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ABSTRACT

In the last two decades, many approximations for the P–P reflection coefficient have been proposed.
Most of them are derived from the classical Aki and Richards’ weak-contrast approximation, using
additional assumptions. More recently, it was introduced a new kind of approximation using the con-
cept of an “angular” impedance function. In this work we discuss the impedance-type approximations
for the P–P reflection coefficient and we present a corresponding shear reflection impedance for the
P–S reflection coefficient. Based on this kind of approximation, we also introduce new indicators for
predicting some of the elastic parameters.

INTRODUCTION

Approximations to the Zoeppritz equations, based on Taylor series, can be derived with some assump-
tions in the model, like restrictions on the elastic-parameter contrasts, or at the incidence angle. The most
classical, and used, one is the weak-contrast approximation of Aki and Richards (2002). Recently, some
authors (Connolly, 1999; Santos and Tygel, 2004) have shown that the approximations for the P–P reflec-
tion coefficient (RPP ) using theImpedance Functionconcept provide good results. The idea of this kind
of approximation is to look for a representation similar to the expression for the elastic reflection coeffi-
cient in the case of normal incidence. In addition, Duffaut et al. (2000) have proposed an impedance type
approximation for the P–S reflection coefficient (RPS), based on the work of Connolly (1999).

In Whitcombe et al. (2002) was presented how to use the elastic impedance function to predict some
elastic parameters such as Lamé parameters or bulk modulus. They used the three term approximation of
the reflection coefficientRPP from Shuey (1985), to obtain the reflectivities of such parameters. They had
to suppose a velocity ratio constant and a Gardner relation between compressional velocity and density.

In Grosfeld and Santos (2005) was introduced a new indicator to separate shale over gas sand from
shale over brine sand from clastic sections. This indicator is based on the impedance type approximation
for the reflection coefficient. In addition, they showed how to use this indicator to estimate a ratio of Lamé
parameterλ directly from the reflection coefficientRPP , following the work of Whitcombe et al. (2002)
but tryng to be a little more general.

In this work we review the impedance type approximation forRPP and introduce a new impedance
type approximation forRPS , following the same ideas proposed by Santos and Tygel (2004). In addition,
we show how to estimate density ratio from impedance type approximation forRPS . We also propose an
experimental estimation for the Poisson ratio.
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IMPEDANCE-TYPE APPROXIMATIONS FOR RPP

Different approximations based on Taylor series for the reflection coefficientRPP exist in the literature.
The most famous one is the weak-contrast approximation of Aki and Richards (2002),
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whereθ denotes the incidence/transmission angle,α denotes the compressional velocity,β denotes the
shear velocity, andρ denotes the density. We also use the notationu = (u2 +u1)/2 and∆u = u2−u1 for
u = θ, α, β, ρ, where the sub-indices 1 and 2 refer to the incidence and transmission sides of the interface,
respectively.

Shuey (1985) rewrote equation (1) in the form,

RPP ≈ A+B sin2 θ + C[tan2 θ − sin2 θ], (2)

where the parametersA (Intercept),B (Gradient) andC are given by
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Forθ ≤ 30◦, tan2 θ ≈ sin2 θ, and then equation (2) can be approximated by,

RPP ≈ A+B sin2 θ, (4)

which is the most popular AVO formula (from Amplitude Variation with Offset.)
Another kind of approximation can be obtained by following the simple case of normal incidence in

elastic media and/or for general oblique incidence in acoustic media. The idea is to approximate the
reflection coefficient with the help of an “angular” impedance functionIj = I(ρj , αj , βj , θj), j = 1, 2.
Such approximation is given by

RPP ≈
I2 − I1
I2 + I1

=
1
2

∆I
I
, (5)

where∆I = I2 − I1 andI = (I2 + I1)/2.
Connolly (1999) with the assumptions of a constant ratiok = β1/α1 = β2/α2 and a constant angle

θ = θ1 = θ2, introduced theElastic impedance function,

Ij = EIj = N0 α
sec2 θ
j β−8k2 sin2 θ

j ρ1−4k2 sin2 θ
j , j = 1, 2, (6)

whereN0 is a normalization constant (Whitcombe, 2002).
Santos and Tygel (2004) have shown that no exact closed-form solution for equation (5) exists. How-

ever, under suitable restrictions in the medium parameters they introduce theReflectionimpedance func-
tion,

