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ABSTRACT

The focus of this paper is on effective elastic properties (i.e. velocities) in three different kinds of
dry and fluid-saturated porous media. The synthetic results are compared with the predictions of the
Gassmann equation and the tortuosity-dependent high-frequency limit of the Biot velocity relations.
Using a dynamic FD approach we observe for Fontainebleau sandstone the same effective elastic
properties as with a static finite-element approach. We show that so-called open-cell Gaussian random
field models are similar in mechanical properties to Fontainebleau sandstone. For all synthetic models
considered in this study the high-frequency limit of the Biot velocity relations is very close to the
predictions of the Gassmann equation. However, using synthetic rock-models saturated with an
imaginary fluid of high density we can approximately estimate the corresponding tortuosity parameter.

INTRODUCTION

The problem of effective elastic properties of dry and fluid-saturated porous solids is of considerable in-
terest for geophysics, material science, and solid mechanics. Strong scattering caused by complex rock
structures can be treated only by numerical techniques since an analytical solution of the wave equation
is not available. In this paper we consider the problem of a porous medium in three dimensions. Alterna-
tive numerical studies of elastic moduli of porous media of Arns et al. (2002) and Roberts and Garboczi
(2002) employ a (static) finite-element method (FEM). This FEM uses a variational formulation of the lin-
ear elastic equations and finds the solution by minimizing the elastic energy using a fast conjugate-gradient
model. Dynamic effects (e.g. velocity dispersion) can not be described with this method. Finite difference
(FD) methods discretize the wave equation on a grid. They replace spatial derivatives by FD operators
using neighboring points. This discretization can cause instability problems on a staggered grid when the
medium contains high contrast discontinuities (e.g. pores or fractures). These difficulties can be avoided
by using the rotated staggered grid (RSG) technique (Saenger and Bohlen (2004) and references therein).
Since the FD approach is based on the wave equation without physical approximations, the method ac-
counts not only for direct waves, primary and multiply reflected waves, but also for surface waves, head
waves, converted reflected waves, and diffracted waves. The main objective of this paper is a numerical
study of effective elastic properties of porous 3D-media with connected dry and fluid-filled pores. The
synthetics are compared with the high and low frequency limit of the Biot’s theory in dependence of the
tortuosity α (Biot, 1956).

THE SYNTHETIC MODELS OF POROUS ROCKS

In order to consider fluid effects on wave propagation we design a number of synthetic rock-models (size:
4003 gridpoints) with a known number of pores or porosity φ. We consider three different types (i.e.
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MEDIUM: GRF 1 GRF 2 GRF 3 GRF 4 GRF 5
Porosity φ: 3.42% 8.77% 13.2% 8.02% 21.6%
corrl. len.
[0.0002m] 25 25 25 13 25

cut min. 0.4 0.4 0.4 0.4 0.38

G
au

s.
A

cut max. 0.6 0.6 0.6 0.6 0.62
corrl. len.
[0.0002m] 30 30 30 15 14

cut min. 0.485 0.48 0.4575 0.4904 0.46
G

au
s.

B
cut max. 0.515 0.52 0.5415 0.5296 0.54

Table 1: Details of the open-cell GRF models. Every single model (GRF1-5) is build up of the intersec-
tion of two two-level cutted Gaussian random fields (Gaussian A and B).

geometries):

• Type 1: A homogeneous region is filled at random with randomly oriented non-intersecting thin
penny-shaped pores. The effective elastic properties of those materials are intensively investigated
in Saenger et al. (2004). However, we include some results of this numerical study in the present
paper to give a relation to other pore geometries.

Figure 1: X-ray microtomographic image of Fontainebleau sandstone ( used by Arns et al. (2002), origi-
nally from Spanne et al. (1994); porosity φ = 8.4%). The structure shown is the porespace, the transparent
part is the grain material.

• Type 2: The second type of model is a microtomographic image of Fontainebleau sandstone shown
in Figure 1. We use a 4003 gridpoint cubic data set of the model fb7.5 of Arns et al. (2002). There-
fore, the numerical estimates of effective elastic properties derived with the RSG-based dynamic FD
approach can be compared with the results of the static approach of Arns et al. (2002).

