
88

INVESTIGATION OF THE ONE-WAY WAVE EQUATION
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ABSTRACT

The acoustic one-way wave equation has applications in the fields of reverse time migration and
reverse modelling for localization. Generally it is desired that not only the kinematics is correctly
reproduced by the one-way wave equation but also amplitudes need to be correct. We examine the
respective equations and find that the commonly used solution in modelling for the one-way wave
equation is dynamically not exact since it is lacking a wavenumber factor k. In a numerical example
for a homogeneous model we found an amplitude error of about 50 %. Moreover, it is theoretically
shown, that the one-way wave equation produces artifacts, which are also observable in numerically
modelling. These artifacts manifest themselves in 2-dimensional modelling in form of plane waves
travelling in the horizontal direction. These waves transport non-negligible amplitudes.

INTRODUCTION

The acoustic one-way wave equation is of importance in reverse time migration, both in post-stack, e.g.
Baysal et al. (1983) and in pre-stack case. It is also applied in localization techniques based on time
reversed modelling, e.g. Gajewski and Tessmer (2005). Usually the one-way wave equation is designed
such that wave propagation in the horizontal (x1-)direction is allowed both, in+x1- and−x1-direction. In
the vertical (x2-)direction, however, wave propagation is usually only allowed downward, i.e. in the+x2-
direction. This makes sure that multiple reflections between horizontal layer boundaries cannot occur.

In the following we limit ourselves to the 2D case for the sake of simplicity. However, the considerations
apply as well to the 3D case. In numerical modelling results it was observed that artifacts are present
when using the one-way wave equation. These artifacts appear as plane wave fronts which are oriented
perpendicular to the horizontal axis. These wave fronts travel exactly in the horizontal direction.

Analysis of the one-way wave equation revealed that the analytic solution contains contributions which
explain the above mentioned artifacts.

ANALYTIC WAVE FIELDS USING THE FOURIER TRANSFORM

Theoretical wave field solutions at a given time were computed in the wave number domain and subse-
quently Fourier transformed into the space domain. This allows direct comparisons of results from the
two-way and the correct and incorrect one-way wave equations. Details of the theory for computing the
one-way and two-way wave fields are given in the Appendix.

To show the correctness of the formulation of the acoustic 2D one-way wave equation solutions of the
two-way and the one-way wave equations are compared.

For the computations of the two-way wave equation Eq. (5) and for the correct one-way wave equation
Eq. (12) were used. The medium has constant velocity of 1000 m/s, the propagation time is 175 ms, the
spatial discretization is 1 m and the parametera which determines the spatial width of the initial pulse is
equal to one.

the two-way and the one-way wave equations. At the top the wave fields are shown. The left and right
sides show results of the two-way and the one-way wave equation, respectively. Below the wave field
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displays horizontal sections through the wave field at depths of 350 m, 400 m, and 450 m are displayed.
The displays of the results of the one-way wave equation show the above mentioned artifacts, i.e. the
horizontally travelling plane wave front. This can be seen very clearly in the bottom section at 450 m at
which the wave front has not yet arrived. Note the amplitude scale.

For better quantitative comparison Fig. 2 shows horizontal sections of the one-way and two-way wave
equation at different depths merged together. As can be seen from the plots the agreement is, apart from
the artifacts, very good.

A difference plot of the wave fields of the two-way and the one-way wave equations is given in Fig. 3.
The lower semicircle of the wave front vanishes. This shows perfect agreement of the wave fields of both
wave equations in their downward travelling parts.

In Fig. 4 the solutions of the wrong and the correct one-way wave equations are shown in juxtaposition.
A considerable difference of amplitudes can be observed. In the solution of the incorrect wave equation
amplitudes appear about 50% too large compared to the correct one-way wave equation.