Ij = RIj = M0
ρj αj√
1− α2

jp
2

exp{−4p2[β2
j + f(βj)}, (7)

whereM0 is a normalization constant,p is the ray parameter,

p =
sin θ1
α1

=
sin θ2
α2

, (8)

andf is a function that relatesρwith β. For the particular choice of a Gardner’s type relationship,ρ = b βγ ,
whereb andγ are constants,f is given byf(β) = γβ2/2. In the derivation of the reflection impedance
functionRI, it is p, and notθ, that is considered the same on both sides of the interface, honoring Snell’s
law given by equation (8).

Figure 1 compares the two impedance-type approximations, equations (5)–(7), with the weak-contrast
approximation, equation (1), for an interface of shale over gas sand, taken from Castagna and Smith
(1994). On the left it is presented a small contrast model (∆α/α = −0.0088,∆β/β = 0.0056,∆ρ/ρ =
−0.0119), where we can observe that up to30o all the approximations have the same behaviour. Above
that, the elastic-impedance-type approximation fails. On the right, a large contrast model (∆α/α =
0.3454, ∆β/β = 0.4798, ∆ρ/ρ = 0.0207) is shown. In this case, only the reflection-impedance-type
approximation follows the exact curve in the critical region (θ ≥ 40o).
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Figure 1: Comparison between the exact P–P reflection coefficient curve and the weak-contrast (weak),
elastic-impedance-type (EI) and reflection-impedance-type (RI) approximations, for a small (left) and a
large (right) contrast model.

IMPEDANCE-TYPE APPROXIMATIONS FOR RPS

For the P–S reflection coefficient there is not a particular case to analyze, as the case of normal incidence for
the P–P reflection. Nevertheless, it is still possible to obtain an impedance-type approximation for the P–S
reflection using expression (5). Assuming a weak contrast on the elastic parameters and a small incidence
angle, Duffaut et al. (2000) have developed the shear-elastic-impedance (SEI) function, considering the
same assumptions as in the previous case of the elastic-impedance forRPP , i.e.,k = β1/α1 = β2/α2 and
θ = θ1 = θ2. TheSEI function is given by,

Ij = SEIj = ρ−mj β−nj , j = 1, 2, (9)

where,

m = [1 + 2k − k (1 + 1.5k) sin2 θ] sin θ, and n = 2k [2− (1 + 2k) sin2 θ]. (10)

Following the work of Santos and Tygel (2004), we propose here a shear-reflection impedance. First
we define the reflectivity function,

IR = lim
∆ν→0

RPS(ν,∆ν)
∆ν

, (11)

whereν is a single variable describing the change of the elastic parameters,α, β andρ, and also the angle
θ, along the ray and through the interface. For example,α1 = α(ν) andα2 = α(ν + ∆ν). Taking into
account the impedance-type approximation given by equation (5), we have

IR =
1
2
I ′(ν)
I(ν)

, (12)

where the prime denotes the derivative with respect toν.
From the exact expression for the P–S reflection coefficient, it is possible to compute the reflectivity

function (11), and then the following differential equation is obtained,
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Using Snell’s law,

p =
sin θ
α

=
sinφ
β

, (14)

whereφ is the P–S reflection angle, we can rewite equation (13) as
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[
2
β

α
cos(θ + φ)

(
ρ′

ρ
+ 2

β′

β

)
+
ρ′

ρ

]
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Approximating the first derivatives of the elastic parameters by the respective finite-difference approx-
imations, i.e.,g′ ≈ ∆g/∆ν, from equation (12) we obtain the first-order approximation forRPS ,

RPS ≈ IR ∆ν = − sin θ
cosφ

[
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α
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ρ

]
, (16)

The above equation is the well-known weak-contrast approximation of Aki and Richards (2002) for the
P–S reflection coefficient.

