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ABSTRACT

True-amplitude Kirchhoff migration is a task of high computational effort. A substantial part of this
effort is spent on the calculation of Greens functions, i.e. traveltime tables and amplitude-preserving
weight functions. Storing the Greens functions leads to large demands in computer storage in addition
to the high requirements in CPU time. In this paper we propose a strategy to compute the weight
functions directly from coarsely-gridded traveltimes. Together with a fast and accurate method for
the interpolation of the traveltimes onto the required fine migration grid, this leads to considerable
savings in CPU time as well as storage. Application to a complex synthetic model and real data
demonstrates that the image quality and accuracy of the reconstructed amplitudes is equivalent to that
obtained by conventional true-amplitude Kirchhoff migration, whereas the computational efficiency
is significantly enhanced.

INTRODUCTION

True-amplitude Kirchhoff migration is a powerful tool for the processing of seismic reflection data. In
addition to a structural image, amplitude maps of the subsurface are obtained. These can be input for
amplitude versus offset (AVO) studies, a key technique for seismic reservoir characterization. The result
of a Kirchhoff migration is an image in the time or in the depth domain. In this work, we will focus on
depth imaging, although the method suggested here can also be applied to obtain a time migrated section.
In Kirchhoff depth migration, the subsurface is represented by a reasonably discretised grid, where every
grid point is considered a point scatterer. The migration for a depth point M is carried out by stacking the
seismograms along the diffraction traveltime surface associated with M and placing the result into M . If
specific true-amplitude weight functions are applied during the stacking process, the effect of geometrical
spreading can be removed and the migration output becomes a measure of the angle-dependent reflectivity.
In most cases, the resulting amplitudes are still influenced by other effects, like transmission losses, but
these are usually assumed to be of second order. During the last decades, several approaches have led to
different formulations for the true-amplitude weight functions (e.g., Bleistein 1987; Schleicher et al. 1993),
that can, however, be shown to be equivalent (Hanitzsch, 1997).

Despite its benefits, true-amplitude migration is not routinely applied, as it is a task of high compu-
tational effort, especially when 3D data are considered. In order to obtain a highly-resolved image, the
subsurface must be finely discretised. A sampling of down to 5 m is desired, but not feasible due to the
sheer amount of auxiliary data required for the migration step, namely, the traveltime surfaces and weight
functions. For each point where a source or receiver is located in the registration surface a table must be
generated with the traveltime to each subsurface point on the grid. For the 3D weight function, additional
quantities have to be computed and stored from each source/geophone to each subsurface point. Whereas
fast implementations like finite difference eikonal solvers (FDES, e.g., Vidale 1990) can be applied for the
traveltimes, the computation of the weights requires more effort: since the purpose of the weight functions
is the removal of the geometrical spreading determined by the curvature of the wavefront, the standard way
to compute the weights is the application of dynamic ray tracing (Červený and deCastro, 1993; Hanitzsch
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et al., 1994), which is more time-consuming than FDES. Finally, another part of the computational time is
spent during the stacking itself, which has to be carried out over the aperture of the experiment. Since in
practice only a minor part of the traces effectively contributes to the stack, the aperture is usually limited to
a predefined size (see, e.g.,Hertweck et al. 2003). For these reasons, true-amplitude migration has not yet
become a standard tool.

The aim of this paper is the introduction of a traveltime-based algorithm for true-amplitude migration.
In this method, all quantities required for the migration weights, as well as for the stacking surface, are
obtained from coarsely-gridded traveltime tables. This leads to a considerable reduction in computer stor-
age and computation time, while maintaining the quality of the migrated image and recovered amplitudes,
compared to standard true-amplitude migration using dynamic ray tracing. Although a traveltime-based
strategy was already suggested by Vanelle (2002), Vanelle and Gajewski (2002b), and Gajewski et al.
(2002), application of that technique still required a priori knowledge on the positions and inclinations of
reflectors in the subsurface. This work does no longer suffer from that restriction.

Following a short introduction to the theory of true-amplitude migration, we will describe the
traveltime-based approach. The major part of this paper is then dedicated to the application of the method to
a highly-complex synthetic model and a real data set. Finally we conclude the paper with a short summary
and an outlook.

METHOD

Note: Capital indices like I take the values 1 and 2, whereas small indices i take values 1, 2, and 3.