CONCLUSIONS

We have theoretically shown that the acoustic one-way wave equation needs an additional wavenumber
factor (k) in the denominator to be correct. Otherwise amplitude errors occur. This was also verified by
direct comparison with results of the two-way wave equation. It is expected that similar amplitude errors
will also arise in inhomogeneous media. However, we cannot prove this since we have no analytic solution
for this case. To date we have not found a way to improve the one-way wave equation in numerical
modelling like it was done for the homogeneous analytical situation. Furthermore, the plane wave like
artifacts which occur when modelling with the one-way wave equation can be explained theoretically.
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Figure 1: Wave fronts of the two-way and the modified corrected one-way wave equations. Horizontal
sections through the wave field at 350 m, 400 m and 450 m depth, respectively are shown at the bottom.
Please note the amplitude scale.
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Figure 2: Horizontal sections through the wave field at 350 m (left) and 400 m (right) depth. One-way and
two-way wave fields are overlain for comparison.
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Figure 3: Differences between wave fronts from two-way and one-way wave equations. Left: use of
incorrect one-way wave equation does not completely cancel the lower semi-circle of the wave front due to
amplitude errors. Right: the lower semi-circle of the wave front is completely canceled. Vanishing of the
lower semi-circle of the wave front shows that amplitudes are correct.



92 Annual WIT report 2005

0

100

200

300

400

500

z 
[m

]

100 200 300 400 500
x [m]

-2000

 0

 2000

 0  100  200  300  400  500

A
m

pl
itu

de

350 m

-2000

 0

 2000

 0  100  200  300  400  500

A
m

pl
itu

de

400 m

-20

-10

 0

 10

 0  100  200  300  400  500

A
m

pl
itu

de

x [m]

450 m

0

100

200

300

400

500

z 
[m

]

100 200 300 400 500
x [m]

-2000

 0

 2000

 0  100  200  300  400  500

A
m

pl
itu

de

350 m

-2000

 0

 2000

 0  100  200  300  400  500

A
m

pl
itu

de

400 m

-20

-10

 0

 10

 0  100  200  300  400  500

A
m

pl
itu

de

x [m]

450 m

Figure 4: Wave fronts of the one-way wave equation after Baysal et al. (1983) (left) and the corrected
one-way wave equation (right). Horizontal sections through the wave field at 350 m, 400 m and 450 m
depth, respectively are shown at the bottom. Please note the amplitude scale. Amplitudes in the left panel
are about 50% larger than in the right panel.
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APPENDIX A

TWO-WAY MODELING BY FOURIER METHOD

We study the simplest problem for wave propagation in homogeneous 2D space. The wave equation reads:

1
v2

∂2u

∂t2
− ∂2u

∂x2
1

− ∂2u

∂x2
2

= δ(x1, x2)δ(t). (1)

We perform the 2D Fourier transform with respect to thex1 andx2 coordinates :

u(x) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−ik1x1e−ik2x2U(k1, k2, t)dk1dk2. (2)

Then forU(k1, k2, t) we obtain the differential equation:

1
v2

∂2U

∂t2
+ k2U = δ(t), (3)

wherek =
√
k2
1 + k2

2.
Let us solve the equation (3) with help of the temporal Fourier transform: The formal solution of Eq. 3

is given by:

u(t) = ±v2 1
2π

∫ ∞

−∞
eiωt

1
ω2 − k2v2

dω. (4)

The path of integration in (4) contains zeroes in the denominator. To obtain the exact result of integration
we need to define the exact path of integration.

We define the path of integration as follows: in the lower complexω-halfplane it leads from−∞− iε
to ∞− iε, whereε > 0 . Then fort < 0 we can close the contour of integration in the lower halfplane
(=(ω) < 0) and the integral vanishes because there is no singularity inside the contour.

For t > 0 we close the contour of integration in the upper halfplane (=(ω) > 0) and calculate the
integral using the theorem of residues.

This leads to the following result:

U = v
sin(kvt)

k
, t > 0,

U = 0, t < 0.

