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ABSTRACT

Numerical pore-scale simulation of elastic wave propagation is an emerging tool in the analysis of
static and dynamic elastic properties of porous materials. Rotated staggered-grid (RSG) finite differ-
ence method has proved to be particularly effective in modelling porous media saturated with ideal
fluids. Recently this method has been extended to viscoelastic (Maxwell) media, which allows, in par-
ticular, simulation of wave propagation in porous solids saturated with Newtonian fluids. To evaluate
the capability of the viscoelastic RSG algorithm in modelling wave dispersion and attenuation we per-
form numerical simulations for an idealized porous medium, namely a periodic system of alternating
solid and viscous fluid layers. Simulations are performed for a single frequency of 50 kHz (for shear
waves) and 500 kHz (for compressional waves) and a large range of fluid viscosities. The simulation
results show excellent agreement with the theoretical predictions. Specifically the simulations agree
with the prediction of Biot’s theory of poroelasticity at lower viscosities and with the viscoelastic
dissipation at higher viscosities. The finite-difference discretization is required to be sufficiently fine
for the appropriate sampling of the viscous boundary layer to achieve accurate simulations at the low
values of viscosity.

INTRODUCTION

Despite five decades of research into acoustics of porous media, many questions concerning the nature
of acoustic attenuation and dispersion in such media remain unresolved. Some of these questions can be
addressed by numerical simulations performed on the micro-scale, that is, on the scale of individual pores
and grains. This approach, which can be called digital (or computational) rock physics, is increasingly
used to model the effect of pores, fractures and fluid on the effective acoustic properties (Roberts and Gar-
boczi, 2000; Arns et al., 2002, Grechka, 2003; Saenger et al., 2004) as well as geometrical, hydraulic and
electrical properties of rocks (Schwartz et al., 1994; Spanne et al., 1994; Auzerais et al., 1996; Arns et al.,
2001; Keehm et. al., 2004). Until recently, most of the computational methods for effectiveacousticprop-
erties focused on ideally elastic materials saturated with ideal fluids; however understanding of acoustic
dissipation requires taking into account the viscosity of the pore fluids.

Recently Saenger et al. (2005) developed viscoelastic rotated staggered grid (VRSG) algorithm that can
perform pore-scale simulation of wave propagation in porous materials saturated with Newtonian fluids.
The algorithm of Saenger et al. (2005) is essentially an extension to viscous pore fluids of the rotated
staggered grid (RSG) finite-difference (FD) method developed by Saenger et al. (2000). The fluid viscosity
is included by modelling the pore fluid as generalised Maxwell body (GMB), which in a wide range of
viscosities and frequencies is equivalent to a Newtonian fluid.

In order to use VRSG algorithm for the study of wave propagation in porous media, it is necessary
to investigate whether this algorithms can accurately simulate known effects in wave propagation in such
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media. It is known that attenuation and dispersion of elastic waves in poroelastic media mainly occurs due
to the flow of the pore fluid induced by the propagating waves. Such wave-induced fluid flow can occur due
to pressure gradients between peaks and troughs in the wave (Biot’s global flow (Biot, 1956a,b)), between
more compliant and stiff pores (local or squirt flow (Mavko and Jizba, 1991, Dvorkin et al., 1995)) and be-
tween regions of lower and higher compliance (mesoscopic flow (Pride and Berryman, 2003)). The global
flow attenuation and dispersion can occur in homogeneous single-porosity media described by the classi-
cal Biot’s equations of poroelaticity (Biot, 1956a,b), and has a peak at the so-called Biot’s characteristic
frequency

ωB =
η

ρfκ
, (1)

whereη andρf are the viscosity and density of the pore fluid, andκ the permeability of the medium.
The local flow attenuation is less well understood. While there is no universally accepted model of this
phenomenon, it is generally believed that its characteristic frequency is given by

