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ABSTRACT

The Common Reflection Surface (CRS) method uses the general hyperbolic moveout, which depends
on the classical NMO velocity and some other parameters. The CRS parameters are estimated apply-
ing a suitable coherence analysis to multicoverage data. The construction of simulated (stacked) zero
offset sections in the 2D situation requires three CRS parameters. This work focuses on the estima-
tion of these three parameters, where the coherence analysis is performed using a global optimization
algorithm.

INTRODUCTION

The Common Reflection Surface (CRS) stacking method (see, e.g., Müller et al. (1998)) is a recent tech-
nique that is establishing itself as a better alternative to the conventional NMO/DMO stacking. As recently
shown in Trappe et al. (2001), the CRS stack is able to provide, in many cases,significantly improved
stacked sections that represent simulated zero-offset sections. The CRS stacking method provides, in ad-
dition to a better stacking, a set of parameters (called the CRS attributes) that convey more information of
the propagating medium than the single NMO-velocity parameter that results from the NMO/DMO stack.

For a horizontal seismic line and a constant near surface velocity, v0, the CRS parameters are given by
the triplet (β,KN ,KNIP ) where −π/2 ≤ β ≤ π/2 and −∞ < KN ,KNIP < ∞. The parameters KN

and KNIP represent the wavefront curvatures of the normal (N ) and normal incident point (NIP ) waves
(Hubral, 1983). The CRS method uses the general hyperbolic traveltime moveout given by

t(x, h;A,B,C)2 = [t0 +A(x− x0)]2 +B(x− x0)2 + Ch2, (1)

where

A =
2 sinβ

v0
, B =

2t0 cos2 β

v0
KN , C =

2t0 cos2 β

v0
KNIP , (2)

for all source-receiver pairs in a appropriate neighborhood of a central point x0, and x and h are the mid-
point and half-offset coordinates of the source receiver pair for which the traveltime is being computed. The
use of A, B and C instead of the CRS parameters β, KN and KNIP simplifies the hyperbolic traveltime
calculation.

For a given (x0, t0) and for fixed parameters (β,KN ,KNIP ), the graph of the function T (x, h) =
t(x, h, β,KN ,KNIP ) is a surface within the volume of multicoverage data points (x, t, h). If (x0, t0)
pertains to a reflection event at the ZO section to be simulated and the CRS triplet (β,KN ,KNIP ) provides
the correct coefficients of the hyperbolic traveltime representation of the respective event, then, according
to ray theory, the graph of T is, up to second order, tangent to the event’s reflection traveltime surface. As a
consequence, the coherence of the data samples u(x, h, t) along the graph of T , for some suitable vicinity
(called aperture) of (x0, t0), should be high.

The CRS parameter estimation problem is formulated as follows:
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For each midpoint and traveltime (x0, t0) at the ZO section to be simulated, find the CRS parameter
triplet (β,KN ,KNIP ) for which a coherence function attains a minimum for source-receiver pairs within
a given spatial aperture around x0 and for time samples within a time around t0.

The present work is concerned with the use of a global optimization algorithm to obtain the CRS
parameters. First, we obtain the coefficients A, B and C, and then we recover the CRS attributes using the
relations given by equation (2). A global minimization strategy for each pair (x0, t0) is applied until some
predefined time, based on the amount of data and the quality of the solution, is reached.

GLOBAL OPTIMIZATION PROBLEM

For each midpoint x0 and zero-offset traveltime t0, in the simulated ZO section to be constructed, the CRS
problem consists of findingA,B,C for which the coherence function (semblance) calculated on the traces
inside an aperture around (x = x0, h = 0), is maximum. In mathematical terms, we have to minimize the
semblance function

S(A,B,C) =
1

N

∑

|t−ti|≤τ

[
N∑

i=1

Ui(t)

]2

∑

|t−ti|≤τ

[
N∑

i=1

Ui(t)
2

] , (3)

where Ui(t) is the interpolated value of trace i at time t,

ti = ti(A,B,C) = t(xi, hi;A,B,C) (4)

is the hyperbolic traveltime data given by equation (1), xi and hi are, respectively, the midpoint and half-
offset of trace number i, τ is a time window around ti and N is the total number of traces in the multicov-
erage data. From the solution obtained, we restore (β,KN ,KNIP ) using relations (2).

In general, specially for real data, there is a high number of local minimizers of the semblance function
and so, local optimization algorithms might not be very effective for finding global minimizers. Moreover,
local methods may converge for critical points, not necessarily local minimizers. Therefore, the number of
possible solutions that are not global solutions, is enormous and a global search is necessary.