Let us now analyze the differential equation (15). From the chain rule,

I ′ =
∂I

∂ρ
ρ′ +

∂I

∂α
α′ +

∂I

∂β
β′, (17)

we conclude that if there was a solutionI = I(ρ(ν), α(ν), β(ν), p), we would have that functionI does
not depend explicitly onα, which is not the case. Therefore, some additional assumption, relatingα
with β and/orρ, must be done in order to solve (13). In this work we are going to assume a constant
ratio k = β/α. With this assumption only, it is still not possible to find a solution. So, similarly to the
case of the P–P reflection, we include a Gardner’s-type relation betweenρ andβ, ρ = b βγ . After some
tedious mathematical manipulations we obtain a solution for equation (13), which we callShear-Reflection-
Impedance(SRI) function,

Ij = SRIj = exp{2 φj/ k − (2 + γ) [k θj + sin(θj + φj)]}, j = 1, 2, (18)

where,

p =
sin θ1
α1

=
sinφ1

β1
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sin θ2
α2

=
sinφ2

β2
. (19)

Figure 2 compares the two impedance-type (SEI andSRI) approximations forRPS , with the weak-
contrast approximation (16) for an interface of shale over gas sand (from Castagna and Smith (1994)). On
the left are shown the results for the contrasts,∆α/α = −0.1440,∆β/β = −0.2500,∆ρ/ρ = −0.0368.
We can observe that all approximations are reasonable for incidence angles less than50o, but for large an-
gles only the approximation based on theSRI has a good fit. On the right are the results for a large contrast
model,∆α/α = 0.3454,∆β/β = 0.4798,∆ρ/ρ = 0.0207. In this case, none of the approximations was
able to follow the exact curve in the critical region. Moreover, our approximation with theSRI has the
worst results near zero offset.

PREDICTION OF ELASTIC PARAMETERS

Fundamental rock properties such as the Lamé parameters (λ andµ) or Poisson ratio (σ) are better under-
stood than velocities or impedances and so, it is desirable to extract them from the data. In that direction,
Whitcombe et al. (2002) defined anExtended-Elastic-Impedancefunction, from which they can recover
λ, µ and the compressibility moduleκ. The estimatives are computed directly from the reflection coeffi-
cient samples at specific angles of incidence. The approach requires additional assumptions on the elastic
parameters, to say the ratiosβ/α andA/C in equation (2) are constant. In the following we present a sim-
ilar approach (Grosfeld and Santos, 2005), using the previous derived expressions of the impedance-type
approximations for the reflection coefficients.

For any choice of the impedance function, we can define functionJ as

J =
I1
I2
≈ 1−R

1 +R
, (20)
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Figure 2: Comparison between the exact P–S reflection coefficient curve and the weak-contrast (weak),
shear-elastic-impedance-type (SEI) and shear-reflection-impedance-type (SRI) approximations, for a
small (left) and a large (right) contrast model.

whereR can beRPP or RPS . Note that this function is directly obtained once you have the reflection
coefficient, and it depends on the angle of incidence. We are going to useJ to estimate some elastic
parameters.

Forθ = 45o the weak-contrast approximation forRPP , equation (1), gives

RPP ≈
(

1− 2
β2

α2

)
∆ρ
2 ρ

+
∆α
α

− 2
β2

α2

∆β
β

= q
∆λ
2 λ

, (21)

whereq = 1− 2 β2/α2 andλ = ρ (α2 − 2 β2). From the impedance approximation (5), we can write

∆I
2I

= q
∆λ
2λ

, (22)

If we consider the ratioβ/α constant along the ray, integration of the above equation gives

I(45o) = C0 λ
q, (23)

whereC0 is a constant. Therefore, from the definition of functionJ , equation (20),

J(45o) =
(
λ1

λ2

)q
≡ rqλ. (24)

The above result suggests a strategy to extract theλ-ratio, rλ, assuming that additional information
about the constant ratioβ/α is known. After an AVA procedure is carried out, select the amplitudes of the
events related to angles close to45o and with the help of equations (20) and (24), estimaterλ. Equation (21)
also indicates that theλ-reflectivity, IRλ = ∆λ/2λ, can be estimate directly fromRPP . However, as we
are going to show in the next section, this approximation is not a good alternative.