ωR =
B

η

(
b

a

)n
, (2)

whereB is characteristic rock stiffness,a is characteristic size of the (stiff) pores,b << a is characteristic
thickness of compliant pores (cracks) andn is a dimensionless constant usually taken to be equal to 3
(Mavko and Nur, 1975). The characteristic frequency of the mesoscopic attenuation is given by equation
(1) with n = 2 (Pride et al., 2003). The principle difference between equations (1) and (2) is in the
role of fluid viscosity: Increase of fluid viscosity causes an increase of Biot’s characteristic frequency
but a decrease of the characteristic frequency for local and mesoscopic flow. One can also note that for
single porosity medium (that is, a medium where the size of all pores is of the same order of magnitude)
b/a = O(1) so that

ωR =
B

η
. (3)

Therefore, for the single-porosity medium frequencyωR is the same as that for attenuation due to the
classical viscoelastic effect, also known as viscous shear relaxation, that is, stiffening of the material due
to fluid viscosity at high frequencies. In other words, in single porosity medium local flow attenuation
reduces to classical viscoelastic atternuation.

In order to be applicable for a detailed simulations of porous media, VRSG algorithm needs to be able
to simulate phenomena with characteristic frequencies given by equations (1) and (2) or (3). To do this,
one needs to simulate the dynamic behaviour of a porous medium with VRSG algorithm and compare the
results with known expressions for attenuation and dispersion in such media. While explicit expressions are
known for global-flow (Biot’s) attenuation (Biot, 1956a,b), they are not known for local flow mechanism,
which is the least understood.

This problem can be at least partially resolved by considering an idealised porous medium, such as
a periodic system of alternating solid and viscous fluid layers. Such a system, although very idealised,
is known to possess many features of saturated porous media. In particular, shear and compressional
waves propagating in the plane of the layers of such system and polarised in the same plane have exhibit
both Biot’s and viscoelastic attenuation with characteristic frequencies given by equations (1) and (3 ),
respectively. At the same time, such a layered system represents the only case of a porous medium for
which exact expressions for attenuation and dispersion are known. For these reasons the periodic system
of alternating solid and viscous fluid layers is ideally suited for testing of the VRSG algorithm.

Recently Saenger et al. (2005) simulated shear wave propagation in a system of solid and fluid layers
and showed excellent agreement with the theoretical solution for Biot’s global-flow velocity dispersion.
The objective of this paper is to expand on the results of (Saenger et al., 2005) in three ways: (1) by
performing numerical simulations of compressional as well as shear wave propagation, (2) computing
attenuation as well as dispersion of these waves, and (3) comparing the numerical and theoretical results
for both global and local-flow mechanisms.

First, we review the exact dispersion equations for such layered systems and give the basic description
of VRSG algorithm. Numerical setup and simulation results are presented in the last section followed by
conclusions.
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THEORETICAL BACKGROUND

Consider a system of periodically alternating solid and fluid layers of periodd (Figure 1). The elastic solid
has densityρs, bulk modulusKs and shear modulusµs. The viscous fluid has densityρf , bulk modulus
(inverse compressibility)Kf , and dynamic viscosityη. The solid and fluid layer thicknesses arehs and
hf , respectively, so thaths + hf = d.

We analyze the propagation of shear and compressional waves in thex direction parallel to the layering,
with the displacement in the directiony (for the shear or SH wave) and tox (for the compressional wave),
both parallel to the bedding. For a given frequencyω the solutions can be sought in the form of plane waves

uy = uy0 exp iω(x/b− t) (4)

for the SH-wave and

ux = ux0 exp iω(x/c− t) (5)

for the P-wave.

Figure 1: Medium of alternating solid and viscous fluid layers.