From now on we will consider the problem of finding a global minimizer of a function f : IRn → IR,
twice continuously differentiable, over the set Ω = {x ∈ IRn | ` ≤ x ≤ u}. The CRS problem is
such that n = 3, x = (A,B,C) and f(x) = −S(A,B,C) (recall that maximizing S is equivalent to
minimizing−S) and the box-parameters ` and u are conveniently chosen.

Our global optimization procedure consists of using a local algorithm for finding a critical point x∗

and, then, trying to “escape” to a new starting point y such that f(y) < f(x∗). For the local minimization
we have chosen the Box Euclidian Trust Region Algorithm (BETRA) proposed by Andretta et al. (2005).
BETRA is a local method with guaranteed convergence to critical points.

The strategy to escape from the critical point is to make a movement along a Lissajous curve that passes
through the critical point x∗. A Lissajous curve in IRn is defined by the parametric equations

γ(r) = (cos(θ1r + ϕ1), cos(θ2r + ϕ2), . . . , cos(θnr + ϕn)) , r ∈ IR, (5)

where ϕj , θj ∈ IR (j = 1, 2, . . . , n) and the θj’s are linearly independent over CQ, i.e., if d1, d2, . . . , dn ∈
CQ and

∑n
j=1 dj θj = 0 then d1 = · · · = dn = 0. Figure 1 shows some examples of these curves in two

and three dimensions, for the case of θ1 =
√

2, θ2 =
√

3, θ3 =
√

5, and ϕ1 = ϕ2 = ϕ3 = π/2.
Andreani et al. (2004) proved that the image of the curve γ is dense in the box [−1, 1]n. Therefore,

through the use of the linear transformation Γ(r) = [`+u+(u−`)γ(r)]/2, we can construct a dense curve Γ
in Ω and choose the ϕj’s so that Γ(0) = x∗. The movement along Γ is made testing the candidates x(α) =
Γ(α/(1 − |α|)) with α = 1/2,−1/2, 1/3, 2/3,−1/3,−2/3, 1/5, 2/5, 3/5, 4/5,−1/5,−2/5,−3/5, . . .,
until f(x(α)) < f(x∗).
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r ∈ [0, 10] r ∈ [0, 25]

r ∈ [0, 50] r ∈ [0, 100]

r ∈ [0, 10] r ∈ [0, 25]

r ∈ [0, 50] r ∈ [0, 100]

Figure 1: Examples of Lissajous curves in two (left) and three (right) dimensions.

GLOBAL OPTIMIZATION ALGORITHM

After many trials and errors we define the global algorithm described below. Besides the local minimiza-
tion and the escaping phases we introduced a multistart procedure for generating different initial points,
defining criteria for discarding poor initial points and establishing two upper limits: TMAX for the total run
of the algorithm and TESC for each call of the escaping phase.

Algorithm:

Step 0 [Initialization]
Choose TMAX, TESC ≥ 0. Set k ← 1, fmin ←∞, C ← ∅, A ← ∅ and
δ = 0.1× min

1≤i≤n
{ui − `i}.

Step 1 [Random Choice]
Choose a random uniformly distributed initial point xIk ∈ Ω.
If k = 1 update A ← A ∪ {xIk} and go to Step 5.

Step 2 [Functional Discarding Test)
Set fmax ← max{f(x) | x ∈ A}.
Compute the probability Prob of discarding xIk:
· If f(xIk ) ≤ fmin, Prob← 0;
· If f(xIk ) ≥ fmax, Prob← 0.8;
· If fmin < f(xIk ) < fmax, Prob← 0.8× (f(xIk )− fmin)/(fmax − fmin).
Discard xIk with probability Prob. If xIk was discarded return to Step 1.

Step 3 [Neighborhood Discarding Test]
Set dmin ← min{‖x− xIk‖∞ | x ∈ C} and update Prob:
· If dmin ≤ δ, Prob← 0.8;
· If dmin > δ, Prob← 0.
Discard xIk with probability Prob. If xIk was discarded return to Step 1.

Step 4 [10–Iterations Discarding Test)
Perform 10 iterations of the local method obtaining iterate x10,k. Set
f10 ← f(x10,k) and faux ← f(xIk )− 0.1× (f(xIk )− fmin) and update Prob:
· If f10 ≤ fmin, Prob← 0;
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· If f10 ≥ faux, Prob← 0.8;
· If fmin < f10 < faux, Prob← 0.8× (f10 − fmin)/(faux − fmin).
Discard xIk with probability Prob. If xIk was discarded, return to Step 1.
Otherwise, update A ← A∪ {xIk}.