• Type 3: To generate realistic synthetic microstructures we use the approach described in Roberts and
Garboczi (2002), the so-called open-cell Gaussian random field (GRF) scheme. The porespace is
defined by the intersection of two two-cutted Gaussian random fields (i.e. Gaussian A and Gaussian
B; see Table 1 for details). To ensure a complete connectivity of the pores we eliminate isolated
pores. This connectivity is a basic assumption of the Gassmann equation (see e.g. Wang (2000)).
Figure 2 shows one typical realization.
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Figure 2: An open-cell Gaussian random field (GRF 4) with a porosity φ = 8%. The similarity between
this model and the Fontainebleau sandstone (Figure 1) is evident. The similarity can also be observed for
the effective elastic properties (see Figures 3 and 4).

MODELING PROCEDURE

We apply the RSG-technique to model wave propagation in porous media. The synthetic rock-models
(type 1,2 and 3) are embedded in a homogeneous region. The full models are made up of 804x400x400
grid points with an interval of 0.0002m. In the homogeneous region and for the grain material we set a
P-wave velocity of vp=5100m/s, a S-wave velocity of vs=2944m/s and a density of ρgrain=2540kg/m3.
For the dry pores we set vp=0m/s, vs=0m/s and ρv=0.0001kg/m3 which approximates vacuum. For
the fluid-filled pores we set vp=1500m/s, vs=0m/s and ρfl=1000kg/m3 which approximates water. We
perform our modeling experiments with periodic boundary conditions in the two horizontal directions. To
obtain effective velocities in different models we apply a body force plane source at the top of the model.
The plane P- or S-wave generated in this way propagates through the porous medium. With two horizontal
planes of receivers at the top and at the bottom, it is possible to measure the time-delay of the mean
peak amplitude of the plane wave caused by the inhomogeneous region. With the time-delay one can
estimate the effective velocity and therefore also the corresponding elastic moduli. The source wavelet in
our experiments is always the first derivative of a Gaussian with a dominant frequency of 8 ∗ 104Hz and
with a time increment of ∆t = 2.1 ∗ 10−9s. All computations are performed with second order spatial FD
operators and with a second order time update. A similar numerical setup with a detailed error analysis is
discussed in Saenger et al. (2004).

NUMERICAL RESULTS

Our numerical setup enables us to compare effective elastic properties of dry and fluid filled 3D porous
media (i.e. the dry rock skeleton is exactly the same in both cases). Therefore we can test the applicability
of the Gassmann-equation and the Biot velocity relations (Gassmann, 1951; Biot, 1956) for our 3D porous
materials without any additional effective medium theory. For all synthetic models we fulfill the following
assumptions of the Gassmann equation: isotropy, frictionless fluid, undrained system, and no chemical
interactions (discussed e.g. by Wang (2000)). However, from a theoretical point of view we consider
here the high frequency range of the Biot velocity relations because we saturate our rock-models with a
non-viscous fluid (: viscosity η = 0; hence, the reference frequency fbiot can be determined for our rock-
models with a non-zero permeability κ using fbiot = φη/(2πρflκ) as zero; see e.g. Mavko et al. (1998)).
Note, there is one geometrical parameter in the Biot velocity relations, namely the tortuosity parameter
α, which is not easy to determine analytically. The difference between the high frequency limit and the
low frequency limit (i.e. Gassmann equation) of the Biot velocity relations for the fast P- and the S-wave
is maximal for α=1 and is zero for α → ∞. This can be easily evaluated for S-waves by analyzing the
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corresponding prediction of the Biot approach (e.g. Mavko et al. (1998)):