Shear waves

Propagation of the SH wave in a periodic system of solid and viscous fluid layers is governed by an exact
dispersion equation (Rytov, 1956, Brekhovskikh, 1981, Gurevich, 2002a):

p

[
tan2 βshs

2
+ tan2 βfhf

2

]
+ (1 + p2) tan

βshs
2

tan
βfhf

2
= 0. (6)

Hereβ2
s = ω2

(
1/b2s − 1/b2

)
, β2

f = ω2
(
1/b2f − 1/b2

)
, wherebs = (µs/ρs)

1/2, andbf = (µf/ρf )
1/2

are shear velocities in the materialss andf , respectively,p = µfβf/µsβs andµf = −iωη.
Our aim is to solve the dispersion equation (6) on a macroscale, that is for long waves, to obtain the

phase velocitiesb andc as a function ofω for long waves such that|ωd/b| << 1. In this limiting case
equation (6) reduces to (Gurevich, 2002b):

1
b2

=
1
µ

[
ρ−

ρ2
fφ

2

q(ω)

] [
1 + iω/ωV

φ

1− φ

]
, (7)
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whereφ = hf/d is the volume fraction of the fluid layers (porosity),µ = µs (1− φ) is the static shear
modulus of the system,ρ = (1− φ)ρs + φρf is the average density, and

q(ω) = φρf

[
1− (iω/ωB)−1/2 tan (iω/ωB)1/2

]−1

, (8)

is generalized virtual mass coefficient of the layered system.ωB has the role of characteristic frequency
and is given by an equation similar to equation (1):

ωB = ηφ/3κρf = 4η/ρfh2
f (9)

with permeability of porous slabs given by (Bedford, 1986)

κ =
φh2

f

12
. (10)

In turn,ωV is viscoelastic characteristic frequency, equation (3 ). According to equation (7), the behaviour
of SH-wave velocity dispersion and attenuation in the layered system depends on the ratioωB/ωV . When
ωB << ωV , equation (7) reduces to

1
b2

=
1
µ

[
ρ−

ρ2
fφ

2

q(ω)

]
. (11)

The dispersion equation (11) is identical to the dispersion equation for S-waves in a porous medium de-
scribed by Biot’s theory of poroelasticity with permeability (10) and virtual mass coefficient (8), thus
confirming the system of solid and fluid layers as a particular (limiting) case of a poroelastic medium. In
the opposite caseωB << ωV , we have

1
b2

=
1
µ

[
1 + iω/ωV

φ

1− φ

]
. (12)

This equation describes the standard viscoelastic dispersion (Gurevich, 1999, 2002a).
The theoretical solutions presented above give the complex shear-wave velocity (or slowness) as a

function of frequency. Real part of the complex velocity yields the phase velocity of the wave, while the
ratio of imaginary to real part of the squared slowness yields the dimensionless attenuation (inverse quality
factor)

Q−1
Sh =

Im b−2

Reb−2
. (13)

Compressional waves

Propagation of the P wave in a periodic system of solid layers denoted bys andf is governed by an exact
dispersion equation (Rytov, 1956, Brekhovskikh, 1981, Gurevich, 2002a):

4(µs − µf )2K1K2 + ω2ρs
[
c2ρs − 4 (µs − µf )

]
K2 tan βshs

2

+ω2ρf
[
c2ρf + 4 (µs − µf )

]
K1 tan βfhf

2

−ω2ρfρsc
2
[
L1 tan βfhf

2 + L2 tan βshs

2

]
= 0,

(14)

whereα2
s = ω2 (1/cs − 1/c),α2

f = ω2 (1/cf − 1/c) andcs = [(Ks + 4µs/3)/ρs]
1/2, cf = [(Kf + 4µf/3)/ρf ]

1/2

are compressional velocities in the materialss and f , respectively,Imµf = Imλf = −ωη, Kf =
λf + 2µf/3 and

K1 = ω2

c2 tan βshs

2 + αsβs tan αshs

2 ,

K2 = ω2

c2 tan βfhf

2 + αfβf tan αfhf

2 ,

L1 = ω2

c2 tan βshs

2 − αfβs tan αfhf

2 ,

L2 = ω2

c2 tan βfhf

2 − αsβf tan αshs

2 .

