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ABSTRACT

It is common to be needed to reconstruct functions which samples falls on a nonequally spaced grid.
This is due to the fact that some of the most used algorithms require samples in a regular (uniform)
Cartesian grid. Therefore, it is necessary to make an uniform resampling, i.e., to interpolate the
nonuniform samples in a set of equally spaced points. In this work, it is first shown that the resampling
problem can be formulated as a problem of solving a system of linear equations. A solution for this
system can be found using the pseudoinverse matrix, a process that is impractical for a large number
of variables. From particular characteristics of the resampling problem, it is possible to develop a
better algorithm, which only uses a limited number of samples to calculate each uniform sample,
transforming the original problem into a sequence of linear systems with less variables. The final
result can be viewed as both optimal and computationally efficient. Two applications are presented to
demonstrate the efficiency of the new method.

INTRODUCTION

The problem of handling data that falls on a nonequally spaced grid occurs in numerous fields of science.
In general, this problem occurs due to the fact that some very useful algorithms are based on the Discrete
Fourier Transform (DFT), which requires that the samples lie over a regular Cartesian grid.

In many seismic-data processing algorithms the input data must be given in an uniform grid. However,
for real data, difficulties in positioning the sources and receivers may cause the spatial sampling intervals
to vary from place to place. If the variations of the sampling intervals are too large to be acceptable for
data processing, seismic traces have to be resampled. Then, we say that is necessary to make anuniform
resampling.

In this work we show that the uniform resampling problem can be formulated as the solution of a linear
system of equations. We also discuss theUniform ReSampling(URS) and theBlock Uniform ReSampling
(BURS) algorithms, developed by Rosenfeld (1998) to solve the problem. The BURS algorithm is both
optimal and efficient and is suitable for problems where the number of samples is very large and it is
necessary a fast method to reconstruct the function. We apply the algorithm to three data sets to show that
the results are of excellent quality.

ONE-DIMENSIONAL CASE

Let us consider a continuous real functionf , sampled in a finite set of nonequally spaced points,{τ1, τ2, . . . , τm},
τi ∈ IR, i ∈ M = {1, 2, . . . ,m}. The uniform resampling problem consists in to find an approximation
to the function on an equally spaced set of points, i.e., to approximatef(tj), tj = t0 + j∆t, t0 ∈ IR,
j ∈ N = {1, 2, . . . , n}. Such problem can be solved using the following theorem due toClaude Shannon
in 1949 (see, e.g., Briggs and Henson (1995)):
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SHANNON SAMPLING THEOREM: Let f be a band-limited real function, i.e., its Fourier Transform,f̂ ,
is such that̂f(ω) = 0 for |ω| > Ω > 0. If ∆t < π/Ω, then for anyt0 ∈ IR

f(τ) =
∞∑

n=−∞
f(t0 + n∆t) sinc

(
τ − n∆t− t0

∆t

)
, (1)

where

sinc t =
sin πt

πt
, (2)

Equation (2) defines the so calledcardinal sine, or simply sinc function. For more details about this
function, see Gearhart and Shultz (1990). Equations (1) and (2) are readily extend to higher dimensions by
replacing the sum by a multiple sum and the sinc function by a product of sinc functions.

From equation (1), for eachτi, i ∈M we can write

f(τi) ≈
n∑
j=1

f(tj) sinc

(
τi − tj

∆t

)
, (3)

which can be viewed as a system of linear equations

Ax = b, (4)

where the elements of the matrixA ∈ IRm×n, of the vectorx ∈ IRn and of the vectorb ∈ IRm are given
by aij = sinc[(τi − tj)/∆t], xj = f(tj) andbi = f(τi), for all i ∈ M andj ∈ N . Thus, our problem is
one of solving a set ofm linear equations withn unknowns.

UNIFORM RESAMPLING ALGORITHM

As in general the matrixA is not square and, moreover, in most practical casesm > n, a solution for this
problem can be found using the (Moore-Penrose) pseudoinverse ofA,

x = A+b. (5)

The matrixA+ hasn rows andm columns and satisfies the relationsA+AA+ = A+ andAA+A = A. The
pseudoinverse provides the optimal solution to the equation (4) in the minimal-norm least-square sense, i.e.,
it selects among all vectorsx which minimize the expression‖Ax − b‖, the one with minimal norm‖x‖.
Here,‖ · ‖ denotes the Euclidian norm,‖x‖ =

√
x2

1 + x2
2 + . . .+ x2

n.
The Uniform ReSampling(URS) algorithm computes the solutionxURS = A+b using theSingular

