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ABSTRACT

Computations in anisotropic media are commonly simplified by applying perturbation methods. These
require suitable background media, that are often chosen to be isotropic. In this paper we present
expressions for sectorially best-fitting isotropic P- and S-velocities. The equations follow from a
generalisation of Fedorov’s (1968) technique. Examples for media with polar (VTI) and triclinic
symmetry confirm the superiority of the results over the commonly used globally best-fitting isotropic
velocities by Fedorov (1968). This makes the method particularly suited for any application associated
with perturbation techniques for anisotropic wave propagation.

INTRODUCTION

Computations in anisotropic media are usually very cumbersome. Many techniques developed for isotropic
media will fail or have to be altered in the presence of anisotropy. Therefore, computations in anisotropic
media are commonly simplified by applying perturbation methods (e.g., Jech and Pšenčík, 1989), where the
anisotropic medium is described by a linear combination of a suitable background or reference medium, and
a small perturbation with respect to the background medium. Often an isotropic background is assumed,
where the perturbations account for the anisotropy. This has the advantage that isotropic techniques can
be used for the computations in the background medium. In the simplest case, the isotropic velocities can
be obtained from averaging the elastic constants over all phase directions, leading to the well-known result
by Fedorov (1968). For applications like the generation of traveltimes with finite-difference methods in
combination with perturbation (e.g., Ettrich and Gajewski, 1998; Soukina et al., 2003) Ettrich et al. (2001)
have derived expressions for background media with elliptical anisotropy that permit to consider media
with stronger anisotropy than isotropic backgrounds. However, their results are restricted to P-waves.

The results from Ettrich et al. (2001) were not only derived for averaging over all phase directions, but
also for an average over a cone around the vertical axis, thus leading to a sectorially best-fitting elliptical
background medium. Intuitively a sectorial fit permits a closer approximation when information on the
phase directions can be restricted to a sector instead of the whole unit sphere. This is often possible, for
example in the reflection/transmission problem, where Snell’s law has to be evaluated at a boundary be-
tween two anisotropic media. In this case the horizontal slowness, and thus the azimuth angle is known,
therefore averaging could be restricted to be carried out over the inclination only. Formulae for this type of
averaging are provided in this work.

We have derived expressions for sectorially best-fitting isotropic velocities following the approach sug-
gested by Fedorov (1968). These are closely related to the velocities resulting from the weak anisotropy
approximation (Backus, 1965). In contrast to Ettrich et al.’s (2001) work we give also expressions for best-
fitting shear velocities. Also, the averaging can take place over any region desired, not only over a cone
around the vertical axis, although this important case is a subset of our solution.
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In the first section of this paper, we describe Fedorov’s (1968) averaging approach to obtain the globally
best-fitting isotropic medium. We use a generalisation of his approach to determine a sectorially best-fitting
medium. We demonstrate the superiority of the resulting expressions over the global average in the fol-
lowing section with examples on compressional and shear velocities and slowness surfaces for media with
polar and triclinic symmetry. Finally, we summarise our conclusions and give an outlook.

METHOD

For the derivation of expressions for best-fitting isotropic background (or reference) velocities we follow
the derivation for the globally best-fitting isotropic medium given in Fedorov (1968). We begin with the
Christoffel matrix Λ

Λik = aijklnjnl , (1)

where the aijkl are the elements of the density-normalised elasticity tensor, and the nj are the components
of the phase normal vector,

n =




sin θ cosφ
sin θ sinφ

cos θ


 , (2)

where θ is the inclination and φ the azimuth angle. The eigenvalue problem for Λ leading to the three
phase velocities Vm (m=1,2,3) is

(Λik − V 2
m δik) g

(m)
i = 0 . (3)

In (3), the eigenvector g(m)
i is the polarisation vector of the wave corresponding to the phase velocity Vm,

which, in turn, is the m-th eigenvalue of Λ. If the phase normal nj is known, (3) can be solved and the
phase velocities can be obtained in a closed form from |Λik − V 2

m δik | = 0 (e.g., with Cardani’s formula).