We obtain the representation of the solution in (x1, x2)-space by calculating the inverse Fourier transform
(2):

u(x1, x2, t) =
v

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−ik1x1e−ik2x2

sin
√
k2
1 + k2

2vt√
k2
1 + k2

2

dk1dk2. (5)

This leads to the classical result for the 2D case:

u(x1, x2, t) =

{
v
2π

√
v2t2 − x2

1 − x2
2

−1
for
√
x2

1 + x2
2 < vt

0 for
√
x2

1 + x2
2 > vt

. (6)

ONE-WAY WAVE EQUATION FOR THE 2D CASE

Let us now to take the contour of integration in (4) from the second quadrant (<(ω) < 0,=(ω) > 0) to
the fourth quadrant (<(ω) > 0,=(ω) < 0) so that the contour is above the real axis betweenω = −kv
to ω < 0 and below the real axis betweenω > 0 andω = kv. For t > 0 we can close the contour of
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integration in the upper halfplane (=(ω) > 0) and fort < 0 in the lower halfplane (=(ω) < 0). Then we
have the following solution of equation (3) :

U(t > 0) = −i v
2k
eikvt, (7)

U(t < 0) = −i v
2k
e−ikvt. (8)

One can test that fort > 0 (1
v

∂U

∂t
− ikU

)
= 0, (9)

and fort < 0 (1
v

∂U

∂t
+ ikU

)
= 0. (10)

We can split a second order equation (3) into 2 first order equations (9) and (10) fort > 0 and fort < 0.
But for t > 0 solution (9) does not satisfy the condition

U(−k1,−k2, t) = U∗(k1, k2, t)

which guaranties the wave field to be real valued after inverse Fourier transform (2) . Therefore we will
use a solution of the form

U(k1, k2, t) =
v

2ik sign(k2)
eivtk sign(k2), (11)

wherek =
√
k2
1 + k2

2. This solution also satisfies the differential equation (9) fort > 0.
The wave field in (x1, x2)-space can be calculated using the inverse Fourier transform (2)

u(x1, x2, t) =
1

(2π)2

∫ ∞

−∞
e−ik1x1dk1

∫ ∞

−∞
e−ik2x2U(k1, k2, t)dk2. (12)

The result can be written in the following form

u(x1, x2, t) =
v

2π2

∫ ∞

0

cos k1x1<{A+}dk1, (13)

where

A+(k1, t, x2) =
∫ ∞

0

e−ik2x2
1

i
√
k2
1 + k2

2

eivt
√
k2
1+k2

2dk2. (14)

The value ofA+ of (14) can be calculated approximately by the stationary phase method for valuesvt >>
1, x2 = Cvt >> 1.

A+(k1, t, x2) =
∫ ∞

0

eivtϕ(k2)
1

i
√
k2
1 + k2

2

dk2, (15)

where the phase function

ϕ(k2) =
√
k2
1 + k2

2 − k2C (16)

is introduced.
We will now take into account the contribution of the stationary pointk

(0)
2 of phase function (16) and

of the end point of integrationk2 = 0 to the integral (15) (see Appendix B).
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Contribution by the stationary point

The first and second derivatives of the phase function (16) are :

ϕ′(k2) =
k2√
k2
1 + k2

2

− C,

ϕ′′(k2) =
k2
1

(k2
1 + k2

2)
3
2
.

The equation for the stationary point

ϕ′(k2) = 0

shows that the stationary point exists only forx2 > 0 and the stationary point is at

k
(0)
2 =

Ck1√
C2 − 1

= k1
x2√

v2t2 − x2
2

.

