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ABSTRACT

In this work we estimate the effective reflection coefficients of an interface between a cracked and an
uncracked material. The study is based on computer simulations using the rotated staggered grid finite
difference method. The numerically obtained reflection coefficients are compared to several theoreti-
cal predictions from static effective medium formulations. The agreement between our numerical data
and the theoretical predictions is best for the differential schemes. This result is supported by previous
studies dealing with transmission experiments.

INTRODUCTION

Theoretical effective medium descriptions of fractured media are commonly derived from static consider-
ations (see e.g. Mavko et al., 1998, and references therein). Alternatively, numerical estimations of the
effective elastic properties of such media have been successful Arns et al. (2002); Saenger and Shapiro
(2002); Orlowsky et al. (2003). As the acoustic impedance is altered by the presence of cracks, interfaces
between fractured and unfractured materials act as a reflecting boundary for elastic waves. For example,
fault zones usually are associated with fractured zones. Recognising their characteristics in seismograms
and the knowledge of their reflection coefficients are therefore of great interest in seismic exploration.
These reflection coefficients, giving the ratio of the amplitudes of reflected to incident waves, describe a
dynamic process. The question we pose in this paper is whether reflection coefficients, which are derived
from the static elastic moduli gained from effective media theories, can be used to understand the dynamic
process of wave reflection, including effects like the dependence of the reflection coefficients on the angle
of incidence (i.e. AVO or AVOZ, see e.g. Castagna and Backus, 1993). As no analytical solutions to
the wave equation exist for complex situations like strongly cracked solids, we rely on a numerical finite
difference (FD) technique, the rotated staggered grid, to numerically simulate wave propagation and to de-
termine reflection coefficients of the interface between cracked and uncracked areas. The rotated staggered
grid as described in Saenger et al. (2000) allows one to simulate wave propagation in highly heterogeneous
media without implementing explicit boundary conditions and without averaging elastic moduli. It has
been proven to yield stable and realistic results for cracked media Krüger et al. (2002). Our experiments
consist of simulations of two dimensional models with a plane wave source at the top of the model illumi-
nating a cracked region at some distance from the source. We present numerical results for the reflection
coefficient for normal incidence on cracked areas with different

• crack densities,

• inclination of the cracks,

• dominant frequencies of the source wavelet

and compare them with theoretical predictions. Further parameter variations, which remain to be done,
may include the extensions of the cracked region, an inclination of the cracked region and the position of
the source.
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THEORETICAL PREDICTION OF REFLECTION
COEFFICIENTS IN CRACKED MEDIA

Effective medium theories usually predict static elastic moduli. From these moduli, wave propagation
velocities, acoustic impedances and hence reflection coefficients can be calculated. Here we focus on
three theoretical predictions for parallel cracks, aligned along the x-axis. These are the non-interacting
approximation (NIA), the differential scheme (DS) and an extension of the differential scheme (EDS). All
theories are discussed in detail in Orlowsky et al. Orlowsky et al. (2003) and references therein. For the
NIA, the energy that is needed to insert a single crack into an uncracked medium is simply added to the
elastic potential of the medium. The DS recalculates the effective elastic moduli after the insertion of
each crack, thus taking the effects of the so far inserted cracks into account. The EDS works like the NIA
but multiplies the energy increment for each crack with a function which is derived from expressions for
effective moduli corresponding to the DS results for a isotropic crack distribution. Predictions from these
theories are given as a function of the crack density ρcd, which is defined forN cracks of radii ai distributed
over an area A Bristow (1960):

ρcd = 1/A

N∑

i=1

a2
i . (1)

Young’s modulus E2 along the z-axis and shear modulus G for a crack density ρcd parallel to the x-axis
are then given by:

E2(NIA) = E · [1 + 2πρcd]
−1,

E2(DS) = E · e−2πρcd ,
E2(EDS) = E · [1 + 2πρcde

πρcd ]−1,
G(NIA) = G · [1 + πρcd(1− ν)]−1,
G(DS) = G · e−π(1−ν)ρcd ,
G(EDS) = G · [1 + πρcd(1− ν)eπρcd ]−1,

(2)

where E denotes the Young’s modulus and ν the Poisson’s ratio of the background matrix. Note that E1

(along the x-axis) equalsE, which means that it is not affected by the cracks. Using these effective moduli,
the stiffness matrix for cracks parallel to the x-axis can be calculated according to
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−1

. (3)

The corresponding effective velocities follow from:

vP,eff =
√
c22/ρg,eff , vS,eff =

√
c44/ρg,eff . (4)

The normal-incidence reflection coefficientRPP of an interface between two materials with velocities vP,1
and vP,eff , resp., and densities ρ1 and ρeff , resp., is given by:

RPP =
vP,effρeff − vP,1ρ1

vP,1ρg,1 + vP,effρeff
. (5)

MODELING PROCEDURE

The two dimensional models consist of a homogeneous medium. Into the lower part of that medium
dry cracks are placed, varying in number and inclination for different simulations. Different types of
wavelets (Gaussian type and Ricker I) and dominant frequencies (fdom) are used for the plane wave, which
propagates from the top of the model downwards (see Fig. 1Tab. 2). The dimension of the models is 1501
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Figure 1: a) Typical numerical setup (not to scale). Receivers are places at a depth of about 93m (dashed
line). The plane wave propagates from the top of the model downwards (arrow) towards the cracked area.
b) Three exemplifications for a given area (here: A = 4m2), crack length (2a = 1.12m) and crack density
(ρcd) of a fractured region. The number of cracks increases with the crack density, hence the cracks are
closer-packed.

