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ABSTRACT

The Gaussian Beam concept has been of great importance for works on modeling and migration,
during the last two decades. This work then joins the flexibility of the true amplitude (diffraction
stack) Kirchhoff migration procedure with the regularity description of the wavefield represented by
the Gaussian Beam. We apply our final operator in some simple numerical examples of geophysical
exploration interest. Our process can be named as Kirchhoff Gaussian Beam Prestack Depth Migration
(KGB-PSDM) in a true amplitude sense.

INTRODUCTION

In the last two decades, Kirchhoff migration has evolved from a kinematic, imaging only technique, to
an inversion operator capable of handling important informations to AVO/AVA analysis. Bleistein (1987),
based on Beylkin (1985), was one of the first researchers to propose an inversion algorithm that used the
Kirchhoff algorithm to determine seismic attributes from migrated data, such as the (angle-dependent)
reflection coefficients along reflectors. Later, Schleicher et al. (1993), based on Hubral et al. (1991),
developed a 3D, true amplitude, finite-offset, migration formalism that performed the role of imaging and
inversion for different acquisiton geometries, freeing seismic data from its geometrical spreading losses.

Although of all the developments reached so far by these techniques, the migration algorithms de-
scribed above still make an extensive use of the (zero order) ray theory to simulate the Green’s function
of the imaging problem. In seismic methods, ray theory plays an important role in modeling, imaging and
inversion. However, ray theory can only be effectively applied to smooth media, where the characteristic
wavelenght of the seismic energy is much smaller than the structural dimensions we want to image. In this
case, some wavefield phenomena in complex geology media, such as diffractions, cannot be adequately
simulated. In such a situation, structures such as dome flanks and some other discontinuities, such as
faults, cannot be properly imaged. Ray theory simply fails in these cases, since the ray code does not lead
with inhomogeneous waves.

The paraxial ray theory has been an attractive and efficient way of dealing with the drawbacks of the
ray theory (Červený, 1983). In general, these wavefields are of real and complex nature. The real paraxial
theory is widely applied in the field of classical optics, while the complex paraxial theory is widely used
in quantum optics, where the Gaussian beams are well known quantities in laser propagation. In seismic
imaging, the real paraxial theory has been widely applied in stacking methods, such as CRS (Common
Reflection Surface), while the complex paraxial theory (Guassian Beams or simply GB’s) has been applied
to simulate 2D and 3D laterally varying wavefields (Popov, 1996; Červený, 1982; Červený et al., 1982), as
well as in migration methods (Hill, 2001).

One of the main advantages of the complex paraxial theory approach is related to its regularity in
the description of the wavefield in singular regions of the velocity model, and the lack of necessity of
using one subroutine called two point raytracing. Particularly, the GB’s are regular even in regions where
caustics predominates, where the ray tubes shrink to points or lines and give rise to a phase shift change in
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amplitudes. Besides that, bearing in mind that two point ray tracing is not necessary, the paraxial theory
can be used to simulate wavefields in irregular regions of the model, where a ray cannot be traced (shadow
zones).

In this work, we make use of GB’s (Popov, 1996; Červený, 2001) to perform a 3D prestack depth
migration based on the formalism of Schleicher et al. (1993). By introducing the GB superposition integral
into the kernel of the (diffraction stack) migration integral and making use of the Fresnel volume elements
(Schleicher et al., 1997; Schleicher et al., 2004), the inner integral is reinterpreted as having its integration
domain projected towards the acquisition surface, along the projected Fresnel zone of each trace, and
whose weight-function is proportional to the same quantity. In the data domain, this means that each trace
is influenced also by reflector properties that are included in neighbour traces, which now are stacked in
order to enhance the horizontal resolution of the migrated data. It is well known that in the vicinity of
points in depth, over reflector surfaces, the seismic wavefield is smeared during reflections, and that the
knowledge of this smearing region influences in the migration aperture choice (Schlicher et al., 1997). Our
final GB operator, then, explicitly uses this information before the diffraction stacking, inserting again in
each trace to be staked the neighbour information smeared during the wavefield propagation.

