 2 unitary matrix. Therefore,

R̂P1 = R̂P0 + v ∆t I, (5)

the matrixR̂P1(i = 0, 1) denotes the radii matrix in the pointPi and it is given by the inverse of̂Ai matrix.

Refraction law

In a reflection point in an interface, thêAI , ÂR andB̂ matrices are defined in relation to the coordinate
systems(xI , yI , zI), (xR, yR, zR) e (xF , yF , zF ). These three curvature matrices are related by:

ÂR = D−1 IR

(
vR
vI

S
′
ÂI S

′
+ ρ S−1

R ÂI S−1
R

)
IR D, (6)
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where

IR =
(
−1 0
0 −1

)
,S

′
=
(
− cos εI/ cos εR 0

0 1

)
,

SR =
(
− cos εR 0

0 1

)
, ρ

′
=
vR
vI

cos εI + cos εR . (7)

3-D TRAVELTIME HYPERBOLIC APPROXIMATIONS

Reflection events

The ZO 3-D CRS operator is given by

t2ref =
(
t0 +

2
v0

wz ·m
)2

+
2 t0
v0

(
mT · T N̂ T m + hT · T M̂ T h

)
, (8)

where

wz =
(

cosϕ0 sinϕ1

sinϕ0 cosϕ1

)
, M̂ =

(
m00 m01

m01 m11

)
, N̂ =

(
n00 n01

n01 n11

)
, (9)

and the 2-D transformation matrix,T, is given by (Jäger, 1999)

T = Dzy = Dz(ϕ0) Dy(ϕ1)

=
(

cosϕ0 − sinϕ0

sinϕ0 cosϕ0

)(
cosϕ1 0

0 1

)
(10)

or it can also be expressed by Höcht (2002)

T = Dzyz = Dz(ϕ0) Dy(ϕ1) Dz(ϕF )

=
(

cosϕ0 − sinϕ0

sinϕ0 cosϕ0

)(
cosϕ1 0

0 1

)(
cosϕF − sinϕF
sinϕF cosϕF

)
(11)

where (
cosϕF
sinϕF

)
=

DT
y (ϕ1) DT

z (ϕ0) sF√
1− (wz · sF )2

, sF =
(

cosβF
sinβF

)
, (−φ < βF < φ) (12)

beingt the traveltime along the stack surface in the 5-D data volume supplied by the same time, the two
vector components mid-pointm and the two vector components half-offseth. v0 is the velocity in the
vicinity of the normal ray emergency point in the surface.Wz is a two components vector that defines the
normal ray direction in the measurement surface.ϕ0 andϕ1 indicate the azimuth and the polar angle of the
normal ray direction. The 2x2 symmetrical matrices,M andN, are the NIP(figure 1)and normal matrices
of the wavefront curvatures in the surface.T is the transformation matrix that depends onWz components.
Sf is the unitary vector of a reference plan on the plane measurement surface.βF is the azimuth of the
unitary vectorSf . Höcht (2002) defines the reference plan as a plan formed by a reference unitary vector
Sf and the direction vector of the normal reflection ray. The T superscription indicates transpose matrix.
Chira-Oliva et al. (2003) present the operator (7) in a simpler way, consideringA = TN̂T andB = TM̂T
, for the appropriate search of the eight parameters.

Diffraction events

In this seismic events, we considered̂M = N̂ Chira-Oliva et al. (2003),

t2dif =
(
t0 +

2
v0

wz ·m
)2

+
2 t0
v0

(
mT · T M̂ T m + hT · T M̂ T h

)
, (13)

where the 3-D Common Diffraction Surface operator (CDS) depends on five parameters: two elements of
thewz vector and three elements of thêM matrix.
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Figure 1: Subsurface NIP wave propagation. The wavefronts of this wave are presented by blue surfaces
in different times. The normal (central) ray is in green.

NUMERIC RESULTS

The synthetic model used for the numeric tests in this work is shown in the figure 2. It is a simple 3-D
acoustic model composed by two layers on a semi-space. Each layer is separate for curved and continuous
surfaces. The wave propagation velocities are constant for each layer. The velocities from the top to the
base are 1.7 km/s, 2.3 km/s and 3.6 km/s for the half-space.
Using the SW3D CRT software (Complete Ray Tracing) a seismic experiment was accomplished, where

the receivers were dispersed in a regular mesh and with a located source in the mesh center. The lines in
blue in the figure 2 are the rays of the primary reflections associated to the second interface. In figures 3
and 4 the blue surfaces are the traveltimes of the primary reflections corresponding to the second reflector.
The eight parameters 3-D ZO-CRS were calculated with a ray tracing program (Höcht, 2002) for the 3-D
model considered (figure 2). Later, using the approximations (7) and (10) we calculate, respectively, the
paraxial ray traveltimes associated to a reflected and diffracted central ray. In the figure 3 the red color
surface was calculated with (7), known as 3-D ZO-CRS operator for being associated to a reflected central
ray. In a similar way, in the figure 4, the green color surface was calculated with (10). Due the fact of these
traveltimes be associated with a diffracted central ray, this surface can be called of common diffraction
surface or 3-D ZO-CDS. The comparison of these approximate surfaces formed by paraxial traveltimes
with the surface of the true times of primary reflections, it reveals that the 3-D ZO-CRS operator associate
to a reflected central ray has better adjustment if compared with the 3-D ZO-CDS operator, associate to a
diffracted central ray.

CONCLUSIONS

In this work a theoretical revision was presented on the wavefront curvatures propagation laws in three
dimensions. With a 3-D ray tracing program the eight NIP and N wavefront attributes were calculated. We
Also made a revision of the 3-D traveltime hyperbolic approximations , with the objective of calculating
the paraxial ray traveltimes to a central ray with Zero Offset.
As preliminaries numeric results in the current model 3-D two surfaces were presented, formed by parax-
ial ray traveltimes, an associated to a reflected central ray (3-D ZO-CRS), and the other associated to a
diffracted central ray (3-D ZO-CDS).
The comparison of the surfaces or 3-D ZO-CRS and 3-D ZO-CDS operators with the surface of the exact
traveltimes reveal that the operator 3-D ZO-CRS has better adjustment with the exact times, compared with
the 3-D ZO-CDS operator. However, the 3-D ZO-CRS operator can also be used for the 3-D seismic stack.
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Figure 2: 3-D synthetic model representation. This model is formed by two layers on a semi-space. See
the geometry acquisition in the measurement surface. The rays are in blue.

Figure 3: True (blue color) and approximated (red color) traveltime surfaces of primary reflections asso-
ciated with the second reflector. The red surface was obtained considering a reflected central ray.



252 Annual WIT report 2005

Figure 4: True (blue color) and approximated (green color) traveltime surfaces of primary reflections
associated with the second reflector. The green surface was obtained considering a diffracted central ray.
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