True-amplitude migration in three dimensions

Schleicher et al. (1993) have shown, that the true-amplitude migrated output Ω(M) at the subsurface point
M can be obtained from a diffraction stack of the form

Ω(M) = − 1

2π
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if proper weight functions W3D(ξ,M) are applied. The integration in (1) is carried out over the aperture
A, that contains the considered traces at the positions ξ = (ξx, ξy) (see e.g. Schleicher et al. 1993). The
stacking surface is the diffraction traveltime surface t = τD(ξ,M) for the depth point M , calculated in a
previously determined macro-velocity model. If the seismic data U(ξ, t) are expressed by (Červený, 2001)
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Schleicher et al. (1993) and Vanelle and Gajewski (2002b) have shown, that application of the weight
function
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allows to reconstruct the reflection coefficient,R, i.e. Ω(M) yields a reflectivity map of the subsurface. In
(2) and (3), ρs and Vs are the density and velocity at the source. Correspondigly, ρg and Vg are the density
and velocity at the geophone. The radiation function of the source is denoted by Gs, e.g., for P-waves an
explosion source has Gs = 1/4πρsV

2
s , and F (t) is the time signature of the analytic source pulse. The

geometrical spreading is denoted by L, the reflection traveltime by τR, and the angles θS and θG are the
emergence angle at the source and the incidence angle at the receiver, respectively. The KMAH indices κ1,
κ2, and κ correspond to the ray branches from the source S to M (index 1), the geophone G to M (index
2), and the reflected ray. The configuration matrices Σ and Γ describe the relations between the parameter
ξ and the source s and geophone position g (Schleicher et al., 1993). Finally, the 2×2 matrices Nr

I are
second-order derivative matrices of the traveltime,

Nr
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∂gI∂rJ
. (4)
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The coordinates of the source and geophone are given in a global Cartesian coordinate system, e.g., chosen
to coincide with the acquisition scheme, whereas the coordinates r1 and r2 lie in the reflector tangent plane
(see Appendix A). Transmission losses are not considered in this study.

True-amplitude migration in 2.5 dimensions

In the special case where the data were aquired along a single line and the medium does not vary in
the cross-line direction, the true-amplitude migration algorithm (1) can be modified and restricted to an
integration over the in-line direction. The stack corresponding to (1) for this so-called 2.5D situation looks
as follows, where ξ=ξx:

Ω(M) =
1√
2π

∫
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dξ W2.5D(ξ,M) ∂
−1/2
t U(ξ, t)
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Here, the operator ∂−1/2
t denotes the Hilbert transform of the anti-causal temporal half-derivative of the

seismic data, corresponding to the application of a
√
−iω filter in the frequency domain. The modified

weight function reads (Martins et al., 1997; Vanelle and Gajewski, 2002b)
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where Σ, Γ, andNI are the xx-components of the matrices Σ, Γ, and NI , respectively. The term
√
σ1 + σ2

is the out-of-plane geometrical spreading, where the components σI are given by
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The weight functions (3) and (6) are written in terms of traveltime derivatives as these directly relate to the
traveltime-based implementation suggested in this work. For other implementations the equivalent weights
can be expressed by quantities available from dynamic ray tracing (for an overview, see, e.g. Hanitzsch
1997). Although the classic true-amplitude migration employs weights from dynamic ray tracing (DRT), it
has not become a standard tool due to the strong requirements in computer demands (CPU time and storage)
as well as on the model (continuity of second-order spatial velocity derivatives is required for DRT). As we
will show in the following, the traveltime-based implementation underlies weaker restrictions.

The traveltime-based strategy

To carry out the migration using either (1) or (5) we need the weight functions (3) or (6) and the diffraction
traveltime surface or curve, τD(ξ,M). The diffraction traveltimes are needed anyway, even for a purely
kinematic migration. If first-arrival traveltimes are considered only, these can be obtained from fast tra-
veltime generation methods like finite difference eikonal solvers (for an overview of traveltime schemes,
see Leidenfrost et al. 1999). Later-arrival traveltimes can be computed with kinematic ray tracing. For the
computation of the weight functions, however, dynamic ray tracing has to be carried out even for the first
arrivals.