VS∞ =

(
µdry

ρ− φρflα−1

) 1
2

, (1)

where VS∞ is the high frequency limiting velocity, µdry is the effective shear modulus of the dry rock
skeleton, ρfl is the fluid density, and ρ is the density of the whole porous material [ρ = (1 − φ)ρgrain +
φρfl]. The much more complicated formula for the velocity of the fast P-wave with the tortuosity-behavior
described above can also be found in Mavko et al. (1998). Another important solid-fluid interaction is the
Squirt mechanism (Mavko et al. (1998) and references therein). The reference frequency for this fluid-flow
is given by fsquirt = Kgraina

3/η whereKgrain is the bulk modulus of the grain material and a is the pore
aspect ratio. The use of a non-viscous fluid (η = 0) in this work means that our modeling takes place in the
zero freqency limit in respect to the Squirt theory. Thus, from three distinct solid-fluid interactions (viscous
Biot-coupling, Squirt flow and inertial coupling) we work with the inertial coupling only. However, our
numerical results provide asymptotic values for all three coupling mechanism.

Penny-shaped cracks

The calculated effective moduli for fluid-filled and for empty non-intersecting cracks (model Type 1) are
shown for two different realizations in Figure 3 and 4. Detailed results for these kind of media and other
structures with thin cracks can be found in Saenger et al. (2004) and Orlowsky et al. (2003). The main
point here is the relation to the pore structures discussed below.

Fontainebleau Sandstone

The calculated normalized effective shear moduli < µ > /µgrain for the dry and fluid-saturated
Fontainebleau sandstone (model Type 2) are 0.766 and 0.770, respectively (see Figure 3). In spite of
the high-frequency limit of Biot theory, where our numerical results apply, the prediction of the Gassmann
equation (µdry = µsat) is for this model very accurate. This is a first indication that the tortuosity α must
be relatively high. Only in this case the numerical considered high frequency limit of the Biot approach
is close to Gassmann. Moreover, our dynamic approach gives approximately the same result as the static
approach of Arns et al. (2002) [< µ > /µgrain ≈ 0.765, for the dry and fluid-saturated case from Fig. 5b
of Arns et al. (2002)]. One more remarkable aspect of these considerations for Fontainebleau sandstone is
that the connectivity of the pores is not complete (but rather 95%) which is in principle inconsistent with
one of assumptions of the Gassmann equation.

Open-cell Gaussian random fields (GRF)

The calculated effective moduli for the open-cell Gaussian random field models are shown in Figure 3 and
4. With an increase of the porosity (GRF 1, 4, 2, 3 and 5) we observe an increasing mismatch between the
predictions of the Gassmann equation (α→∞) and the numerical results. Again, we expect this behavior
because we consider here numerically the tortuosity-dependent high frequency limit of the Biot approach.
In particular for the effective elastic shear moduli of the fluid-saturated models GRF 2,3 and 5 (see Figure 3)
one can pre-estimate a tortuosity α relatively close to 1. However, for the model GRF 4 (porosity φ = 8%)
we obtain very similar effective elastic properties as for Fontainebleau sandstone (porosity φ = 8.4%).

Tortuosity determination using an imaginary
fluid of high density for saturation

For all examples discussed above the difference between the high and the low frequency limit of the Biot
velocity relations is relatively low. To distinguish numerically non-ambiguously between both limits we
saturate the synthetic rock models with an imaginary fluid of high density [vp = 1500m/s, vs = 0m/s
and ρfl = 15000kg/m3 (!)]. For such models the difference between both limits increases significantly
(Figure 5 and 6). Moreover, we can fit the high frequency limit of the Biot velocity relations to numerical
results by varying the tortuosity parameter α. The best fit for the tortuosity from the numerically estimated
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Figure 3: Normalized effective shear moduli (< µ > /µgrain; with µgrain as shear modulus of the grain
material) versus porosity for eight different synthetic rock-models. < µ >dry [triangles joined with a
dashed-dotted line] and < µ >sat [boxes joined with a solid line] are estimated from numerical velocity
measurements for the dry and water-saturated case, respectively. The high-frequency limit of the Biot
velocity relations [tortuosity α=1; stars joined with a black dashed line] is calculated using< µ >dry. The
blue dotted line displays the upper Hashin-Shtrikman bound (Hashin and Shtrikman, 1963).
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Figure 4: Normalized effective bulk moduli (< K > /Kgrain; with Kgrain as bulk modulus of the grain
material) versus porosity for eight different synthetic rock- models. < K >sat [boxes joined with a
solid line] is estimated from numerical velocity measurements for the water-saturated case. KGassmann

