199

IMPEDANCE-TYPE APPROXIMATIONS OF THE P—P AND P-S
REFLECTION COEFFICIENTS AND PREDICTION OF
ELASTIC PARAMETERS

A. Davolio, V. Grosfeld, and L. T. Santos

email: Iucio@ime.unicamp.br
keywords: P-P and P-S reflection coefficient, elastic parameters, impedance function

ABSTRACT

In the last two decades, many approximations for the P—P reflection coefficient have been proposed.
Most of them are derived from the classical Aki and Richards’ weak-contrast approximation, using
additional assumptions. More recently, it was introduced a new kind of approximation using the con-
cept of an “angular” impedance function. In this work we discuss the impedance-type approximations
for the P-P reflection coefficient and we present a corresponding shear reflection impedance for the
P-S reflection coefficient. Based on this kind of approximation, we also introduce new indicators for
predicting some of the elastic parameters.

INTRODUCTION

Approximations to the Zoeppritz equations, based on Taylor series, can be derived with some assump-
tions in the model, like restrictions on the elastic-parameter contrasts, or at the incidence angle. The most
classical, and used, one is the weak-contrast approximation of Aki and Richards (2002). Recently, some
authors (Connolly, 1999; Santos and Tygel, 2004) have shown that the approximations for the P—P reflec-
tion coefficient R pp) using thelmpedance Functiononcept provide good results. The idea of this kind

of approximation is to look for a representation similar to the expression for the elastic reflection coeffi-
cient in the case of normal incidence. In addition, Duffaut et al. (2000) have proposed an impedance type
approximation for the P-S reflection coefficieHs), based on the work of Connolly (1999).

In Whitcombe et al. (2002) was presented how to use the elastic impedance function to predict some
elastic parameters such as Lamé parameters or bulk modulus. They used the three term approximation of
the reflection coefficienk p» from Shuey (1985), to obtain the reflectivities of such parameters. They had
to suppose a velocity ratio constant and a Gardner relation between compressional velocity and density.

In Grosfeld and Santos (2005) was introduced a new indicator to separate shale over gas sand from
shale over brine sand from clastic sections. This indicator is based on the impedance type approximation
for the reflection coefficient. In addition, they showed how to use this indicator to estimate a ratio of Lamé
parameten\ directly from the reflection coefficiem®pp, following the work of Whitcombe et al. (2002)
but tryng to be a little more general.

In this work we review the impedance type approximation Rgrp and introduce a new impedance
type approximation foRR pg, following the same ideas proposed by Santos and Tygel (2004). In addition,
we show how to estimate density ratio from impedance type approximatidRfer We also propose an
experimental estimation for the Poisson ratio.
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IMPEDANCE-TYPE APPROXIMATIONS FOR Rpp

Different approximations based on Taylor series for the reflection coeffiéient exist in the literature.
The most famous one is the weak-contrast approximation of Aki and Richards (2002),
1 B2 5.1 Ap  sec?d Aa B2 ., AB

wheref denotes the incidence/transmission anglajenotes the compressional velocitydenotes the
shear velocity, ang denotes the density. We also use the notatien (us 4+ u1)/2 andAwu = us — u;y for
u =0, «, B, p, where the sub-indices 1 and 2 refer to the incidence and transmission sides of the interface,
respectively.

Shuey (1985) rewrote equation (1) in the form,

Rpp ~ A+ Bsin? 6 + Cltan? 0 — sin? 6], (2)
where the parameters (Intercept),B (Gradient) and” are given by
A;{Af+ia], B;?2§{?+2Aﬁﬁ] and C:%%. (3)
Foré < 30°, tan? @ ~ sin? #, and then equation (2) can be approximated by,
Rpp ~ A+ B sin?#, 4)

which is the most popular AVO formula (from Amplitude Variation with Offset.)

Another kind of approximation can be obtained by following the simple case of normal incidence in
elastic media and/or for general oblique incidence in acoustic media. The idea is to approximate the
reflection coefficient with the help of an “angular” impedance functipr= I(p;,o;,05;,6;), j = 1,2.