Step 5 [(Local Minimization]
Taking xIk as an initial point, execute the local algorithm (in this
work we used BETRA) for obtaining a critical point, x∗,k. Update the
set of critical points C ← C∪{x∗,k} and the best functional value, fmin ←
min{fmin, f(x∗,k)}.
If fmin = f(x∗,k) set xmin ← x∗,k. If the CPU time exceeds TMAX, STOP the
algorithm.

Step 6: [Escaping Phase]
Using the Lissajous curve that passes through x∗,k try to obtain x(α)
such that f(x(α)) < f(x∗,k) in less than TESC units of time.. In case
of success, set k ← k + 1 and xIk ← x(α) and go to Step 5. Otherwise,
set k ← k + 1 and return to Step 1.

NUMERICAL EXPERIMENTS

To analyse the performance of the global optimization procedure described above, we generate a multicov-
erage data for the synthetic model depicted in Figure 2. The data was modeled by ray tracing, using the
package Seis88 (Červený and Pšenčik, 1984). We apply the global algorithm for each pair (x0, t0), with
x0 ∈ [3, 7] km and increment ∆x0 = 25 m, and t0 ∈ [0, 4] s with time sample ∆t0 = 0.04 s. Therefore, to
solve the CRS problem we have made 161×101 = 16261 calls of the algorithm. All the experiments were
run on a 2.8 GHz Intel Pentium IV Computer with 2 Gb of RAM in double precision Fortran. The linearly
independent parameters that define the Lissajous curves (5) are chosen to be the square roots of the first
three prime numbers, i.e., θ1 =

√
2, θ2 =

√
3 and θ3 =

√
5. For the box constraints we used−2 ≤ A ≤ 2,

−4 ≤ B ≤ 4 and −4 ≤ C ≤ 4.
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Figure 2: Synthetic model for the numerical experiments.

We tested the global optimization procedure for three increasing values of the maximum time allowed
for each run of the algorithm: TMAX = 0 s (no escape/global search), 1 s and 2 s. The parameter TESC was
chosen equal to 0.5 s. The respective total CPU times (all the 16221 runs of the algorithm) are 1h51m20s,
7h15m22s and 11h33m16s. Figure 3 shows the final semblance panels obtained. The improvement with
the global search is evident.
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Figure 3: Semblances panels for different values of TMAX.

For a better analysis of the impact of the global procedure we plot in Figure 4 the semblance functions
at x0 = 4 km, x0 = 5 km, x0 = 6 km. As can be observed, as the time allowed for the global search
increases, the semblance function also increases. Moreover, only with the global search it is possible to
reach large values for the semblance function.

To compare the quality of the CRS parameters, we show in Figures 5, 6 and 7 the recovered attributes
β, KN and KNIP , respectively, for all the three interfaces. The results obtained agree with the previous
statement about the semblance: only with the global strategy it is possible to recuperate the majority of the
exact values. Indeed, TMAX = 1 s is sufficient for a good estimation in all cases.

CONCLUSIONS

The CRS problem in the 2-D situation requires the maximization of the semblance function, depending on
three parameters. This work focuses on the estimation of these parameters, where the coherence analysis
is performed using a global optimization algorithm.

The main contributions of this work are:

• The search for the “general” parameters A, B and C, instead of the “original” parameters β, KN

andKNIP . This simplification avoids the computation of trigonometric functions, reducing the time
for the evaluation of the semblance function. Moreover, v0 can be given a posteriori, and then it is
possible to propose different strategies for recovering the original parameters.

• A global optimization strategy that can be applied in association with any local optimization method.

• A new search procedure for escaping from local solutions, based on Lissajous curves.

From the numerical results, we conclude that the global optimization strategy introduced in this work
has the potential to be a powerful tool, not only for solving the CRS problem but also for any geophysical
problem that requires global solutions.
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Further investigation is being carried to analyse the behavior of the global optimization algorithm when
applied to the CRS problem with noisy data and, of course, real data.
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Figure 4: Semblance function for three different values of x0: (+) TMAX = 0 s, (×) TMAX = 1 s, and
(◦) TMAX = 2 s.
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Figure 5: Recovered β for the three interfaces: (—) Exact, (+) TMAX = 0 s, (×) TMAX = 1 s, and
(◦) TMAX = 2 s.
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Figure 6: Recovered KN for the three interfaces: (—) Exact, (+) TMAX = 0 s, (×) TMAX = 1 s, and
(◦) TMAX = 2 s.
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Figure 7: Recovered KNIP for the three interfaces: (—) Exact; (+) TMAX = 0 s, (×) TMAX = 1 s, and
(◦) TMAX = 2 s