MODIFIED KIRCHHOFF INTEGRAL

Our starting point is the migration integral described in Schleicher et al. (1993), here defined in the fre-
quency domain

V̂ (M, ω) = − iω
2π

∫

A

dξ1 dξ2 w(~ξ,M)U(~ξ, ω) ei ωτD(~ξ,M), (1)

where A is the migration aperture,M = M(x, y) represents a point in depth, w(~ξ,M) is a weight function
that corrects seismic amplitudes from its geometrical spreading losses, ~ξ = (ξ1, ξ2)T is a coordinate vector
along the acquisition surface, τD(~ξ,M) is the diffraction (Huygens) surface, and U(~ξ, ω) is the analyti-
cal particle displacement, which is formed by the real displacement u(~ξ, ω) plus its Hilbert transform as
imaginary part. In the present case, we consider that the primary reflections from the reflectors we want to
image, described for each source-receiver pair (S,G), are distributed along a reflection surface τR(~ξ).

In our current derivation, attention must be paid to factorsw(~ξ,M),U(~ξ, ω) and τR(~ξ). The adjustment
of w(~ξ,M) to several acquisition geometries, considering elements of paraxial ray theory, grants that
reflection amplitudes are corrected dealt in the migration process (Schleicher et al., 1993). Thus, for
convenience, we must guarantee that our approach yields in the same situation. As for the reflection
traveltime τR(~ξ), in dealing with GB’s the amplitudes are Gaussian decaying with respect to the distance
from the central ray (Červený, 2001), and here this is done so by considering that traveltimes are complex
valued functions, its imaginary part representing the so called GB’s half-width (Popov, 1996; Červený,
2001). Finally, let us consider that U(~ξ, ω) is the Green function of our imaging problem and that it is
represented by a superposition of GB’s (Ferreira & Cruz, 2004 a,b)

U(~ξ, ω) =

∫

AP

dξP1 dξ
P
2

detΛ

detHF

detQ(~ξP )

cos θG
Φ(~ξP )A(~ξP ) e−iωτR(~ξ,~ξP ), (2)

where HF is the Fresnel zone matrix and Λ = ΓTS NSR + ΓTG NT
GR, where NSR and NRG are travel-

time second time derivatives 2 x 2 matrices defined in Schleicher et al. (1993), while ΓTS and ΓTG are 2
x 2 matrices related to the acquisition geometry. Coordinates ~ξP = (ξP1 , ξ

P
2 ) belong to a subset of the

migration aperture A, corresponding to the projected Fresnel zone, here denominated AP . We will con-
sider in this work that this subaperture is restricted only to the first projeted Fresnel zone. detQ(~ξP ) and
cos θG are quantities related to the geometrical spreading and to the incidence angle at G (geophone), re-
spectivelly. This integral representation of the GB’s was obtained by considering that the endpoints of the
rays, parameterized by ray parameters γ = (γ1, γ2), strike an artbitrary surface (fictitious or not) along
the raypath and form a set of points that give rise to a region around the reflection point MR, known as
Fresnel zone (Schleicher et al., 2004). By using Bortfeld’s surface-to-surface propagator (Bortfeld, 1989;
Schleicher et al., 2004), we assign a linear relationship among points belonging to the Fresnel zone in
depth and its projected counterpart, along the aquisition surface. This relationship works, in this case, as
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Figure 1: (a) Fresnel zone in depth and its projection towards the acquisition surface. (b) Specular ray
SMRG, its Fresnel zone in depth, the paraxial rays and the projected Fresnel zone. Point ~ξ∗0 is a stationary

point belonging to the Huygens surface. The (paraxial) points ~ξ1 and ~ξ2 also belong to the reflection curve.

a transformation Jacobian, and permits that we define a region of integration for the GB’s along the Earth
surface, and more especifically along the projected Fresnel zone, whose position-vector is represented by
~ξP . The weight-function Φ(~ξP ) is a quantity that asymptotically reduces Eq. (2) to the zero order ray
theory solution (Červený, 2000). In this work, it is represented by (Ferreira & Cruz, 2004 a,b)

Φ(~ξP ) =
iω

2π

√
detHF (~ξP ) (detQ(~ξP ))−1 cos θG. (3)

Finally, A(~ξP ) e−iωτR(~ξ,~ξP ) represents the paraxial contribution at positions ~ξP that influences the obser-
vations at ~ξ, where τR(~ξ, ~ξP ) is the complex traveltime in ~ξ due to an event observed in ~ξP . The fact that
Eq. (3) is proportional to the Fresnel zone is in agreement with the fact that when GB’s propagate through
a medium and are reflected in a specific reflecting surface, it “illuminates” a region around a central ray,
where all paraxial rays are concentrated, i.e., where energy is flowing alongside (Figure 1a). In this way,
we introduce a physical significance to the weight function asymptotically derived by Klimeš (1984) and
Červený (2000). It simply “weighs” the events belonging only to the first Fresnel zone, disregarding other
events belonging to several other zones.