Now we express the elasticity tensor aijkl in a linearised form by the sum of the elasticity tensor of

an isotropic background medium, a(0)
ijkl , and the deviations ∆aijkl of the anisotropic medium from the

isotropic background:
aijkl = a

(0)
ijkl + ∆aijkl . (4)

Remembering that the elasticity tensor for an isotropic medium is given by

a
(0)
ijkl = (V 2

P − 2V 2
S )δijδkl + V 2

S (δikδjl + δilδjk) (5)

we want to find the P- and S-wave velocities VP and VS that give the best isotropic approximation for an
arbitrarily anisotropic medium.

To obtain this best-fitting isotropic background medium, it is required that

〈(Λik − Λ
(0)
ik )2〉 !

= Min. (6)

becomes minimal (Fedorov, 1968). The brackets 〈〉 denote the averaging process

〈A(θ, φ)〉θ,φ =

φ2∫
φ1

θ2∫
θ1

A(θ, φ) sin θ dθ dφ

φ2∫
φ1

θ2∫
θ1

sin θ dθ dφ

. (7)

Expanding the square in (6) leads to

〈(Λik − Λ
(0)
ik )2〉 = 〈ΛikΛik〉+ 〈Λ(0)

ik Λ
(0)
ik 〉 − 2 〈ΛikΛ

(0)
ik 〉 , (8)

where
Λ

(0)
ik Λ

(0)
ik = V 4

P + 2V 4
S , (9)
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and
ΛikΛ

(0)
ik = (V 2

P − V 2
S )aijklninjnknl + V 2

S aijilnjnl . (10)

To minimise the objective function (6), the derivatives of (6) with respect to VP and VS must be zero. The
resulting linear system of equations leads to

V 2
P = aijkl〈ninjnknl〉 ,

V 2
S =

1

2

(
aijkl〈njnl〉 − V 2

P

)
. (11)

These isotropic phase velocities yield the best-fitting background velocities in a least-square sense.

The same result was originally derived by Fedorov (1968) following the same approach, but minimising
(6) not for the velocities but for the Lamé-parameters λ and µ instead. Fedorov derived his results in order
to find that isotropic medium that is most similar to the given crystal not only as regards the propagation
of elastic waves but also as regards elastic properties generally. To do so, he averaged the phase normals
nj over the entire unit sphere, i.e. θ = [0 . . . π] and φ = [0 . . . 2π], in (7), resulting in

V 2
P =

1

15
(aiikk + 2 aikik) ,

V 2
S =

1

30
(3 aikik − aiikk) . (12)

Fedorov (1968) has also determined the best-fitting isotropic velocities for the case that the direction of
the phase normal was fixed, i.e. no averaging was carried out in Equation (11). In this case the resulting
velocities coincide with those obtained from the weak anisotropy approximation (Backus, 1965). More
precisely, for the S-wave the best-fitting isotropic velocity is the geometric mean of the weak anisotropy
qS1- and qS2-velocities:

V 2
PWA

= aijkl ninjnknl

V 2
SWA

=
1

2

(
aijik njnk − V 2

PWA

)
. (13)

This result is not surprising as the weak anisotropy approximation is based on a linear (first-order) pertur-
bation of the elasticity tensor, as is Equation (4).

There are, however, situations where neither the average over the whole unit sphere nor the result for a
given phase direction is the best choice for a background medium. This is, for example, the case when only
two of the three components of pj are available, as for the reflection-transmission problem at an interface,
where a sixth-order polynomial must be solved to evaluate Snell’s law (Henneke, 1971). Another example
is the second-order interpolation of traveltimes (Vanelle and Gajewski, 2002) in the presence of topography.
Here, the vertical slowness is required for the interpolation, but only the horizontal components are avail-
able. The same problem occurs in the determination of geometrical spreading from traveltimes (Vanelle
and Gajewski, 2003). In all these cases, only the horizontal slowness is known. Since the phase velocity is
also unknown, the vertical slowness can not simply be obtained from the eikonal equation. Here, it would
be a better choice to use a background medium that is obtained only from averaging over the inclination
angle θ since the azimuth angle φ is known.

Also, for other applications using perturbation methods, it can be favourable to use a sectorially best-
fitting background medium rather than the global one given by (12). This has been recognised before, for
example by Ettrich et al. (2002) who have published equations for approximate P-wave velocities that yield
the best fit for a cone around the vertical axis.