Value Decomposition(SVD), which is a standard component of most mathematical software packages
(see, e.g., Trefethen and Bau (1997)). AlthoughxURS is, in some sense, an optimal solution, it has two
inherent drawbacks. First, the computation ofA+ becomes impractical when the dimensions ofA are too
large. Whenm e n are on the order of several hundreds, inversion is practical. Second, each uniform
sample, sayxj , is calculated by multiplying thejth row ofA+ by the vectorb, i.e.,m multiplications (and
m − 1 additions) are involved. Using the fact that measurements that are distant from the pointtj will
have coefficients with small magnitude, Rosenfeld (1998) created an algorithm that includes only a limited
number of terms in its computation. In the following section, this algorithm is developed.

BLOCK UNIFORM RESAMPLING ALGORITHM

Rosenfeld (1998) developed a new algorithm to find a solution of the formx = Ā+b, where each row of
the matrixĀ+ contain mostly zeroes and only a restricted number of nonzero coefficients, concentrated
in the neighborhood of the line corresponding totj . The steps of theBlock Uniform ReSampling(BURS)
algorithm is as follows: For eachtj , instead of considering all them nonuniform points, select onlȳm
points in the vicinity oftj ; for example, one could include all the points within a radiusδ from tj . Similarly,
it is sufficient to estimate onlȳn uniform samples of the result. For example, select all grid points within
a radius∆ from tj . Rosenfeld (1998), after many trials and errors, suggests the relation∆ ≥ 1.5 δ. The
following system of equations is obtained

Bjx
j = bj , (6)
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whereBj is an m̄ × n̄ matrix of interpolation coefficients (a submatrix ofA), xj is a n̄-dimensional
subvector ofx, andbj is am̄-dimensional subvector ofb, which contains the participating measurements.
The solution of equation (6) is not computed, but the pseudoinverse ofBj using the SVD.

The next step is to isolate the row ofB+
j that corresponds totj . This row contains̄m elements, which

are the desired coefficients of the linear combination for whichxj is the best (in the minimal-norm least-
squares sense). These values are now inserted into the appropriated positions in the matrixĀ+. That is, the
entirej-th row of the matrixĀ+ is set to zero, with the exception of thesem̄ coefficients, which are placed
in the positions corresponding to their respective measurements (b vector). This is done for each uniform
coordinatetj . The result is ann×m matrix Ā+, which contains mostly zeroes, except for a narrow band
along its “diagonal”.

The following scheme summarizes the method:

BURS ALGORITHM

• Givenf(τi), τi ∈ IR, i ∈M = {1, 2, . . . ,m}, tj = t0 + j∆t, t0 ∈ IR, j ∈ N = {1, 2, . . . , n},
δ > 0 and∆ ≥ 1.5δ.

• For j = 1, . . . , n
Let d = {k ∈ M | |τk − tj | < δ} andD = {l ∈ N | |tl − tj | < ∆}.
LetBj be the submatrix ofA composed by the elementsakl, k ∈ d, l ∈ D.
ComputeB+

j .

Isolate the row ofB+
j , which corresponds totj , and plug it into the appropriate location in

thej−th line of Ā+.
• Let b = (f(τ1), . . . , f(τm))T .
• The uniform samples are given byxBURS = Ā+b, and then,f(tj) ≈ (xBURS)j .

The BURS algorithm is very efficient because many elements of the inversion matrixĀ+ are zero (the
j-th row of Ā+ contains onlym̄ nonzero coefficients), and one has only to keep track of these nonzero
coefficients.

TWO-DIMENSIONAL CASE

Let us consider a continuous real functionf : IR2 → IR, sampled in a finite set of nonequally spaced points,
{(α1, β1), (α2, β2), . . . , (αm, βm)}. We want to find an approximation forf(ai, bj), (ai, bj) = (a0, b0) + (i∆a, j∆b),
(a0, b0) ∈ IR2, i ∈ N1 = {1, 2, . . . , n1} andj ∈ N2 = {1, 2, . . . , n2}.