(15)

Similarly to the shear wave case, equation (6) needs to be analysed on the macroscale, that is in the
limit |ωd/c| << 1. However such a theoretical analysis appears to be too involved, and the analytical
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solution is only known in the low-frequency limit (Gurevich, 2002a). However it has been shown numer-
ically (Bedford, 1986), that for sufficiently small values of|ωd/c| attenuation and dispersion predicted
by equation (14) are the same as given by Biot’s dispersion equation for fast compressional waves in a
porous medium with steady state permeability (10) and virtual mass coefficient given by (8). Note that
both equation (14) and Biot’s theory predict another type of compressional wave, so-called Biot’s slow
wave. However analysis of this highly dispersive wave is beyond the scope of this paper.

The theoretical expressions summarised in this section will be used for comparison with numerical
simulations.

ALGORITHM

To model wave propagation in a solid-fluid mixture, we apply displacement-stress rotated staggered finite-
difference grid (Saenger et al., 2000) to solve the elastodynamic wave equation. With a viscoelastic exten-
sion (described in detail in Saenger et al., 2005) we are able to model wave propagation in different kinds
of porous media.

The theoretical model of viscoelasticity is based on an approach described by Emmerich and Korn
(1987). Incorporation of viscosity based on the generalized Maxwell body (GMB) means that Hooke’s law
is modified:

σij = cijklεkl −
n∑

m=1

ξijm. (16)

In this equation,σij , cijkl, εkl denote the stresses, the elastic tensor and the strains, respectively. The
number of relaxation mechanisms is equal tom. The anelastic functionsξijm are determined by:

ξ̇ijm + ωmξ
ij
m = ωmỸ

ijkl
m εkl, (17)

with Ỹ ijklm as the tensors of anelastic coefficients andωm as angular relaxation frequencies. The GMB
frequency-dependent viscoelastic modulusCijkl(ω) can be derived by inserting the Fourier transform of
equation (17) into equation (16):

Cijkl(ω) = cijkl −
n∑

m=1

Ỹ ijklm

ωm
iω + ωm

. (18)

A second order discretization of equation (6) is implemented in the rotated staggered grid algorithm. As a
result the anelastic functionsξijm and coefficients̃Y ijklm are located in the center of an elementary FD-cell
at the same position as the stress tensor (see Fig 1(d) of Saenger et. al 2000). The exact position of a
boundary between two different materials is exactly the bound of the appendant elementary cells.

A compressible viscous fluid (i.e., Newtonian fluid) can be charcterized by the following frequency-
dependent elastic moduli:

C44(ω) = µ(ω) = iωηµ, (19)

C12(ω) = λ(ω) = λ(0) + iωηλ, (20)

with λ(ω) andµ(ω) as angular-frequency dependent Lamé parameters. For all examples in this paper we
assume that the dynamic fluid viscosityη is equal toηµ andηλ. However, the key question is how to
approximate the viscous behaviour given by equation (19) and (20) with a GMB. The following strategy is
based on a Taylor-expansion of equation (18) forω = 0:

•We use one relaxation mechanism (n=1).
•Ỹ 44

1 = c44. Only in this case it is possible thatC44(0) = 0.
•In the low frequency range of the GMB for one relaxation mechanism one can determine the wanted

fluid-viscosity by using the following relations:

ηµ =
1
i

∂C44(ω, Ỹ 44
1 = c44)

∂ω

∣∣∣∣∣
ω=0

=
c44
ω1
, (21)

ηλ =
1
i

∂C12(ω)
∂ω

∣∣∣∣
ω=0

=
Ỹ 12

1

ω1
. (22)
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•For ηµ = ηλ one can show that̃Y 12
1 = c44. Further, with equation (18), (20) and the known relation

c11 = c12 + 2c44 one can derive (forω = 0):

c11 = λ(0) + 3c44. (23)