Therefore we have generalised Fedorov’s (1968) result for the cases in between averaging over the
whole unit sphere and no averaging at all. As the resulting expressions are longish we have decided to
accumulate them in appendices rather than in the main text. Appendix A gives the results for an average
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over a sectorial fit in θ and φ (Equations (16) and (17)). In Appendix B results are given where the average
is only taken over the inclination for those applications where the azimuth is known (Equations (18) and
(19)). Finally, Appendix C gives the results for the special case of a weakly anisotropic medium with polar
symmetry (VTI medium) in terms of Thomsen’s (1986) parameters. The abbreviations used in Appendices
A to C are summarised in Appendix D.

In the next section we will give examples for the quality of the fit that can be obtained by using a
sectorial approximation.

EXAMPLES FOR SECTORIALLY BEST-FITTING ISOTROPIC BACKGROUND MEDIA

We consider two different types of anisotropic media to demonstrate the sectorially best-fitting isotropic
background velocities. The first is a medium with polar symmetry and the vertical axis as symmetry
axis (this symmetry is also known as vertically transverse isotropic, VTI). The density-normalised elastic
parameters for this synthetic medium matching a shale (see, e.g., Thomsen, 1986) are

A =




13.59 6.795 5.44 0. 0. 0.
13.59 5.44 0. 0. 0.

10.873 0. 0. 0.
2.72 0. 0.

2.72 0.
3.4




, (14)

(values in km2/s2) or, in Thomsen’s (1986) parameters:

α = 3.2974 km/s , β = 1.6492 km/s ,

ε = 0.1249 , γ = 0.1250 ,

δ = 0.0006 .

We have computed the globally best-fitting isotropic velocities and the isotropic velocities for fixed incli-
nation and azimuth angles from Equations (12) and (13). As mentioned above, the latter correspond to the
weak-anisotropy approximation. Finally, we have applied Equations (18) and (19) to obtain the sectorially
best-fitting velocities for sectors of 30◦ width in inclination. (Due to the rotational symmetry around the
vertical axis the results from (18) and (19), and (16) and (17) coincide.) All results are displayed together
with the exact solution in Figure 1 for the P-wave and Figure 2 for the shear wave.

It can be immediately seen that for the P-wave the 30◦ width sectorial fit is far superior to the global
approximation (Figure 1, left). This is also confirmed by the slowness surface plot in the right of Figure
1. Here, only the result for the averaging from 0◦ to 30◦ is shown together with the exact values and the
global approximation. It is obvious from Figure 1 that in the 30◦ cone around the vertical axis the sectorial
fit yields a much better approximation than the global one. For P-waves this was also shown by Ettrich et
al. (2001).

At a first glance, the results appear less convincing for the shear wave in Figure 2, however, we should
not expect that we can approximate two different anisotropic shear velocities with one isotropic velocity
that fits both well. Also, the velocity range displayed in the shear velocity plot is smaller than that in the
P-velocity plot, therefore the deviations appear even larger. If we take a closer look, we still find that the
sectorial fit matches the exact velocities better than the global one. This can also be seen in the plot of the
slowness surface in the right of Figure 2.

We have computed phase velocities and slowness surfaces in the same manner for a second example,
a sandstone with triclinic symmetry (Mensch and Rasolofosaon, 1997). It is described by the density-
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Figure 1: P-wave phase velocities (left) and slowness surfaces (right) for a medium with polar symmetry.
In the phase velocity plot, WA is short for the weak anisotropy approximation. In the slowness surface
plot, the 30◦ line corresponds to an average over θ in the range [0◦ . . . 30◦]. The thin dotted line indicates
the 30◦ cone.
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Figure 2: Shear wave phase velocities (left) and slowness surfaces (right) for a medium with polar symme-
try. In the phase velocity plot, WA is short for the weak anisotropy approximation. In the slowness surface
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normalised elastic parameters

A =




4.95 0.43 0.62 0.67 0.52 0.38
5.09 1.00 0.09 −0.09 −0.28

6.77 0.00 −0.24 −0.48
2.45 0.00 0.09

2.88 0.00
2.35




(15)

(values are given in km2/s2). We have only considered the x1-direction with the azimuth angle φ = 0 here.
Figure 3 shows the resulting P-wave phase velocities (left) and slowness surfaces (right), Figure 4 shows
the same for the shear waves.

