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ABSTRACT

We analyze compressional wave attenuation in fluid-saturated porous material with porous inclusions
having different compressibility and very different spatial scale in comparison with the background.
Such a medium exhibits attenuation due to wave-induced fluid flow across the interface between in-
clusion and background. We show that overall wave attenuation is governed by the superposition of
two coupled fluid-diffusion processes. Associated with two characteristic spatial scales, we compute
two cross-over frequencies that separate three different frequency regimes. We give a physical ex-
planation for an intermediate range of frequencies, where attenuation scales with ω1/2. The potential
application of this model is in estimation of the background permeability as well as inclusion scale
(thickness) by identifying these frequencies from the attenuation measurement.

INTRODUCTION

One of the main intrinsic seismic wave dissipation mechanisms is associated with the wave-induced flow of
the pore fluid. This effect occurs in a heterogeneous porous medium when a passing wave induces a local
pressure gradient on the interface between inclusion and the background. In order to equilibrate pressure,
viscous fluid moves across the interface (Pride and Berryman, 2003; Pride et al., 2004; Brajanovski et al.,
2005).

In all these studies similar general behavior of attenuation versus frequency is observed. In particular,
for high contrast in permeabilities, compressibilities and spatial scales between inclusion and background,
three different frequency regimes can be identified. Dimensionless attenuation (inverse quality factor) is
proportional to the first power of frequencyω at low frequencies, toω−1/2 at high frequencies, and toω1/2

in the intermediate frequency range, see Figure 1. However, the physical description how induced diffusion
fluid motion produces intermediate frequency range, remains unclear.

In this paper we show that the intermediate frequency regime is a general feature of saturated porous
media with two very distinct elastic properties of the inclusion and the background and two very different
characteristic length scales that are 1) scale of the inclusions and 2) distance between them. Based on the
dispersion equation for the effective P-wave modulus for porous fractured rocks (Brajanovski et al., 2005),
we compute two cross-over frequencies that separate three different frequency regimes of attenuation. In
order to give physical explanation for the intermediateω1/2 frequency dependency, we show that overall
wave attenuation is governed by two coupled fluid diffusion processes.

ATTENUATION OF P-WAVE IN FRACTURED ROCK

Brajanovski et al (Brajanovski et al., 2005) showed that effective frequency-dependent, fluid-saturated P-
wave moduluscsat33 (ω) of porous rock with periodic system of fractures parallel tox1x2 plane with spatial
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periodH is given by
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where∆N is the fracture weakness (Hsu and Schoenberg, 1993; Bakulin et al., 2000) of value between 0
and 1, defined by∆N = ZNLb/(1 + ZNLb). ZN = limhc→0(hc/Lc) is the normal excess compliance
describing fracture contribution in compliance matrix in the linear-slip deformation theory (Schoenberg
and Douma, 1988). Indexc denotes fracture parameters while indexb denotes parameters of the porous
background. In equation (1)Ω is the normalized frequency given by

Ω = ω
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The background material is specified by fluid-saturated P-wave velocity modulusCb, diffusivity Db =
κbMbLb/ηCb, permeabilityκb, pore space modulusMb, dry (drained) P-wave modulusLb, material pa-
rameterRb = αbMb/Cb and Biot-Willis coefficientαb. Viscosity of the fluid isη. The complex P-wave
velocity isVp3 =

√
csat33 /ρb, whereρb = ρg(1 − φb) + ρfφb is mass density of the fluid-saturated back-

ground material. The P-wave phase velocity isVp =
[
Re
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)]−1
and the attenuationQ−1 is given by

Q−1 = 2VpIm
(
V−1

p3

)
.

Expression (1) is valid for frequencies much smaller than Biot’s characteristic frequency (fluid flow in
the pore channels is Poiseuille flow), and also much smaller than the resonant frequency of the layering
(effective medium approximation is valid). Within these conditions, we can still define low and high fre-
quencies with respect to fluid flow. Low frequencies are those when pressure has enough time to equilibrate
between layers within the wave cycle, while for high frequencies this is not possible.
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Figure 1: Log-log plot of attenuation ver-
sus circular frequency for water saturated
quartz grained sandstone (Kg = 37 GPa,
µg = 44 GPa, ρg = 2.65 g·cm−1) of
porosity φ = 0.2 and fracture weakness
∆N in range from 0.05 up to 0.2. Three
different asymptotic parts of the attenua-
tion curves are observed.

ASYMPTOTIC ANALYSIS

In Figure 1, wherelog(Q−1) is plotted versuslogω, we observe that the normalized frequency for peak
attenuation decreases with increasing fracture weakness∆N . In the high-frequency limit the attenuation
is proportional toω−1/2. In the low-frequency limit attenuation is proportional toω. From the curve
marked with diamonds, for the case of lower fracture weakness (which intuitively corresponds to "thinner"
fractures), we clearly observe a transitional part proportional toω1/2. PointsP andM define cross-over
frequencies separating attenuation behavior. We derive analytical expressions for the cross-over frequen-
cies and investigate their dependence on fracture parameters.
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From the definition ofQ−1 and dispersion relation (1) we find asymptotic solution for imaginary parts
of the complex velocityVp3 normalized by the constant real velocity

√
Cb/ρb. By using the expansion of

cot z for small argumentz low-frequency asymptote is
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whereT = L−1
b (Rb − 1)2andB = (1/∆N +Mb/Cb − 1). Hence,Q−1 is proportional toω.