•For FD approaches it is necessary to take into account the stability criterion. For the rotated staggered
grid with FD operators of second order in time and space the following relation is valid (Saenger et al.
2000): √

c11
ρfluid

= vp ≤ γ, γ =
∆h
∆t

. (24)

•We choosec44 with the following restriction [given by the ’stability criterion’-relation (24) and equa-
tion (23)]:

c44 ≤
γ2ρfluid − λ(0)

3
. (25)

•Together with the choice of the angular relaxation frequencyω1 one can determine the wanted dynamic
viscosityη [compare with equation (21)].

•We choose a source signal in the low frequency range of the applied GMB (ωsource << ω1).

NUMERICAL SIMULATIONS AND RESULTS

Numerical setup

To obtain effective velocities and attenuation coefficients in layered media we choose the following numer-
ical setup. The full synthetic model contains two horizontal thin layers of viscous fluid and elastic solid
of equal size (30x3000 grid points with an interval of∆x=0.0001 m for SH wave and∆x=0.00001 m
for P wave). The solid has the P-wave velocityvp=5100 m/s, S-wave velocityvs=2944 m/s, density
ρs=2540 kg/m3 and viscosityη=0 kg/m.s. For the viscous fluid we always setc11=3.922*1011, c44=1.3*1011

, andρf=1000 kg/m3. The fluid viscosityη is varied with the choice ofω1 (see equation (21)). To generate
a plane SH-wave (Ricker1,fdom=50 kHz,∆t=5e-9 s) or a P-wave (Ricker1,fdom=500 kHz,∆t=5e-10 s),
we apply a line source in horizontal or vertical direction and perform the finite-difference simulations with
periodic boundary conditions in the same direction. The effective velocity is estimated by measuring the
time of the zero-crossing of the plane wave over a distance of 1000 grid points. All computations are
carried out with the second order spatial FD operators and with the second order time update.

To obtain attenuation coefficients from simulation data we analyze the amplitude decaying with distance
over one wavelength. Based on the constant “Q” model (Knopoff, 1964, Pilant, 1979, Mavko et al., 1998)
the attenuation1/Q reads

1
Q

= − 1
π

∆A
A

∣∣∣∣
LW

. (26)

where∆A is the change in amplitudeA over one wavelength “LW ”. This methodology is used to derive
the attenuation from the numerically simulated waveforms at the distance of one wavelength.

Numerical results

The results of shear wave simulations are summarized in Figures 2a and 2b which show the shear wave
velocity and attenuation plotted versus the fluid viscosity. The solid triangles are simulations results, and
the solid line is the theoretical solution obtained by numerically solving the exact dispersion equation (6).
Also shown are theoretical solution in poroelastic (11) and viscoelastic (12) limits. We observe a very good
agreement between the full theoretical solutions and the numerical simulations for almost the full range of
viscosities. Up until viscosity of about 3000 kg/ms the numerical solution also agrees with poroelastic
(Biot’s) solution (11), after which it tends to follow the viscoelastic solution (12). This latter effect is
shown only for a relatively narrow range of frequencies, as the viscoelastic solution is only valid as long
as the parameterω/ωV = ωη/µs is small, that is, for viscositiesη << µs/ω. At higher viscosities when
the viscoelastic term begins to dominate, the waves become strongly dispersive and our method of velocity
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Figure 2: Shear wave velocity (a) and attenuation (b) versus viscosity. The triangles represent values of
shear wave velocity obtained from numerical simulations for models with different viscosity values. The
cross-dotted line corresponds to exact solution (6), the solid line represents the poroelastic solution (7) and
the dash-dotted line denotes the viscoelastic solution (12).

estimation no longer applies. We did not focus on these high viscosities as they are unphysical (in the sense
that Newtonian fluid model is no longer valid, see Landau and Lifshitz, 1987). The viscoelastic behaviour
is much more clearly visible on attenuation than on the dispersion plot, since the first-order viscoelastic
term in (12) is purely imaginary and therefore does not contribute to the phase velocity.