As for the polar medium, we can see in Figure 3 (left) that again the sectorial fit for the P-wave is a much
better approximation to the real phase velocity than the global fit. In the slowness surface plot (right), we
have displayed two sectorial fits. First, we have averaged θ from [−30◦ . . . 30◦] and φ from [−15◦ . . . 15◦].
The second fit (denoted as 30◦ fit) results from averaging in θ over the interval [−30◦ . . . 30◦] while keep-
ing φ constant, i.e. φ = 0◦. Although in this case both sectorial fits are very close to each other, larger
differences can and do occur, for example if an azimuth angle of 60◦ is considered (not shown here). Both
are superior to the approximation that results from averaging over all azimuths within the 30◦ cone around
the vertical axis. For the shear wave we find again confirmed in Figure 4 that a single velocity value cannot
correctly describe both anisotropic shear velocities although the sectorial fit is still a better approximation
than the global one.

CONCLUSIONS AND OUTLOOK

We have presented expressions for sectorially best-fitting isotropic background media. These were obtained
from a generalisation of Fedorov’s (1968) method. Examples confirm that the sectorial approximation is
generally superior to the global one. This conclusion is of special interest for applications within seismic
exploration as here we are mainly concerned about a region restricted to inclinations below about 30◦. Par-
ticularly for the P-waves we find good agreement between the real and the best-fitting isotropic background
velocity resulting from the sectorial fit. But despite the fact that we cannot outwit physics by replacing two
different shear velocities in the anisotropic medium by one isotropic background shear velocity, the results
for the shear wave velocities are still very useful with regards to applications based on perturbation meth-
ods.

Possible applications are the second-order traveltime interpolation (Vanelle and Gajewski, 2002) in
anisotropic media when topography occurs and the determination of geometrical spreading from travel-
times (Vanelle and Gajewski, 2003). Here, the sectorially best-fitting background media can be combined
with perturbation method in an iterative procedure to determine the third, missing, slowness component.
The initial results are very promising and will be published in a follow-up paper. They are of particular
interest as the method can also be applied to shear waves. In a similar way, we can solve the reflec-
tion/transmission problem at an interface between two anisotropic media. Generally, the expressions for
sectorially best-fitting isotropic background media are of interest for any application associated with per-
turbation methods for anisotropic wave propagation.
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Figure 3: P-wave phase velocities (left) and slowness surfaces (right) for a medium with triclinic symmetry.
In the phase velocity plot, WA is short for the weak anisotropy approximation. In the slowness surface plot,
the 30◦ line corresponds to an average over θ in the range [0◦ . . . 30◦]. The thin dotted line indicates the
30◦ cone.
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Figure 4: Shear wave phase velocities (left) and slowness surfaces (right) for a medium with triclinic
symmetry. In the phase velocity plot, WA is short for the weak anisotropy approximation. In the slowness
surface plot, the 30◦ line corresponds to an average over θ in the range [0◦ . . . 30◦]. The thin dotted line
indicates the 30◦ cone.
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APPENDIX A

In this appendix we provide the expressions for best-fitting isotropic background velocities, if the averaging
is carried out over the inclination (θ) and the azimuth (φ) in the intervals [θ1 . . . θ2] and [φ1 . . . φ2]. If
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−θ1 6= θ2, we find for the best-fitting P-velocity

V 2
P = V 2

P (θ1, θ2, φ1, φ2) = aijkl〈ninjnknl〉θ,φ

= A11

(
C1 − 2C3 + C5

C1

)(
3 ∆0 + ∆2 + ∆4

8 ∆0

)
+ A22

(
C1 − 2C3 + C5

C1

)(
3 ∆0 −∆2 + ∆4

8 ∆0

)

+ A33
C5

C1

+ (4A44 + 2A23)

(
C3 − C5

C1

)(
4 ∆0 −∆2

8 ∆0

)
+ (4A55 + 2A13)

(
C3 − C5

C1

)(
4 ∆0 + ∆2

8 ∆0

)

+ (4A66 + 2A12)

(
C1 − 2C3 + C5

C1

)(
∆0 −∆4

8 ∆0

)