Now let us introduce expression (3) and (2) into Eq. (1) and analyse the physical significance of the
resulting integral. After eliminating all the symmetrical terms, we have

V̂ (M,ω) = (
ω

2π
)2

∫

A

dξ1 dξ2 w(~ξ,M)

∫

AP
dξP1 dξP2

√
detHP A(~ξP ) e[iω(τD(~ξ,M)−τR(~ξ,~ξP ))]. (4)

Back to the time domain, this equation becomes

V (M, t) =
1

4π2

∫

A

dξ1 dξ2 w(~ξ,M)

∫

AP
dξP1 dξP2

√
detHP Ü [~ξ, t + τD(~ξ,M)]. (5)

The factor Ü is the second time derivative of the analytical particle displacement, while A and AP are the
migration and the projected Fresnel zone apertures, respectively.

In Figure 1b we have a detailed geometrical interpretation of Eq. (5). In 2D, we see a seismic experi-
ment where a specular ray SMRG and the Fresnel (paraxial) rays SMjG (j = 1, 2, . . . , n) determine the
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Figure 2: (a) Kirchhoff PSDM for the horizontal plane reflector. (b) KGB-PSDM migration for the same
reflector. Note that migration artifacts on the borders were automatically eliminated by the process.

formation of a Fresnel zone in depth and its subsequent projection towards the acquisition surface. Accord-
ing to the diffraction stack theory (Schleicher et al., 1993), point ~ξ∗0 is a stationary point corresponding to
a reflection event in MR, which in turn belongs to a diffraction curve exactly where there exists a tangency
with the reflection curve. With the determination of the projected Fresnel zone along the acquisition surface
for the reference trace ~ξ∗0 , we can find points ~ξj , which belongs to this zone, and that are part of the same
reflection surface corresponding to points in the vicinity of MR in depth, and stack them with the help of
the inner integral in (5). These projected events, which are contained in the reflection traveltime surface
τR(~ξ), serve as input for the diffraction traveltime surface τD(~ξ,M), which are stacked a posteriori by the
outer integral in (5).

SYNTHETIC EXAMPLES

We have implemented Eq. (5) for the imaging of geological models composed of plane reflectors and
curved reflectors, inserted in an homogeneous medium with layers of constant velocity. We consider that
the models are composed of one single reflector, above which we consider P waves with propagation
velocity v1 = 2.0Km/s, and below it we consider propagation velocities v2 = 3.5Km/s. In order to
acquire synthetic data for the migration process, we have performed a 2.5D Kirchhoff modeling scheme,
using a common offset acquisition geometry, with 2h = 25m in the first case, and 2h = 15m, in the second
case. In the case of the plane reflectors, the spacing among sources and geophones is 25m, while for the
curved reflectors we have considered spacings among sources and geophones of 15m. For both cases, we
have used a zero phase Gabor wavelet, with total durations of 50ms and 20ms, and dominant frequencies
of 10Hz and 20Hz, respectively. In the migration procedure, the 2.5D GB (Green function) is a 2D version
of the inner integral in Eq. (2), only considering that in-plane factors were taken in consideration in order
to adequately simulate the amplitudes.

In the cases studied below, the Fresnel volume elements (in depth or projected along the acquisition
surface) were completed determined using dynamic raytracing (DRT) (Červený, 2001). More especifically,
complex initial conditions for the DRT were chosen in order to generate quantities related to the GB’s itself
(i.e., beam half-width, wavefront curvature, etc.). In order to guarantee GB’s with minimum half-widths at
the geophones, we have used plane waves initial conditions, using the criteria described by Müller (1984).
Since the synthetic data are not the main objective of our studies, only the imaging results will be shown in
the following.
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Figure 3: (a) Kirchhoff PSDM for the plane dipping reflector. (b) KGB-PSDM migration for the dipping
reflector.

Plane reflectors

In this first example, we consider two plane reflectors, the first one is horizontal, located at depth z = 2km,
while the second reflector dips 70 to the left, beginning with a depth of z = 1.1km, on the left, and ending
with a depth of z = 0.7km, on the right. In these examples, we have used a grid spacing for the migration
procedures of ∆x = ∆z = 25m.