Such approximation is given by

Rppm ——F = o— (5)

whereAI =1, — I andl = (I, + I1)/2.
Connolly (1999) with the assumptions of a constant ratie 3;/a; = (2/as and a constant angle
0 = 6, = 0, introduced the&lasticimpedance function,

—4k? sin? .
py IO =12, (6)

a2 _ 2Sin2
Ij:EIj:NQOZ;eC eﬁjSk 6
whereN, is a normalization constant (Whitcombe, 2002).
Santos and Tygel (2004) have shown that no exact closed-form solution for equation (5) exists. How-
ever, under suitable restrictions in the medium parameters they introduBetleetionmpedance func-
tion,
s
I = RI; = My — 222 exp{—4p?[52 + £(5))}, @)
1 — a?p?
J

wherel, is a normalization constant,is the ray parameter,

sin 01 sin 92

p= = ; (8)

aq (&%)

andf is a function that relateswith 5. For the particular choice of a Gardner's type relationshig, b 57,
whereb and~ are constantsf is given by f(3) = v/32/2. In the derivation of the reflection impedance
function RI, it is p, and not, that is considered the same on both sides of the interface, honoring Snell's
law given by equation (8).

Figure 1 compares the two impedance-type approximations, equations (5)—(7), with the weak-contrast
approximation, equation (1), for an interface of shale over gas sand, taken from Castagna and Smith
(1994). On the left it is presented a small contrast model (o = —0.0088, A3/8 = 0.0056, Ap/p =
—0.0119), where we can observe that up3e® all the approximations have the same behaviour. Above
that, the elastic-impedance-type approximation fails. On the right, a large contrast maedél (=
0.3454, AB/B = 0.4798, Ap/p = 0.0207) is shown. In this case, only the reflection-impedance-type
approximation follows the exact curve in the critical regién> 40°).
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Figure 1. Comparison between the exact P—P reflection coefficient curve and the weak-contrast (weak),
elastic-impedance-typd(l) and reflection-impedance-typ&{) approximations, for a small (left) and a
large (right) contrast model.

IMPEDANCE-TYPE APPROXIMATIONS FOR Rpgs

For the P-S reflection coefficient there is not a particular case to analyze, as the case of normal incidence for
the P—P reflection. Nevertheless, it is still possible to obtain an impedance-type approximation for the P-S
reflection using expression (5). Assuming a weak contrast on the elastic parameters and a small incidence
angle, Duffaut et al. (2000) have developed the shear-elastic-imped&hde function, considering the

same assumptions as in the previous case of the elastic-impedaitedore.,.k = 51 /a; = 52/as and

0 = 6, = 6>. The SET function is given by,

where,
m=[1+2k—k (1+1.5k) sin®6] sinf, and n =2k [2— (1 + 2k) sin®60]. (10)

Following the work of Santos and Tygel (2004), we propose here a shear-reflection impedance. First
we define the reflectivity function,
R = lim Rps(v, Av)
Av—0 Av
wherev is a single variable describing the change of the elastic parametgisandp, and also the angle
6, along the ray and through the interface. For example= «(v) andas = a(v + Av). Taking into
account the impedance-type approximation given by equation (5), we have

1I'(v)
T 21’

where the prime denotes the derivative with respect to
From the exact expression for the P—S reflection coefficient, it is possible to compute the reflectivity
function (11), and then the following differential equation is obtained,

(1 — 2ﬁ2p2 + 25\/1 — a2p2\/1 _ 52])2) f;/

; (11)

(12)

I'  —pa

N

+4 (—ﬁ2p2 + gﬂ —a?p?/1- ﬁ2p2> g] : (13)
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Using Snell’s law,
sinf)  sin¢

= = 14
PR (14)
where¢ is the P-S reflection angle, we can rewite equation (13) as
I sinf [ S 0 8 0
T~ cosd {2(1 cos(0 + ¢) (p + 2? + ik (15)

Approximating the first derivatives of the elastic parameters by the respective finite-difference approx-
imations, i.e.g’ ~ Ag/Av, from equation (12) we obtain the first-order approximationfgis,

sinf | Ap Ap 1Ap
— = 0 — 42— —— 16
COS¢|:aCOS( +¢)(p + B +2p ) ( )
The above equation is the well-known weak-contrast approximation of Aki and Richards (2002) for the
P-S reflection coefficient.
Let us now analyze the differential equation (15). From the chain rule,
_or, oI