homogeneous dry
medium (matrix) crack

vp (m/s) 6000.0 0.0
vs (m/s) 3454.0 0.0
ρ (kg/m3) 2500.0 1 · 10−6

Table 1: Compressional-wave velocity (vp), shear-wave velocity (vs) and density (ρg) of the homogeneous
medium and the cracks are listed here.

grid points in the x-direction and 14505 grid points in the z-direction with a grid point spacing of 0.02m
in both directions. The fractured region starts at a depth of 8005 grid points. The elastic parameters of
the medium and cracks are specified in Table 1. The crack length is 2a = 1.12m in all models. Two
types of crack distributions have been used, parallel aligned cracks and cracks with a random inclination
α ∈ [−15o, 15o]. Receivers are placed at a depth of 4651 grid points. The reflection coefficient is then
calculated from the ratio between the mean amplitude of the reflected wave field and the amplitude of the
source wavelet.

NUMERICAL RESULTS

The reflection coefficients according to the predictions from the static effective medium formulations and
our numerical determined reflection coefficients are plotted in Fig. 2. For the parallel cracks and the in-
clined cracks one observes an excellent agreement between our data and the predictions from the extended
differential scheme (EDS), while the difference to the NIA prediction is significant. Since the theoretical
predictions of the reflection coefficients are based on static elastic medium theories the dynamic simula-
tions have to be conducted in the long wavelength limit, meaning that the wave length has to be very large
compared to the crack length. To accomplish this we have chosen a Gaussian like wave form, which has
a high low-frequency content. In addition we used have a Ricker I wavelet (first derivative of a Gaussian)
to represent a more realistic wave. Using Ricker I wavelet instead of Gaussians and going to high frequen-
cies, resulting in shorter wave length and smaller wavelength to crack length ratios, we see the increased
mismatch of the theoretical predictions and the numerical results increase. This is to be expected as we
are leaving the long wave length limit. The match between our data and the results from the differential
scheme is also very satisfying. This is in agreement with previous results from transmission experiments
presented by Orlowsky et al. Orlowsky et al. (2003).
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Figure 2: Reflection coefficients for models with parallel cracks. The reflection coefficient according to
different theories are plotted as lines. Our numerical results are represented by plus signs. The numbers at
each numerical result corresponds to the modell number (see Tab. 2).

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

crack density

re
fle

ct
io

n 
co

ef
fic

ie
nt

<−−−14<−−−15

<−−−16

<−−−17

<−−−18

NIA
EDS
numerical

Figure 3: Reflection coefficients for models with ±15o inclined cracks. This inclination influences the
theoretical predictions and requires a slightly modified crack density tensor. For details refer to Orlowsky
et al. (2004). The reflection coefficient according to different theories are plotted as lines. Our numerical
results are represented by plus signs. The numbers at each numerical result corresponds to the modell
number. (see Tab. 2)
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source signal inclination relation:
model and of the wave length/

number ρcd fdom (Hz) cracks (o) crack length
1 0.05 Gaussian, 300 0.0 ≥ 17
2 0.15 Gaussian, 300 0.0 ≥ 17
3 0.28 Gaussian, 150 0.0 ≥ 36
4 0.40 Gaussian, 150 0.0 ≥ 36
5 0.40 Gaussian, 300 0.0 ≥ 17
6 0.40 Ricker I, 300 0.0 17
7 0.40 Ricker I, 600 0.0 9
8 0.53 Gaussian, 150 0.0 ≥ 36
9 0.65 Gaussian, 150 0.0 ≥ 36

10 0.65 Gaussian, 300 0.0 ≥ 17
11 0.65 Ricker I, 150 0.0 36
12 0.65 Ricker I, 300 0.0 17
13 0.65 Ricker I, 600 0.0 9
14 0.28 Ricker I, 150 ±15 36
15 0.28 Ricker I, 600 ±15 9
16 0.40 Ricker I, 150 ±15 36
17 0.53 Ricker I, 150 ±15 36
18 0.65 Ricker I, 150 ±15 36

Table 2: Overview of the crack density (ρcd), source signal, dominant frequency (fdom), inclination of the
cracks and relation of dominant wave length to crack length used in the experiments displayed in Fig. 2
and Fig. 3.

DISCUSSION AND CONCLUSIONS

Our so far obtained results clearly show the application of the differential schemes to yield much more
realistic predictions of effective reflection coefficients for normal incidentP -waves than the non-interaction
approximation. This agrees with transmission results obtained previously by Saenger et al. Saenger et al.
(2004) and Orlowsky et al. Orlowsky et al. (2003) and lets us expect the Differential schemes to be the
most reliable also in predicting the offset dependent effective reflection coefficients. So far, we studied
the case of a plane P -wave hitting the cracked region at normal incidence. Of great interest is surely the
offset dependent behaviour of the reflection coefficient. For this, experiments using a point source and a
cautious analysis of the seismograms are necessary, which still are in progress. Fig. 4 shows such synthetic
seismograms, which will enable us to determine the amplitude variation vs. offset, i.e. the dependence of
the reflection coefficient on the angle of incidence. Note the direct P - and S-wave and the reflected wave
field caused by the cracked region. Once more, the rotated staggered grid proves to produce stable and
realistic simulations of wave propagation in cracked media.
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Figure 4: Point source seismograms for the vertical displacement reflected from a cracked region for
different shot locations.
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