In Figure 2a, we have the result of the conventional Kirchhoff PSDM, where the reflector was recon-
structed in its true subsurface position. As it is well known, migration artifacts appear on the borders of the
image, due to insufficient data to stack (Hertweck et al., 2003). KGB-PSDM, which considers the stacking
of all traces belonging to the projected Fresnel zone (Figure 2b), automatically eliminates these artifacts.
The latter image, in general, is cleaner than the one obtained by the conventional Kirchhoff procedure.

In the case of the dipping reflector (Figures 3a and 3b), the image of the structure is again reconstructed
in its true subsurface position and we have the same effects as depicted in Figure 2. The right and left
artifacts are not seen in the KGB-PSDM image, as they are seen in Kirchhoff PSDM, but in this case
“some” artifact, almost invisible, seems to be produced near depths 200−400m. Overall, the KGB-PSDM
image is again less aliased than the image produced by Kirchhoff PSDM.

As for the amplitudes, in both images there seems to be some differences with respect to each reflector
in consideration. In the horizontal reflector case, amplitudes seem to behave well along the whole reflector,
but near the borders the resolution seems to be reduced. This fact may be related to the influence of the
number of traces inside the projected Fresnel zones, since we can only account, on both borders, with half
the number of taces belonging to the projected zones at these locations. On the other hand, in the case of
the dipping reflector this fact does not seem to influence the final result. Either on the right border or on
the left border the amplitudes reconstructed by the KGB-PSDM process seem to be the same as in the case
of Kirchhoff PSDM.

In Figures 4 we have made comparisons of the picked peak amplitudes for the horizontal and dipping
reflectors, respectively. In the case of the horizontal reflector (Figure 4a), we observe an agreement in
amplitude trends, but the KGB-PSDM overestimates amplitudes by, at least, 3% more the amplitudes along
the whole reflector, far from the borders. This is related to the stacking of more information to each point in
depth due to its contributing vicinity. On the borders itself, there occurs an underestimation of amplitudes,
as we have previously noticed. But even so, the agreement in the trend is excellent. For the dipping reflector
(Figure 4b), the situation that apparently seemed better than in the case of the horizontal reflector shows an
initial underestimation on the left border, followed by an agreement upward and an overestimation on the
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Figure 4: (a) Comparison of amplitudes for the horizontal refletor. (b) Comparison of amplitudes for the
dipping reflector.

right border. The trend in amplitudes, however, is in excellent agreement.

Curved reflectors – syncline model

In this example we consider the existence of a curved reflector in the form of a syncline, the borders
of it located at depth z = 0.8km, while its trough reaches a depth of z = 1.1km. We have used as
discretization grid for the migration process the values ∆x = ∆z = 15m. In Figure 5a we have the result
of the Kirchhoff PSDM for the syncline reflector. Again border effects inherents to the migration process
are observed at these places due to insufficient data to stack. Figure 5b, then, shows the results of the
KGB-PSDM procedure on the same model. Visually we note a decrease of the border effects and some
higher quality in the final image resolution.

For a quantitative measure, in Figure 6 we show a comparison of the recovered amplitudes using the
two migration procedures, where the picked peak amplitudes were taken along the reflectors. We must call
attention to the fact that in this case we have not compared both methods with respect to the amplitudes
calculated using the 2.5D Kirchhoff modeling scheme. This was not possible due to the fact that the
syncline model presents more than one single arrival in some receivers located in the caustic region. In this
specific case, we have up to three arrivals for the same receiver in its caustic regions (trough region of the
syncline), and this force us to separate each arrival in order to compare the amplitude recovering (Tygel
et al., 1998). In this way, we have chosen only to compare the two methods of amplitude recovering.
This is exactly what is depicted in Figure 6. We then observe a excellent agreement in the trends of
the curves, of course with some isolated particularities. Generally speaking, the KGB-PSDM procedure is
equivalent to the Kirchhoff PSDM along the whole reflector. On the left, we observe a small overestimation
in amplitudes, but with an excellent trend in the behaviour of the amplitudes. On the rest of the reflector,
the behaviour of the amplitude curves for the KGB-PSDM procedure estimates in excellent agreement the
amplitude values, but on the left border there occurs an underestimation in the amplitude values. Again,
the agreement in the amplitude trends is excellent when compared to the traditional method.