! al /
o+ = 17
5" toad T %ﬁ, (7)

Rps%]RAl/:

]/

we conclude that if there was a solutién= I(p(v), a(v), 8(v),p), we would have that functioh does

not depend explicitly orry, which is not the case. Therefore, some additional assumption, relating
with 8 and/orp, must be done in order to solve (13). In this work we are going to assume a constant
ratio k = (/a. With this assumption only, it is still not possible to find a solution. So, similarly to the
case of the P—P reflection, we include a Gardner’s-type relation betwaedgs, p = b 37. After some
tedious mathematical manipulations we obtain a solution for equation (13), which v&heali-Reflection-
ImpedancdS RI) function,

Ij =SRIj =exp{2¢;/ k— (2+7) [k 0; +sin(0; + ¢;)]}, Jj=1,2, (18)
where, _ ) _ .
p:sm01 :b1n¢1 :smﬁz :smgbg. (19)
o1 061 (o) B2

Figure 2 compares the two impedance-type=( and SRI) approximations forRpg, with the weak-
contrast approximation (16) for an interface of shale over gas sand (from Castagna and Smith (1994)). On
the left are shown the results for the contragts,/a = —0.1440, A3/ = —0.2500, Ap/p = —0.0368.

We can observe that all approximations are reasonable for incidence angles |5¥ tHoan for large an-

gles only the approximation based on &1 has a good fit. On the right are the results for a large contrast
model,Aa/a = 0.3454, A3/5 = 0.4798, Ap/p = 0.0207. In this case, none of the approximations was
able to follow the exact curve in the critical region. Moreover, our approximation witl5tRé has the

worst results near zero offset.

PREDICTION OF ELASTIC PARAMETERS

Fundamental rock properties such as the Lamé parametersd(:) or Poisson ratiod) are better under-
stood than velocities or impedances and so, it is desirable to extract them from the data. In that direction,
Whitcombe et al. (2002) defined &xtended-Elastic-impedandenction, from which they can recover
A, 1 and the compressibility modulke The estimatives are computed directly from the reflection coeffi-
cient samples at specific angles of incidence. The approach requires additional assumptions on the elastic
parameters, to say the ratiga and A/C in equation (2) are constant. In the following we present a sim-
ilar approach (Grosfeld and Santos, 2005), using the previous derived expressions of the impedance-type
approximations for the reflection coefficients.

For any choice of the impedance function, we can define functiaa

I, 1-R

J=—= —— 20
I 1+ R’ (20)
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Figure 2: Comparison between the exact P-S reflection coefficient curve and the weak-contrast (weak),
shear-elastic-impedance-typ8 K1) and shear-reflection-impedance-typgeR({) approximations, for a
small (left) and a large (right) contrast model.

whereR can beRpp or Rps. Note that this function is directly obtained once you have the reflection
coefficient, and it depends on the angle of incidence. We are going t0 tieeestimate some elastic
parameters.

For 6 = 45° the weak-contrast approximation f&p p, equation (1), gives
62) Ap A« B2AB AN

Rppz<1—2 L2

F e g =2 21
a2/ 2p « a? B T\ (21)

whereq = 1 — 2 3%/a? and\ = p (o — 2 3?). From the impedance approximation (5), we can write

AT AN
bYa =q o (22)
If we consider the rati@/« constant along the ray, integration of the above equation gives
I(45°) = Cy N9, (23)

where(C is a constant. Therefore, from the definition of functibrequation (20),

J(45°%) = (f\‘;)q =r{. (24)

The above result suggests a strategy to extractthatio, r,, assuming that additional information
about the constant ratj®/« is known. After an AVA procedure is carried out, select the amplitudes of the
events related to angles closel®® and with the help of equations (20) and (24), estimateEquation (21)
also indicates that th&-reflectivity, IRy, = A)\/2), can be estimate directly frolRpp. However, as we
are going to show in the next section, this approximation is not a good alternative.