In this section we will describe how the true-amplitude weights can be obtained from coarsely-gridded
traveltime tables without further need for dynamic ray tracing. The traveltime coefficients that determine
the weights are also applied for an efficient and accurate interpolation of the traveltimes onto the fine
migration grid. By doing so, we can considerably reduce the computational demands and yet maintain the
high quality of the migrated image.

In the following we will assume that diffraction traveltime tables sampled on a coarse subsurface grid
are available. The subsurface sampling should accord with the prevailing wavelength in the data, and the
model. In this case, the hyperbolic traveltime expression of Vanelle and Gajewski (2002a), obtained from
a Taylor expansion of the squared traveltime,

T 2(s,g) = (T0 + q ·∆g− p ·∆s)
2

+ T0 (∆g ·G∆g−∆s · S∆s− 2 ∆s ·N∆g) , (8)
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Figure 1: Determination of the coefficients from Equation (8): the traveltimes T0, Tm, Tp on the coarse
grid with the spacing ∆gx.

can be applied to describe the reflection traveltime between a source at s and a geophone at g in the
vicinity of the expansion point at s0 and g0, when the coefficients in (8) are known. These are (Vanelle
and Gajewski, 2002a)

pi = −∂T
∂si

and qi =
∂T

∂gi
, (9)

the slowness vectors, and the second-order derivative matrices

Sij =− ∂2T

∂si ∂sj
= Sji ,
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Nij =− ∂2T

∂si ∂gj
6= Nji . (10)

All derivatives are taken at the expansion point. Furthermore, T0 is the traveltime from s0 to g0, and ∆s
and ∆g are the distances in source and receiver position to the expansion point. The expansion points
coincide with the coarse grid nodes of the traveltime tables (see Figure 1).

Vanelle and Gajewski (2002a) describe how the coefficients in the traveltime expression (8) can be
obtained from coarsely-gridded traveltime tables. We give an example for the determination of the co-
efficients qx and Gxx. Figure 1 shows a grid on which the traveltimes T0, Tm = T (s0,g0 −∆gx), and
Tp = T (s0,g0 + ∆gx) are given. The traveltimes T1 and T2 are substituted into the hyperbolic expression
(8):

T 2
m = (T0 − qx ∆gx)2 + T0Gxx ∆g2

x

T 2
p = (T0 + qx ∆gx)2 + T0Gxx ∆g2

x .

This resulting system of equations is solved for the two unknowns qx and Gxx, leading to
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T 2
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m

4T0 ∆gx
and Gxx =

T 2
p + T 2

m − 2T 2
0

2T0 ∆g2
x

− q2
x
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The coefficients qz andGzz are determined accordingly from traveltimes to g0 ±∆gz; coefficients px and
Sxx are determined using traveltimes from s0 ±∆sx to g0, and so forth. Expressions for all coefficients
of (8) are given in Vanelle (2002). An investigation of the accuracy of the obtained coefficients was also
carried out by Vanelle (2002).

Expression (8) is equally valid for diffraction traveltimes. The stacking surface/curve required for the
summation in (1) and (5) is the sum of the traveltime from the source to the subsurface point (denoted by
T1), and, due to reciprocity, that from the geophone to the subsurface point (T2), i.e.

τD(ξ,M) = T (s,x) + T (g,x) = T1 + T2 . (11)

The vector x is the position of the subsurface point M . Both T1 and T2 are obtained on the fine migration
grid from traveltime interpolation using equation (8), as the coefficient sets for the branches 1 and 2 are
determined. Note, however, that the matrices N1 and N2 are 3×3 matrices that do not coincide with the
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2×2 matrices in the weight functions (3) and (6), Nr
1 and Nr

2: in the latter, the derivatives are taken in the
reflector tangent plane, whereas N1 and N2 are defined in global Cartesian coordinates. The transformation
from that system to the system defined by the reflector tangent plane is derived in Appendix A.