To find the intermediate asymptote we have to analyze the double limit, first take the approximation for
small fracture weakness and then take the limit as frequency goes to zero. Small∆N limit is obtained from
equation (1) using
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whereF =
√
iΩ cot(Cb

√
iΩ/Mb). We calculateImF by representing cotangent function of complex

argument in exponential form and then expressing the result in terms of trigonometric and hyperbolic
functions. AsΩ → 0, taking only first term in expansion ofImF and then substitutingImF into equation
(4) yields
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The latter equation shows that in the double limit of small fracture weakness and low frequencyQ−1 is
proportional toω1/2.

The lower cross-over frequency can be computed by looking at intersection of these two asymptotes.
Equating right-hand sides of equations (3) and (5), and substitutingB2 ≈ 1/∆N gives normalized
crossover frequencyΩP = (3Mb/2Cb)

2 for point P . From equation (2) we calculate the correspond-
ing real angular frequencyωP

ωP =
9Db

H2
. (6)

The high-frequency asymptote can be obtained in a similar way. Writing the cotangent function in
exponential form and taking limitΩ →∞ andP →∞, we get imaginary part of the modulus
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thus, for high frequenciesQ−1 is proportional toω−1/2.
Equating right-hand sides of equations (7) and (5) gives the upper normalized cross-over frequency

ΩM =
√
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N (pointM ), which is an approximation for the maximum of attenuation. From equation

(2), the corresponding real angular frequencyωM is
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COUPLED DIFFUSION

The attenuation behavior described in previous section can be interpreted as a superposition of two hypo-
thetical diffusion processes (represented by curvesb andc in Figure 1). Although, each layer alone does not
produce any attenuation (because the layer is homogeneous), when connected together, attenuation takes
place because the pore pressure gradient across the interface is induced. In order to equilibrate pressure,
fluid flow occurs between layers (background and fracture). This process is described by the diffusion
equation. Symmetry of the system causes no-flow condition in the middle of each layer. Intuitively, we can
say that condition for maximal attenuation is when fluid penetrates layers to the maximal possible depth.

Let us analyze the process in the background. Cross-over frequencyωP , given by equation (6) is
independent of fracture weakness∆N but depends on the ratio between diffusivity and thickness of the



Annual WIT report 2005 217

background. This is logical because diffusion lengthδc in fracture at this frequency is several orders of
magnitude bigger than the thickness of fracture, such that it cannot control the frequency dependency of
the relaxation process in the background. In other words, the coupling between diffusion processes in the
background and fracture is weak.

Note that in equation (8) for upper cross-over frequencyωM there is no explicit dependency of the frac-
ture diffusivity. The reason is that in equation (1) fracture properties are lumped into a single parameter that
is fracture weakness. Underlying physical reason is the high contrast in spatial scales and compressibili-
ties, which allows simpler parameterization of fractures via fracture weakness parameter. The cross-over
frequencyωM primarily depends on fracture weakness (thickness). It also depends onDb because the
coupling of the two diffusion processes is strong in this case. Since diffusion length in the background
is smaller than the diffusion length in fracture, the diffusion process in fracture will be dependent onDb

(amount of fluid that can flow across the interface is influenced byDb). From equations (6) and (8) we
conclude that separation betweenωP andωM becomes stronger for smaller fracture weakness and softer
fracture matrix.

CONCLUSIONS

We think that results represent a general feature of attenuation due to the so-called mesoscopic flow (in
the presence of heterogeneities small compared to the wavelength double-porosity structures. In fact, the
three different frequency regimes identified here can be clearly observed in the attenuation behavior of
double-porosity configurations as shown in (Pride and Berryman, 2003) and (Pride et al., 2004) (see their
Figure 1). Similar intermediate frequency regime is observed in patchy-saturation model (Johnson, 2001)
however, properties do not exhibit big contrast, and thus if the spatial scales of fluid patches are very dif-
ferent the overall effect of small heterogeneities is small.

The results derived from equation (1) are limited by the assumption of periodic distribution of frac-
tures. Sensitivity of our results to the violation of the periodicity assumption was examined numerically
using reflectivity modeling for layered poroelastic media (Lambert et al., 2005). Numerical experiments
for a random distribution of fractures of the same thickness still show good agreement with theoretical
results obtained for periodic fractures in a vicinity of the attenuation peak. However, the regime withQ−1

proportional toω is no longer present, and the "intermediate" frequency range withQ−1 ∝ ω1/2 extends
over the low-frequency range. This numerical result for a random distribution of fractures is in agreement
with both theoretical and numerical results for randomly layered porous media with small contrast between
layers (Gurevich and Lopatnikov, 1985; Gelinsky et al., 1998).

Presented results provide a physical basis for estimation of the reservoir permeability as well as the
fracture weakness (thickness) by identifying cross-over frequencies from attenuation measurements. These
parameters may provide additional input for reservoir modeling. The major requirement for such an ap-
proach is that measurements must be made in over a relatively broad frequency range (between seismic and
sonic logging frequencies).
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