− 4A16

(
C1 − 2C3 + C5

C1

)(
Γ4

8 ∆0

)
+ 4A26

(
C1 − 2C3 + C5

C1

)(
Σ4

8 ∆0

)

+ 4A24

(
S5

C1

)(
Γ1 − Γ3

8 ∆0

)
− 4A15

(
S5

C1

)(
Σ1 − Σ3

8 ∆0

)

+ 4A34

(
S3 − S5

C1

) (
Γ1

8 ∆0

)
− 4A35

(
S3 − S5

C1

)(
Σ1

8 ∆0

)

+ (4A14 + 8A56)

(
S5

C1

)(
Γ3

8 ∆0

)
− (4A25 + 8A46)

(
S5

C1

)(
Σ3

8 ∆0

)

− (4A36 + 8A45)

(
C3 − C5

C1

)(
Γ2

8 ∆0

)
, (16)

and for the best-fitting shear velocity

V 2
S = V 2

S (θ1, θ2, φ1, φ2) =
1

2

(
aijkl〈njnl〉θ,φ − V 2

P

)

= A11

(
C1 − C3

2C1

)(
4 ∆0 + ∆2

8 ∆0

)
+ A22

(
C1 − C3

2C1

)(
4 ∆0 −∆2

8 ∆0

)
+ A33

(
C3

2C1

)

+ A44

[(
C1 − C3

2C1

)(
4 ∆0 −∆2

8 ∆0

)
+

C3

2C1

]
+ A55

[(
C1 − C3

2C1

)(
4 ∆0 + ∆2

8 ∆0

)
+

C3

2C1

]

+ A66

(
C1 − C3

2C1

)
+ 2 (A16 +A26 +A45)

(
C1 − C3

2C1

)(
Σ2

8 ∆0

)

+ 2 (A24 +A34 +A56)

(
S3

2C1

)(
Γ1

8 ∆0

)
− 2 (A15 +A35 +A46)

(
S3

2C1

)(
Σ1

8 ∆0

)

− V 2
P

2
. (17)

The abbreviations Cn, Sn, Γn, Σn, and ∆n are introduced in Appendix D. In the special case that θ1 = 0,
θ2 = π, φ1 = 0, and φ2 = 2π, these expressions reduce to the global average of Fedorov (1968) given
by (12). For θ1 = 0, θ2 = θ, φ1 = 0, and φ2 = 2π, Equation (16) is equal to the sectorially best-fitting
isotropic P-velocity derived by Ettrich et al. (2001).

If −θ1 = θ2 = θ, Equations (16) and (17) must be used in a variant as C1 becomes zero: In (16) and
(17) we must replace Cn by C0

n and Sn by zero. The abbreviations C0
n can also be found in Appendix D.
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APPENDIX B

If the phase normals are averaged over the inclination (θ) only, we only integrate over θ in (7). As result
we find for the best-fitting P-velocity in the case that −θ1 6= θ2

V 2
P = V 2

P (θ1, θ2) = aijkl〈ninjnknl〉θ

= A11

(
C1 − 2C3 + C5

C1

)
cos4 φ + A22

(
C1 − 2C3 + C5

C1

)
sin4 φ + A33

C5

C1

+ (4A44 + 2A23)

(
C3 − C5

C1

)
sin2 φ + (4A55 + 2A13)

(
C3 − C5

C1

)
cos2 φ

+ (4A66 + 2A12)

(
C1 − 2C3 + C5

C1

)
sin2 φ cos2 φ

+ 4A16

(
C1 − 2C3 + C5

C1

)
sinφ cos3 φ + 4A26

(
C1 − 2C3 + C5

C1

)
cosφ sin3 φ

− 4A24

(
S5

C1

)
sin3 φ − 4A15

(
S5

C1

)
cos3 φ

− 4A34

(
S3 − S5

C1

)
sinφ − 4A35

(
S3 − S5

C1

)
cosφ

− (4A14 + 8A56)

(
S5

C1

)
sinφ cos2 φ − (4A25 + 8A46)

(
S5

C1

)
cosφ sin2 φ

+ (4A36 + 8A45)