In a similar way it is possible to estimate theρ-ratio (or theρ-reflectivity,IRρ) from the P–S reflection
coefficient. Letθρ andφρ be such thatθρ + φρ = 90o. From Snell’s law (14), we find

θρ = arctan(α/β). (25)

Therefore, approximation (16) forRPS atθ = θρ reduces to

RPS ≈ −∆ρ
2ρ

, (26)
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and then,
∆I
2I

= −∆ρ
2ρ

. (27)

Therefore, assuming again a constant ratioβ/α along the ray, integration of the above equation results in

I(θρ) =
D0

ρ
, and J(θρ) =

ρ2

ρ1
≡ 1
rρ
. (28)

whereD0 is a constant. Observe that, sinceα ≥ 2β/
√

3, the minimal value forθρ is given byarctan(2/
√

3) ≈
49.11o. Therefore,θρ belongs to the interval[50o, 90o] andφρ belongs to[0o, 40o].

APPLICATION TO A WELL-LOG DATA

To test the validity of our approximations, equations (24) and (28), we apply the previous formulas to a real
well-log data depicted in Figure 3. In all experiments, the value forq = 1−2(β/α)2 andθρ = arctan(α/β)
were obtained using the average valuek of the ratiosβ/α for each sample of the well. We findk = 0.458,
and thenq = 0.585 andθρ ≈ 65o.
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Figure 3: Well-log data: P-velocity (α), S-velocity (β) and density (ρ).

Figure 4 shows the result of applying equation (21) directly, i.e., if we estimateIRλ directly fromRPP .
The relative errors are completely out of an acceptable range. The correlation coefficient betweenJ(θ)
andrqλ, plotted on the left of Figure 5 for the whole well, has a maximum nearθ = 45o. From the right
side of Figure 5 we may conclude that the approximation ofrλ from J(45o) is quite good. Both curves,
exact and extracted, are almost identical, as we can see from the zoom depicted in the top of Figure 6. To
stress the good performance of the reflection impedance function, we have also plotted in the bottom of
the same figure the corresponding zoom for the results obtained from the refelction and elastic impedance
approximations.

Figure 7 shows the estimatives forIRρ computed directly fromRPS , using equation (26). As in the
previous case forRPP the results are unacceptable. In Figure 8 we show the extraction ofrρ, using
equation (28), where we again observe that forθ = 65o the correlation coefficient betweenJ(θ) and1/rρ
attains its maximum. Moreover, the curves ofJ(65o) and1/rρ are also very similar. A zoom is shown in
Figure 9.

We have also developed an experimental relationship between the Poisson ratioσ, which is considered
a good fluid indicator, and some kind of near/far offset relation usingJ . In Figure 10 we plot the curves of
J(45o)/J(5o) andrσ = σ1/σ2. Observe the good agreement between them along the well (the percentage
error is less than2% almost everywhere). The correlation coefficient between both curves is0.92. The
common behavior of both curves can be better observed in the zoom depicted in Figure 11.
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Figure 4: Top:Rλ (dashed line) andRPP (45o)/q (solid line). Bottom: Percentage error.
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Figure 5: Left: Correlation coefficient betweenJ(θ) andrqλ. Top right:J(45o) (solid line) andrqλ (dashed
line). Bottom right: Percentage error.
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Figure 7: Top:−IRρ (dashed line) andRPS(65o) (solid line). Bottom: Percentage error.
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Figure 8: Left: Correlation coefficient betweenJ(θ) and1/rρ. Top right: J(65o) (solid line) and1/rρ
(dashed line). Bottom right: Percentage error.
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CONCLUSIONS

We have presented a brief comparison between weak contrast and impedance type approximations for the
P–P reflection coefficient. Our results indicate that the approximation based on the reflection impedance
function is better than the others, even in the critical region. In addition, we introduced a reflection-
impedance-type approximation forRPS . Unfortunately, the numerical tests have shown that this new
approximation does not work properly.

Based on the impedance-type approximation, we have also propose a procedure to obatin the ratios of
two elastic parameters, density and Lamé’s parameterλ, directly from the reflection coefficients (P–P and
P–S). We have applied our approach to a well-log data, with encouraging results.

The next step is to try to estimate other elastic parameters, such as compressibility, or shear rigidity, to
obtain a complete set of physical parameters.
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