Such problem can be solved applying Shannon’s theorem to higher dimensions. For each(αk, βk),
k ∈M = {1, 2, . . . ,m}, we have

f(αk, βk) ≈
n1∑
i=1

n2∑
j=1

f(ai, bj) sinc

(
αk − ai

∆a

)
sinc

(
βk − bj

∆b

)
. (7)

We can sort these Cartesian grid points by columns (or rows) in a vector as follows:{(â1, b̂1), (â2, b̂2), . . . , (ân, b̂n)},
where(â1, b̂1) = (a1, b1), (â2, b̂2) = (a1, b2), . . . , (ân2 , b̂n2) = (a1, bn2), (ân2+1, b̂n2+1) = (a2, b1), . . . , (ân, b̂n) =
(an1 , bn2), wheren = n1n2. Then, from equation (7),

f(αk, βk) ≈
n∑
`=1

f(a`, b`) sinc

(
αk − â`

∆a

)
sinc

(
βk − b̂`

∆b

)
, k ∈M. (8)

Let us observe that as in the one-dimensional case, the above set of equations form a linear system
AX = B. The elements of matrixA ∈ IRm×n, of vectorX ∈ IRn and of vectorB ∈ IRm are given
by ak` = sinc[(αk − â`)/∆a] sinc[(βk − b̂`)/∆b], X` = f(â`, b̂`), Bk = f(αk, βk), k ∈ M,
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` ∈ N = {1, 2, . . . , n}. The solution for this linear system is given by

X = A+B, (9)

and all the previous methods discussed in one-dimensional case can be applied.

NUMERICAL EXPERIMENTS

As a first example, we apply the described algorithms to the one-dimensional functionf(x) = 15x5 +
ex/2 cosx − x9 sampled ontom = 256 nonuniform points. The image was reconstructed onton = 128
uniform grid using both URS and BURS algorithms. As expected, the BURS algorithm had a better
performance, as shown in Figure (1). For the URS algorithm, it was computed the pseudoinverse of an
(256 × 128) matrix while in the BURS algorithm it was computed128 pseudoinverses with sizes varying
from 7× 5 to 17× 11.

To show the potential of the interpolation scheme for seismic purposes, and as another one-dimensional
example, we resampled a seismic section where the receivers are not equally spaced. Both algorithms, URS
and BURS were applied to simulate the corresponding seismic section for equally spaced receiver locations.
Figures 2–5 show the results, where again we observe a better performance for the BURS algorithm.

Finally, as a two-dimensional example, we apply the BURS algorithm to reconstruct an image with
some missing samples. The chosen image was the central part of a Lena image with256 × 256 pixels,
resulting in an image of128 × 128 pixels. We randomly removed 4916 pixels and resampled the image
using BURS. In Figure 6 we can see the original Lena image, the corrupted image and the reconstructed
one. The running time was 2hs29min and the error is6.7%. The error was measured by the Frobenius
norm of the difference between the original image and the obtained one divided by the Frobenius norm of
the original image. Algorithm URS was computationally impractical for this problem: the running time
exceeded 5 hours.

CONCLUSIONS

We discussed a new gridding algorithm that is both optimal and efficient. The original problem of resam-
pling over a uniform grid was first formulated as a problem of solving a set of linear equations. The solution
is obtained using the pseudoinverse (SVD). This method, the URS algorithm, is optimal in the minimal-
norm least-square sense. The BURS algorithm is a suboptimal counterpart of the URS method, which is
efficient and practical for large problems and others situations. Only a limited number of measurements
are used to generate each uniform grid point. An appropriate set of linear equations is constructed and
subsequently solved using the SVD.

Both BURS and URS algorithms were applied in resampling of seismograms for simulated a seismic
section with equally spaced receivers. It was shown that BURS algorithm gave better results. In the two-
dimensional case, BURS was used to reconstruct an image and the result was very satisfactory.
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Figure 1: Uniform resampling of functionf(x) = 15x5 + e
x
2 cosx − x9 using the URS (left) and

BURS (right) algorithms, withδ = 0.17 and∆ = 0.30.
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Figure 2: Top: Modeled seismic section for nonequally spaced receiver locations. Bottom: Modeled
seismic section for equally spaced receiver locations.
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Figure 3: Top: Interpolated seismic section using URS. Bottom: Interpolated seismic section using BURS,
δ = 0.1 and∆ = 0.2.
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Figure 4: Top: Modeled seismic section for nonequally spaced receiver locations. Bottom: Modeled
seismic section for equally spaced receiver locations.
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Figure 5: Top: Interpolated seismic section using URS. Bottom: Interpolated seismic section using BURS,
δ = 0.1 and∆ = 0.2.
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Figure 6: Top: Original Lena Image with128 × 128 pixels. Middle: Nonuniform Lena Image with 30%
less pixels. Bottom: Reconstructed Lena image using BURS.