The above required expressions (see Appendix B)

ϕ(k(0)
2 ) = k1

√
1− C2 =

√
v2t2 − x2

2

vt
k1,

ϕ′′(k(0)
2 ) =

1
k1

(1− C2)
3
2 > 0

lead to the result

A+(k1, t, x2) ≈
√

2π
vt
e−i

π
4 (1− C2)−

1
4

1√
k1

eik1
√
v2t2−x2

2 . (17)

By introducing the following notations in (17):

M =

√
2π
vt

(1− C2)−
1
4 ,

α =
√
v2t2 − x2

2,

the contribution to the wave field from the stationary point is given by

u(x1, x2, t) =
v

2
1
π2
M

√
2

2

∫ ∞

0

cos(k1x1)
(

cos(k1α) + sin(k1α)
) 1√

k1

dk1.

For the area behind of the wave front:

0 < x1 < α =
√
v2t2 − x2

2

using the Fresnel integral (see Appendix B) we have

u ≈ v

2
1
π

1√
v2t2 − r2

.

If x1 > α =
√
v2t2 − x2

2 (in front of the wave front)

u ≈ 1
x1
.

For the halfspacex2 > 0 the contribution of the stationary point reproduces behind the wave front the
value of the wave field which coincides asymptotically with exact solution (6) of the 2D two-wave equation
solution.
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Contribution from the end point of integration

We need the following function values (see Appendix B):

ϕ(k2 = 0) = k1,

ϕ′(k2 = 0) = −C,

A+(k1, t, x2) ≈ − 1
x2

1
k1
eivtk1 .

For the wave field we get:

u(x1, x2, t) ≈ − v

2π2

1
x2

{
1
2

∫ ∞

0

1
k2

cos [k1(x1 − vt)] +
1
2

∫ ∞

0

1
k2

cos [k1(x1 + vt)]
}
.

So the contribution of the end point of integration produces two waves with wave fronts orthogonal to the
axisx2 = 0 which propagate in opposite directions along thex1-axis.

2D POINT SOURCE APPROXIMATION

For the implementation of the described 2D one-way equation (11) we need to modify the point source
space distribution because equation (11) containsk = 0 in the denominator.

We start with the point source distribution in aδ-function-like form

p(x1, x2; a) =
a

π
e−a(x

2
1+x

2
2) (18)

with the normalization ∫ ∞

−∞

∫ ∞

−∞
p(x1, x2; a)dx1dx2 = 1.

If a→∞ then

p(x1, x2; a) → δ(x1, x2).

The space spectrum of the source (18) is given by:

P (k1, k2; a) = e−
(k2

1+k2
2)

2a =
a

π

∫ ∞

−∞

∫ ∞

−∞
e−(x2

1+x
2
2)ae−ik1x1e−ik2x2dx1dx2. (19)

The above source distribution will be introduced by calculating the derivative with respect toa on both
sides of the equation (19) :

(k2
1 + k2

2)
1

2a2
e−

(k2
1+k2

2)
2a =

=
1
π

∫ ∞

−∞

∫ ∞

−∞
{1− a(x2

1 + x2
2)}e−(x2

1+x
2
2)ae−ik1x1e−ik2x2dx1dx2. (20)

Since the source term (20) has the factork2 in k space implementation of the one-way 2D wave equation
(11) can be done. Division byk is no problem any longer for this kind of source representation.
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APPENDIX B

The approximate value of the integral ∫ b

a

g(t)eiλf(t)dt

can be calculated for valuesλ >> 1 by the following formula (e.g. Bleistein (1984)) :∫ b

a

g(t)eiλf(t)dt ∼
√

2π
λ

1√
|f ′′(t0)|

g(t0)eiλf(t0)ei
π
4 sign(f ′′(t0)) +

1
iλ

g(b)
f ′(b)

eiλf(b) − 1
iλ

g(a)
f ′(a)

eiλf(a).

The definite Fresnel integrals are (e.g. Gradsteyn and Ryzhin (1965)):∫ ∞

0

sin(t2)dt =
∫ ∞

0

cos(t2)dt =
1
2

√
π

2
.

The definite integral is:∫ ∞

0

e−at
2
cos (2xt)dt =

1
2

√
π

a
e−

x2
a , a > 0.