By applying equation (11) with hyperbolic traveltime interpolation using (8) we get the stacking sur-
face/curve from coarsely-gridded traveltime tables. Since the position of the source can also be interpo-
lated, we gain considerable savings in storage: if, for example, the ratio of the coarse to the fine grid spacing
is ten, a factor of 105 can be saved in storage in 3D. Furthermore, the interpolation is very fast, and fewer
traveltime tables (compared to a classic implementation) need to be computed due to the source interpola-
tion, thus we also save in computation time. With the coefficients from equation (8) we can compute the
weight functions (3) or (6); the matrices Nr

I are obtained from the transformation of the coefficient matri-
ces Nr

I in the reflector’s tangent plane (see Appendix A). Finally, the emergence angle at the source, θS ,
lies between the emerging ray and the vertical axis, and the incidence angle at the geophone, θG, between
the incident ray and the vertical axis. They are obtained from the slowness vectors (first derivatives) by

cos θS = Vs p1z , and cos θG = Vg p2z . (12)

As all quantities are computed on the fly, additional storage for the weight functions is not required.
In comparison to the classic true-amplitude migration, where supplemental quantities need to be stored in
addition to the traveltimes, this leads to considerable savings in storage. Furthermore, to perform dynamic
ray tracing for the computation of the classic weight functions, the velocity model as well as its first- and
second-order spatial derivatives must be continuous. This requirement is often not fulfilled by the output
from the model building step. Here, the traveltime-based strategy has another advantage. As traveltime
engines based on eikonal solvers or kinematic ray tracing only need continuity of the model up to first
order, we can generate the traveltime tables with those. Although smoothing of the model may still be
necessary (for a discussion on smoothing, please refer to Gajewski et al. 2002 and Gold et al. 2000), the
stronger demand for continuity of second-order derivatives no longer holds.

In the following section, we will illustrate the traveltime-based algorithm with applications to a complex
synthetic and a real data set. To show that the quality of the migration result is equivalent to that obtained
from conventional true-amplitude migration, we compare our results to DRT-based migration.

APPLICATIONS

Synthetic data set

To investigate the performance and quality of the traveltime-based strategy to true-amplitude migration,
we have chosen a complex 2.5D synthetic model, shown in Figure 2. Ray synthetic seismograms were
computed using a commercial ray modelling package. Transmission losses were not modelled. A total of
56 600 traces were generated and sorted in common-offset gathers with offsets ranging from 0 to 1980 m.
The resulting zero-offset section is displayed in Figure 3. Although Figure 3 reveals modelling artefacts
such as missing diffractions at the pinch-outs and irregular amplitude behaviour in isolated spots, we have
decided to use this highly complex model for the verification of the method, as the applicability to simple
models has already been demonstrated by Vanelle and Gajewski (2002b).

Traveltime tables on coarse grids with a spacing of 100 m in each dimension were generated using ray
modelling for sources distributed with a spacing of 100 m. These were the only input to the traveltime-
based algorithm, together with the velocity model, that had to be slightly smoothed for the ray tracing.
Only first arrivals were considered. In order to compare our method to standard weight functions, we have
applied ray modelling to compute the necessary dynamic Green’s functions (GFTs) on a 50 m grid with
a shot spacing of also 50 m. For the 2.5D common-offset weight function (Hanitzsch, 1997) the dynamic
GFT consists of the following four quantities: (1) the traveltime, (2) the emergence angle, (3) the in-
plane, and (4) the out-of-plane geometrical spreading. The discretisation of the migration grid was for both
methods chosen as 10 m in x- and 5 m in z-direction. This leads to savings of 95 % in memory requirements
when the traveltime-based approach is applied. Note, however, that in 3D the savings can be higher. The
traveltime-based migration was performed in only 13 % of the computation time required by the migration
with standard weights. A purely kinematic migration (i.e. no weights were applied and traveltimes were
interpolated linearly, thus needing the finer input spacing of 50 m) was about four times slower than the
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Figure 2: The velocity model for the synthetic data example. The seismograms were computed in the
original blocky model shown here. For the generation of the GFTs the model was smoothed.
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Figure 3: The (unmigrated) zero-offset section of the synthetic data set obtained by ray modelling. Note
the missing diffractions at pinch-outs and changes in amplitudes along the reflectors, e.g., at the positions
indicated by arrows.
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traveltime-based implementation including weights. Due to the differences in the implementations, these
computational times cannot be directly compared, but they indicate the efficiency of the traveltime-based
method. Again, the gains will increase in 3D. In the comparison of the computational times we have
not considered the fact that for the traveltime-based approach we need to generate traveltimes for less shot
positions. Also, faster methods for the computation of traveltimes than dynamic ray tracing may be applied,
so that the potential savings in CPU time even in 2.5D are likely to be higher than in our example.