Some small discrepancies are observed for very low and very high viscosities. The discrepancy at low
viscosity is likely to be caused by insufficient sampling of the viscous boundary layer near the solid/fluid
interface. For instance, at viscosityη = 10 kg / ms and frequency 50 kHz, the thickness of the boundary
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layer (viscous skin depth) is already about(2η/ωρf )
1/2 = 2.5 · 10−4m, or about less than 3 grid points

of the FD grid. Thus the valueη = 10 kg / m.s is the minimum value of viscosity for which the boundary
layer is adequately sampled.
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Figure 3: SH-wave velocity versus viscosity. The solid line corresponds to the poroelastic solution (equa-
tion 7 ). The discrete points represent values of SH-wave velocity obtained from numerical simulations for
models with varying number of grid points.

To further investigate the relationship between the thickness of the viscous solid/fluid boundary and
the number of grid points, the computation of shear velocities was performed for different number of grid
points and different size of spatial steps. The results are summarised in Figure 3. These results demonstrate
that insufficient spatial sampling causes the observed velocity errors at low viscosities, in situations when
the viscous skin depth is small.

The results for P-wave dispersion and attenuation are shown in Figure 4a, b. The numerically simulated
values of P-wave velocities (Figure 4a) and inverse quality factor (Figure 4b) are consistent with the exact
solution. This agreement is observed in a wide range of viscosities. A small discrepancy appears at
viscosities as low asη < 0.1 kg / m.s. At these very low viscosities the very thin solid/fluid boundary layer
is still not properly discretized.

It is useful to note that Biot’s theory of poroelasticity neglects the bulk viscosity of the pore fluid.
Our numerical simulations include the effects of both bulk and shear viscosities. The theoretical solution
for shear waves includes only the effect of shear viscosity. The good agreement between the numerical
simulation and the theoretical attenuation and dispersion proves the legitimacy of Biot’s assumption as
expected. For compressional waves Figures 4a,b show solutions both with (Imλf = Imµf = −ωη)
and without (Imλf = 0) bulk viscosity. We see that influence of bulk viscosity on the dispersion and
attenuation of compressional waves is negligible in the poroelastic regime, and becomes significant only in
the viscoelastic regime, again confirming Biot’s assumption.

CONCLUSIONS

The main result of this paper is an excellent agreement between the numerical simulations and theoretical
predictions of shear and compressional wave velocities and attenuation factors. This agreement is observed
in a wide range of fluid visocities. In the lower viscosity range the solution shows excellent agreement with
the poroelastic solution as predicted by Biot’s theory of poroelasticity. At higher viscositis the behaviour
of velocities and, in particular, attenuation factors is consistent with classical viscoelastic dissipation. This
confirms that the viscoelastic rotated staggered grid FD method of Saenger et al. (2005) is capable of
modelling both poroelastic (associated with global flow) and viscoelastic effects with high accuracy. The
finite-difference discretization required to achieve this accuracy must be sufficiently fine to ensure adequate
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Figure 4: Compressional wave velocity (a) and attenuation (b) versus viscosity. The dashed line corre-
sponds to the exact Rytov’s dispersion equation (14) for the case when the bulk viscosity of the fluid layer
is neglected. The cross-dotted line represents the exact Rytov’s dispersion equation when the solution ac-
counts for the bulk viscosity of the fluid layer. The solid line corresponds to the Biot’s dispersion equation
for compressional waves. The triangles represent values of compressional wave velocity obtained from
numerical simulations for models with varying viscosities for spatial step∆x = 1e− 5.

sampling of viscous boundary layer near the pore wall. At least two grid points with spatial distance less
than the viscous skip depth are required for the accurate computation.
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