In a similar way it is possible to estimate theatio (or thep-reflectivity, IR,) from the P-S reflection
coefficient. Letd, and¢, be such that, + ¢, = 90°. From Snell’'s law (14), we find

6, = arctan(a/3). (25)
Therefore, approximation (16) fatps até = 6, reduces to
A
Rps~ 37, (26)

2p
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and then, A A
P
—_— =__r, 27
21 2p 27
Therefore, assuming again a constant r@tie along the ray, integration of the above equation results in
Dq pp 1
10,) = —, and J#, =—=—. 28
(65) == 0) ==+ (28)

whereDy is a constant. Observe that, since> 23/+/3, the minimal value fod, is given byarctan(2/v/3) ~
49.11°. Thereforef, belongs to the intervab0°, 90°] and¢, belongs td0°, 40°].

APPLICATION TO A WELL-LOG DATA

To test the validity of our approximations, equations (24) and (28), we apply the previous formulas to a real
well-log data depicted in Figure 3. In all experiments, the valug ferl—2(3/«)? andd, = arctan(a//3)

were obtained using the average valuef the ratios3/« for each sample of the well. We firid= 0.458,

and thery = 0.585 andd,, ~ 65°.
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Figure 3: Well-log data: P-velocityq), S-velocity (3) and density ().

Figure 4 shows the result of applying equation (21) directly, i.e., if we estifRgtdirectly fromRpp.

The relative errors are completely out of an acceptable range. The correlation coefficient bé&tieen
andr{, plotted on the left of Figure 5 for the whole well, has a maximum iear 45°. From the right

side of Figure 5 we may conclude that the approximation,ofrom J(45°) is quite good. Both curves,

exact and extracted, are almost identical, as we can see from the zoom depicted in the top of Figure 6. To
stress the good performance of the reflection impedance function, we have also plotted in the bottom of
the same figure the corresponding zoom for the results obtained from the refelction and elastic impedance
approximations.

Figure 7 shows the estimatives féit, computed directly fronRpg, using equation (26). As in the
previous case folRpp the results are unacceptable. In Figure 8 we show the extractiep, afsing
equation (28), where we again observe thatfet 65° the correlation coefficient betweek{d) and1/r,
attains its maximum. Moreover, the curvesk{b5°) and1/r, are also very similar. A zoom is shown in
Figure 9.

We have also developed an experimental relationship between the Poissen vettich is considered
a good fluid indicator, and some kind of near/far offset relation uginign Figure 10 we plot the curves of
J(45°)/J(5°) andr, = o1 /02. Observe the good agreement between them along the well (the percentage
error is less tha% almost everywhere). The correlation coefficient between both curv@93ds The
common behavior of both curves can be better observed in the zoom depicted in Figure 11.
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Figure 5: Left: Correlation coefficient betweef(#) andr{. Top right: .J(45°) (solid line) and-{ (dashed
line). Bottom right: Percentage error.
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Figure 6: Top: Zoom from the top right picture of Figure 5. Bottom: Comparison betw&egolid line)
andJ(45°) computed from elastic (dashed line) and reflection (dash-dotted line) impedance approxima-
tions.
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Figure 7: Top: —IR, (dashed line) an®& p5(65°) (solid line). Bottom: Percentage error.
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Figure 11: Zoom from the top of Figure 10: Poisson ratio (dashed line).&¢d°)/J(5°) (solid line).

CONCLUSIONS

We have presented a brief comparison between weak contrast and impedance type approximations for the
P—P reflection coefficient. Our results indicate that the approximation based on the reflection impedance
function is better than the others, even in the critical region. In addition, we introduced a reflection-
impedance-type approximation fdtps. Unfortunately, the numerical tests have shown that this new
approximation does not work properly.

Based on the impedance-type approximation, we have also propose a procedure to obatin the ratios of
two elastic parameters, density and Lamé’s parametdirectly from the reflection coefficients (P—P and
P-S). We have applied our approach to a well-log data, with encouraging results.

The next step is to try to estimate other elastic parameters, such as compressibility, or shear rigidity, to
obtain a complete set of physical parameters.
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