(
C3 − C5

C1

)
sinφ cosφ , (18)

and for the best-fitting shear velocity

V 2
S = V 2

S (θ1, θ2) =
1

2

(
aijkl〈njnl〉θ − V 2

P

)

= A11

(
C1 − C3

2C1

)
cos2 φ + A22

(
C1 − C3

2C1

)
sin2 φ + A33

(
C3

2C1

)

+ A44

[(
C1 − C3

2C1

)
sin2 φ+

C3

2C1

]
+ A55

[(
C1 − C3

2C1

)
cos2 φ+

C3

2C1

]
+ A66

(
C1 − C3

2C1

)

+ 2 (A16 +A26 +A45)

(
C1 − C3

2C1

)
sinφ cosφ

− 2 (A24 +A34 +A56)

(
S3

2C1

)
sinφ + 2 (A15 +A35 +A46)

(
S3

2C1

)
cosφ

− V 2
P

2
. (19)

The abbreviations Cn and Sn are introduced in Appendix D.

If −θ1 = θ2 = θ, Equations (18) and (19) must be used in a variant as C1 becomes zero: In (18) and
(19) we must replace Cn by C0

n and Sn by zero. The abbreviations C0
n can also be found in Appendix D.

APPENDIX C

In this appendix we rewrite the expressions for the sectorially best-fitting velocities for the special case
of an anisotropic medium with polar symmetry in terms of Thomsen’s (1986) parameters. An anisotropic
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medium with polar symmetry, also commonly addressed as vertical transverse isotropic (VTI) symmetry,
is characterised by the elastic tensor

A =




A11 A11 − 2A66 A13 0 0 0
A11 A13 0 0 0

A33 0 0 0
A55 0 0

A55 0
A66



.

We use Thomsen’s parameters (Thomsen, 1986) and the weak anisotropy approximation for δ (Thomsen,
1993) to express the elastic parameters as

A11 = α2(1 + 2ε) , A33 = α2 ,

A55 = β2 , A66 = β2(1 + 2γ) ,

A13 = α2(1 + δ)− 2β2 .

Since the velocity is independent of the azimuth in this type of medium, Equations (16) and (17) lead to
the same result as Equations (18) and (19), namely for the best-fitting P-wave velocity we get

V 2
P = α2

[
1 + 2

C1 − 2C3 + C5

C1
ε+ 2

C3 − C5

C1
δ

]
, (20)

and for the best-fitting S-wave velocity

V 2
S = β2

[
1 +

C1 − C3

C1
γ

]
+ α2 C3 − C5

C1
(ε− δ) . (21)

The abbreviations C1, C3, and C5 are introduced in Appendix D.

APPENDIX D

In this appendix we introduce the abbreviations used in the results. The averaging process described by
Equation (7) leads to a set of integrals of trigonometric functions. In order to make the expressions for the
velocities more legible we introduce the abbreviations

C5 =
cos5θ2 − cos5θ1

5
, S5 =

sin5θ2 − sin5θ1

5
,

C3 =
cos3θ2 − cos3θ1

3
, S3 =

sin3θ2 − sin3θ1

3
,

C1 = cos θ2 − cos θ1 , ∆0 =
φ2 − φ1

8
,

∆2 =
sin 2φ2 − sin 2φ1

4
, ∆4 =

sin 4φ2 − sin 4φ1

32
,

Γ1 = cosφ2 − cosφ1 , Σ1 = sinφ2 − sinφ1 ,

Γ2 =
cos2φ2 − cos2φ1

2
, Σ2 =

sin2φ2 − sin2φ1

2
,

Γ3 =
cos3φ2 − cos3φ1

3
, Σ3 =

sin3φ2 − sin3φ1

3
,

Γ4 =
cos4φ2 − cos4φ1

4
, Σ4 =

sin4φ2 − sin4φ1

4

to express the results of these integrals. The abbreviations were chosen in a way that the angular de-
pendency can still be recognised, as Cn and Γn correspond to the n-th powers of the cosine of θ and φ,
respectively, and Sn and Σn indicate the n-th powers of the sine of θ and φ.
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For the results from averaging over the inclination from−θ to θ we use the abbreviations

C0
1 = cos θ − 1 , C0

3 =
cos3 θ − 1

3
, C0

5 =
cos5 θ − 1

5
.