Figure 4 shows the stacked migrated depth sections. At the shallower depths, a mute was applied to the
larger offsets to avoid the distortions caused by pulse stretch. A comparison between the migration with
DRT weights, Figure 4a, and traveltime-based weights, Figure 4b, reveals no obvious differences. Figure
5 displays common image gathers obtained from the migrated sections using both methods. Comparison
shows no significant differences between the DRT weights (Figure 5a) and the traveltime-based weights
(Figure 5b).

In addition to the structural image of the subsurface discussed in the previous paragraph, we have in-
vestigated the accuracy of the reconstructed amplitudes. Figure 6 shows a comparison of the amplitudes
picked along the top (Figure 6a) and bottom (Figure 6b) reflector in the depth-migrated zero-offset sec-
tion, together with the analytically computed values. For the top reflector, the recovered reflectivity from
both methods coincide very well, and both agree with the analytic result. The differences between the
analytic value and the migration results at the jumps in reflectivity near 5.2k m and 5.8 km can be at-
tributed to the necessary smoothing of the velocity model and the missing diffractions (see Figure 3). For
the bottom reflector, both methods still lead to coinciding results, however, they deviate from the analytic
value. There are several reasons for the deviations. Although later arrivals can generally be incorporated
in the traveltime-based strategy (Vanelle et al., 2003), only first arrivals are considered in the current im-
plementation. Therefore, the energy of the later arrivals that should also contribute is missing. Also, the
missing diffractions and irregular amplitude behaviour of the synthetic seismograms (see Figure 3) lead to
deviations of the recovered amplitudes from the analytical values. These affect both methods in the same
manner, as Figure 6 shows.

Finally, we have constructed amplitude versus offset (AVO) curves from the prestack-migrated sections
for the topmost reflector at x=2.6 km. At this position, the reflector is plane and horizontal, thus we could
compute the corresponding analytical reflectivity. The results are shown in Figure 7. Again, we can see
that the reflectivity obtained from both migration methods coincide, and both match the analytical values
very well.

Real data set

The seismic data used for the following case study were acquired by an energy resource company. They
intend to carry out a project where a detailed knowledge of the subsurface structures is essential.

After standard preprocessing of the field data, an imaging workflow based on the Common-Reflection-
Surface stack (CRS) (Hertweck, 2004; Mann et al., 2003) was carried out. The velocity model shown in
Figure 8 was obtained from a tomographic inversion of the CRS attributes (Duveneck, 2004). This model
was used to generate the input GFTs by ray modelling. For the traveltime-based migration, the ratio of the
spacings between coarse input grid and migration grid was 10 in x-, and 20 in z direction. The tables were
computed for every fifth source position. For the dynamic GFTs the ratio of the spacings between coarse
input grid and migration grid was 4 in x- and 8 in z-direction. The GFTs were computed for every second
source position.

The computational time required for the traveltime-based migration was 20 % of that using dynamic
GFTs. Concerning computer storage, the traveltime-based implementation lead to savings of 96 %. Again,
we expect the savings to be higher in 3D. Also, the CPU time savings do not include the savings achieved
from the fact that traveltimes need to be generated for fewer shots and with a possibly faster method than
dynamic ray tracing.

Figures 9 and 10 show the stacked sections and the common-image gathers obtained from the migration
using both implementations. We have not investigated the amplitude behaviour further as some steps in
the preprocessing applied to the field data were not preserving the amplitudes. However, as in the previous
synthetic examples, the results from both methods appear virtually identical.
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Figure 4: The true-amplitude prestack-migrated and stacked sections for the synthetic data set: (a) with
weights from dynamic ray tracing, (b) from the traveltime-based approach with ray traveltimes. The diffrac-
tions at pinch-outs are artefacts due to gaps and amplitude discontinuities in the input seismograms, see
Figure 3. There is no visible difference between (a) and (b).
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Figure 5: Common image gathers resulting from migration of the synthetic data with DRT weights (a) and
traveltime-based weights (b). No apparent difference is visible.
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Figure 6: Amplitudes of the top (a) and bottom (b) reflector in the synthetic model picked from the
migrated depth section for the zero-offset case. The results from DRT and traveltime weights coincide. The
analytic reflection coefficients are also given. For the top reflector, the reflectivity could be reconstructed
with higher accuracy than for the bottom reflector. The reasons are discussed in the text.
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Figure 7: AVO curves for the top reflector picked from the migrated sections at x=2.6 km. At this position
the reflector is horizontal, thus the incidence angle is known and a comparison to the analytic result is
possible. Both migration results match the analytic values very closely.
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Figure 8: The velocity model for the real data set obtained from CRS tomography.