ALGORITHM

In order to summarize what we have done so far, in the following we list the five main steps (S’s) in
obtaining our true amplitude KGB-PSDM migration:

S1 – An arbitrary depth point M is chosen and its ray, amplitude, and traveltime towards position ~ξ are
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Figure 5: (a) Kirchhoff PSDM for the syncline reflector. (b) KGB-PSDM migration for the syncline
reflector.
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Figure 6: Picked peak amplitudes comparison between the KGB-PSDM and the Kirchhoff PSDM proce-
dures. No peak amplitudes were taken from the modeled data, due to the presence of multiple arrivals in
distinct areas along several receivers in the trough region of the model.
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determined, together with its Fresnel volume.

S2 – Computation of the diffraction traveltime surface τD(~ξ,M).

S3 – Computation of the projected Fresnel zone and beam formation restricted to the projected Fresnel
zone, parameterized by position vector ~ξP .

S4 – Gaussian Beam superposition to obtain the input location for the migration integral, defining the
Huygens surface.

S5 – Kirchhoff summation.

CONCLUSIONS

We have developed a prestack Kirchhoff-type depth migration in that we consider as Green function an
integral superposition of Gaussian Beams.

We have tested the KGB-PSDM algorithm on plane and curved geological models. In the plane mod-
els, we have considered two distinct cases: the first, representing an horizontal interface; and a second,
representing a plane interface dipping to the left. Both images were obtained considering an homoge-
neous medium. In using the KGB-PSDM algorithm for these two examples, the final images obtained have
shown a considerable reduction of the migration artifacts, the so called “migration smiles”. Some lack of
resolution (as in the case of the horizontal reflector) is observed on the borders of both images, due to the
insufficient number of traces belonging to the projected Fresnel zones located on the borders of the seismic
data, but the overall images are less aliased than the ones produced by a conventional Kirchhoff PSDM.

The picking of peak amplitudes for these two first examples has shown several effects that are not seen
on the images. In both cases, the trend of amplitudes is in excellent agreement, but on the borders there
occurs overestimation and underestimation of amplitudes. Far from the borders, the KGB-PSDM process
seems to overestimates amplitudes by, at least, 3%. This is related to the stacking of all the vicinity points
in depth in the image point, thus increasing the values of the amplitudes.

The KGB-PSDM algorithm has also been tested on a curved geological model, represented by a syn-
cline model. While the image obtained by the conventional Kirchhoff procedure showed the expected
presence of the migration smiles, the KGB-PSDM procedure recovered a less aliased image and automat-
ically tapered these artifacts on the borders. The comparison of picked peak amplitudes showed a similar
behavior as the ones obtained for the plane reflectors, with an excellent agreement in the trends of the
curves. For this particular syncline example, we have compared only the amplitude estimation derived
from the Kirchhoff PSDM and the KGB-PSDM procedures, respectively, since the syncline model exam-
ple presents multiple arrivals due to the presence of a caustic zone (buried focus) located on the trough
of the structure. In this case, the events belonging to this region should be isolated, according to each ar-
rival, and only in doing so it would be possible to compare the Kirchhoff and KGB-PSDM true amplitude
recovering with respect to the true reflection amplitudes along these regions.
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Červený, V., 2001. Seismic ray theory. Oxford University Press.

Ferreira, C. A. S.; Cruz, J. C. R., 2004. Modified Kirchhoff prestack migration using the Gaussian
Beam operator as Green function. EAGE 66th Conference & Exhibition. Paris, France. Expanded
abstracts.

Ferreira, C. A. S.; Cruz, J. C. R., 2004. Migração pré-empilhamento em profundidade usando o operador
de feixes gaussianos como função de Green – Teoria. I Workshop da Rede Norte de Pesquisa em
Risco Exploratório. Natal-RN, Brazil, Expanded abstract.

Hertweck, T.; Jäger, C.; Goertz, A.; Schleicher, J., 2003. Aperture effects in 2.5D Kirchhoff migration: a
geometrical explanation. Geophysics, 68, 1673-1684.

Hill, N. R., 2001. Prestack Gaussian beam depth migration. Geophysics, 66, 1240-1250.

Hubral, P.; Tygel, M.; Zien, H., 1991. Three dimensional true-amplitude zero-offset migration. Geo-
physics, 56, 18-26.
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