[stars joined with a dashed-dotted line] is calculated using the Gassmann-equation with < µ >dry and
< K >dry. The high-frequency limit of the Biot velocity relations [tortuosity α=1; stars joined with a
dashed line] is also calculated using < µ >dry and < K >dry. The dotted lines display the Hashin-
Shtrikman bounds for the water-saturated case.
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Figure 5: The normalized effective shear moduli (< µ > /µgrain) versus porosity for six different models
saturated with an imaginary fluid of high density (ρfl = 15000kg/m3) are shown (boxes joined with a
solid line). The dashed lines display the high frequency limit of the Biot approach using different values
for the tortuosity α.
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Figure 6: The normalized effective bulk moduli (< K > /Kgrain) versus porosity for six different models
saturated with an imaginary fluid of high density are shown (boxes joined with a solid line). The dashed
lines display the high frequency limit of the Biot approach using different values for the tortuosity α.

values of < µ > and < K > are listed in Table 2. They are in a qualitative agreement with the theoretical
prediction of Berryman (1981). For spherical inclusions he suggests the relation α=0.5(1+1/φ). It is
obvious that there is not a better agreement because the geometry used in the models is more complex than
spherical inclusions. However, from our point of view it is important to show that values of the tortuosity
α over 6 are reasonably for the low-porosity models used here. Another confirmation of our Biot-based
tortuosity determination of the Fontainebleau sandstone sample can be found in Arns et al. (2001). They
determine numerically for exact the same Fontainebleau sandstone speciment a reciprocal formation factor
of F−1 ≈ (2.6±2.6)∗10−3 (see Fig. 2 of Arns et al. (2001)). Using the fact that the formation factor F is
related to the tortuosity α via F = α/φ (Walsh and Brace, 1984) one can calculate a tortuosity of α ≈ 32.
Note, the accuracy of tortuosity determination for relatively high values (α above 6) is limited. Therefore,
our results (α ≈ 7.5; see Table 2) are in a qualitative agreement with Arns et al. (2001).

CONCLUSIONS

We use the rotated staggered finite-difference grid technique to calculate elastic wave propagation in 3D
porous media. Our numerical modeling of elastic properties of isotropic dry and fluid-saturated rock skele-
tons can be considered as an efficient and well controlled computer experiment. Using this approach it is
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α from < µ > α from < K > α αth
GRF 1 5 10 7.5 15
GRF 4 10 10 10 6.7

Font. Sandst. 10 5 7.5 6.4
GRF 2 2 2.8 2.4 6.2
GRF 3 1.7 2.5 2.1 4.3
GRF 5 3.5 3.5 3.5 2.8

Table 2: Numerical estimates of the tortuosity parameter α from Figure 5 and 6. α is the arithmetic
average. For comparison, we also give an theoretical porosity-dependent estimate of the tortuosity αth by
Berryman (1981).

possible to predict precisely effective elastic moduli of various pore geometries in the relatively wide range
between the upper and lower Hashin-Shtrikman bound. We have tested the applicability of the Gassmann
equation and the tortuosity-dependent Biot velocity relations to three different types of porous media. For
the Fontainebleau sandstone model we confirm the estimates of elastic properties obtained in Arns et al.
(2002). For this model the Gassmann equation can be verified because of the relatively high tortuosity.
Additionally, we show that so-called open-cell Gaussian random field models are realistic synthetic rock-
models useful for studying fluid effects on wave propagation in porous media. The theoretically predicted
high-frequency limit of the Biot approach can clearly be observed. With rock-models saturated with an
imaginary fluid of high density we can roughly estimate the tortuosity parameter α of those materials.
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