CONCLUSIONS AND OUTLOOK

We have presented a new, highly efficient traveltime-based approach to true-amplitude migration of seismic
data. The method requires only traveltimes on coarse grids as opposed to the conventional true-amplitude
migration, where dynamic Greens function tables must be generated on finer grids. Thus, while maintain-
ing the quality of the resulting images and the accuracy of the recovered amplitudes, application of the
traveltime-based strategy leads to considerable savings in computer storage and computational time. For
the 2.5D synthetic and field data examples presented in this study, the CPU time was reduced by 80–85 %,
and the required storage was reduced by about 95 % in comparison to standard true-amplitude migration,
whereas no discernable differences exist between the results from both methods. We expect the savings to
increase in 3D.

The new method will be even more interesting when anisotropy is considered. Whereas the require-
ments in computer storage do not depend on the type of medium, the computational time for the generation
of the Greens function tables becomes a major issue in anisotropic media: their calculation is a magnitude
slower than in isotropic media, especially when dynamic wavefield properties are concerned. Therefore,
the extension of the traveltime-based strategy to account for anisotropy will lead to even higher savings
than for isotropic media, as dynamic wavefield properties are no longer required. Also, traveltimes need to
be calculated for fewer shots. First tests on the determination of geometrical spreading – a key quantity for
the weight functions – from traveltimes in anisotropic media confirm the high potential of the technique
(Vanelle and Gajewski, 2003). More details on the anisotropic extension of the traveltime-based strategy
will be given in a follow-up paper.
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Figure 9: The true-amplitude migrated and stacked sections of the real data set: (a) with weights from
dynamic ray tracing, (b) from the traveltime-based approach with ray traveltimes for the real data model.
There is no visible difference between (a) and (b).
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Figure 10: Common image gathers resulting from migration of the real data with DRT weights (a) and
traveltime-based weights (b) for the real data model. No apparent difference is visible.
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APPENDIX A – TRANSFORMATION TO REFLECTOR COORDINATES

The 2×2 matrices Nr
1 and Nr

2 in the weight function (3) are taken in the reflector coordinate system,
whereas the 3×3 matrices determined from traveltimes, N1 and N2, are given in the global Cartesian coor-
dinate system. In this appendix we derive the transformation from global Cartesian to reflector coordinates.

We do not a priori know the orientation of the reflector element, thus this coordinate system is also
unknown. In fact, we do not even know if a reflector exists at the subsurface point under consideration.
However, as the migration result Ω(M) only exists if the image point M is a reflection point and the
weights are taken in the stationary point, we assume that the two rays which connect S to M and G to M
correspond to a specular reflection.

Let the base vectors of the global Cartesian system be denoted by ex, ey, and ez. We now define the
base vectors of the reflector coordinate system as follows:

• Vector e3 is normal to the interface and given by

e3 =
V2 q2 + V1 q1

|V2 q2 + V1 q1|
,

where V1 and V2 are velocities at the image point: V1 is the velocity for the ray that connects the
source and the image point, and V2 is the velocity for the ray connecting the geophone and the image
point. For pure modes it follows that V1 = V2.

• Vector e2 is perpendicular to the plane of incidence,

e2 =
q2 × q1

|q2 × q1|
.

For the zero-offset ray, where V1 q1 and V2 q2 coincide, the vector e2 is chosen arbitrarily in the
plane perpendicular to VI qI .

• Vector e1 lies along the reflector in the plane of incidence,

e1 = e2 × e3 .

The transformation from reflector coordinates, r, to global Cartesian coordinates, x, is then described
by

r = Hx ,

where the transformation matrix H is

H =




e1 · ex e1 · ey e1 · ez
e2 · ex e2 · ey e2 · ez
e3 · ex e3 · ey e3 · ez


 .

The 2×2 matrices Nr
I are then obtained from

Nr
I = I2×3NIH

−1I3×2 ,

with

I2×3 =

(
1 0 0
0 1 0

)
and I3×2 =




1 0
0 1
0 0


 .


