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ABSTRACT

An inversion procedure for weakly anisotropic media with arbitrary symmetry is developed. The as-
sumption of weak anisotropy allows to simplify the solution of the forward modeling and to obtain
linear relations between perturbations of the elastic parameters with respect to an isotropic back-
ground medium and the corresponding traveltime perturbations. The relations are inherently linear
for qP -wave traveltimes, and can be linearized for qS-wave traveltimes using the qS-wave polariza-
tion vectors. These vectors are available from a seismic experiment as well as traveltimes. Based on
these linear relations the same linear inversion scheme is applied for qP - as well as for qS-wave data.
The joint inversion of qP - and qS-waves allows to determine the full elastic tensor of the anisotropic
medium. The inversion procedure can be applied to determine the elastic parameters of layered weakly
anisotropic media. The inversion is performed by a layer-by-layer manner. The inversion procedure
is tested using synthetic noise-free and noisy data for a layered model.

INTRODUCTION

The goal of inversion in the presence of anisotropy is the determination of the elastic parameters from ob-
served seismograms. The perturbation method is used for the computation of traveltimes in the anisotropic
medium. The traveltime of each wave propagating in the anisotropic medium is represented as a sum of
the traveltime in the isotropic background medium and the traveltime perturbation due to the deviation of
the elastic parameters of the anisotropic medium from the isotropic ones. The basic relations for traveltime
perturbations in weakly anisotropic media were established in 1982 (see, e.g. Červený, 1982). In the homo-
geneous case the qP -wave traveltime perturbations ∆τqP due to the perturbations of the elastic parameters
∆aiklm read as follows (see, e.g., Jech and Pšenčík, 1989):

∆τqP = −τp
2

∆aiklm pi pm nk nl. (1)

Throughout this article summation over the repeated indices is assumed. Here, pi and τp are the compo-
nents of the slowness vector and the traveltime of the P -wave, respectively, in the isotropic background
medium, and nk are components of the P -wave normal vector. In isotropic media the normal vector n co-
incides with the P -wave polarization vector. With the known isotropic background medium, the traveltime
τp and the vectors p and n can be calculated by the standard isotropic ray method. As a result, equation (1)
provides a linear relation between the perturbations of the elastic parameters ∆aiklm and the traveltime
perturbations ∆τqP . Therefore, to determine ∆aiklm a conventional tomography scheme can be applied.

Application of equation (1) for inversion of the elastic parameters of an anisotropic medium was con-
sidered by Chapman and Pratt (1992). They inverted the elastic parameters of arbitrary anisotropic media
from qP -wave traveltime observations in a 2-D cross-borehole tomographic experiments (i.e., the rays re-
main in a 2-D plane containing the borehole). Of course, only a restricted number of the elastic parameters
can be determined in the 2-D experiments.



Annual WIT report 2003 331

For quasi-shear waves the relations between the traveltime perturbations ∆τqSM and the perturbations
∆aiklm of the elastic parameters

∆τqSM = −τs
2

∆aiklm pi pm g
(M)
k g

(M)
l , M = 1, 2 (2)

are intrinsically more complicated than for the quasi-compressional waves. First, there are two qS-waves:
indices M = 1 and 2 correspond to qS1- and qS2-waves. The structure of equations (1) and (2) is similar:
ts and pi are the traveltime and the slowness components of the S-wave, respectively, and g

(M)
k can be

considered as components of the polarization vector of the S-wave in the isotropic background medium
(similar to vector n which can be considered as the P -wave polarization vector). The second problem is
related to the components nk which are known in the isotropic background medium, whereas g

(M)
k are

not. The vectors g(M) depend on the perturbations of the elastic parameters ∆aiklm. Therefore, they
can not be obtained until the perturbations ∆aiklm are known. This leads to a non-linear behavior of
the qS-wave traveltime perturbations with respect to the perturbation of the elastic parameters. Červený
and Jech (1982) suggested linearized equations for quasi-shear waves based on an average value of the
traveltime corrections for both quasi-shear waves. Jech and Pšenčík (1992) performed a simultaneous
inversion for qP - and qS-waves, but the inversion scheme can only be applied to TI structure.

We suggest to use the observed qS-wave polarization vectors to estimate the unknown vectors g(M).
With the known vectors g(M) relations (2) is linear and formally identical to relation (1) for qP -waves.
This would allow to use the same inversion scheme for qP - as for qS-waves.

Observations of qS-wave polarization vectors are available from three-component seismograms as well
as traveltimes. The polarization data can be used to invert for medium parameters or to improve the resolu-
tion of the tomographic image. Several papers using the polarization for tomography have been published.
For instance, Le Bégat and Farra (1997) inverted qP -wave traveltimes and polarizations of synthetic ex-
amples simulating a VSP experiment. Horne and Leaney (2000) inverted qP - and qSV polarization and
slowness component measurements obtained from a walk-away VSP experiment using a global optimiza-
tion method. Horne and MacBeth (1994) developed a genetic algorithm to invert shear-wave observations
from VSP data. They used horizontal polarizations and time-delays between two qS-waves to invert for
hexagonal and orthorombic symmetry. Farra and Le Bégat (1995) investigated the sensitivity of qP -wave
traveltime and polarization vectors to heterogeneity, anisotropy and interfaces.

Borehole seismic data have traditionally been analyzed by inverting traveltimes for velocity structure.
The down-hole and cross-hole experiments are ideal for determining seismic anisotropy (see, e.g., Cliet
et al., 1991; Williamson, 1993). The angular coverage makes the seismic traveltimes sensitive to any type
of anisotropy. In this study, a vertical seismic profiling (VSP) experiment is considered. Wavefields from
sources distributed on the Earth’s surface are recorded at receivers within a vertical borehole. Traveltimes
of transmitted qP - and qS-waves are inverted to determine the elastic parameters of the anisotropic medium
between the sources and receivers. We present a joint inversion of qP - and qS-waves in piecewise homo-
geneous weakly anisotropic media using a linear inversion formalism for both qP - and qS-waves. Similar
to previous studies, we assume that each of the two propagating qS-waves are recorded separately, i.e., no
qS-wave coupling exists, and that the observations are not close to singular directions.

After this introduction a discussion of the linearized equations for the qS-waves follows. Special em-
phasis is given to the determination of the vectors g(M) for the inversion using the observed polarization
vectors of qS-waves. Following this, the tomographic system is presented. Then, a numerical case study
demonstrates the applicability of the inversion scheme for a layered model.

LINEARIZED EQUATIONS FOR qS-WAVE TRAVELTIME PERTURBATIONS

Since the qP - and qS-wave traveltimes in the weakly anisotropic medium are represented as τqP = τp +
∆τqP , τqS1 = τs + ∆τqS1 and τqS2 = τs + ∆τqS2, equations (1) and (2) can also be written in the form:

τqP − τp = −τp
2

∆aiklm pi pm nk nl,

τqSM − τs = −τs
2

∆aiklm pi pm g
(M)
k g

(M)
l , M = 1, 2. (3)
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The structure of all equations (3) is similar: τqP , τqS1 and τqS2 are the traveltimes of the qP - and qS-waves
in the weakly anisotropic medium, τp and τs are the traveltimes of P - and S-waves, pi are components the
P - or S-wave slowness, and nk are components of the wavefront normal vector in the isotropic background
medium. The wavefront normal vector can also be considered as the P -wave polarization vector. The
components g

(M)
k (M = 1 or 2) define the vectors g(M) introduced into the perturbation theory (see,

e.g., Jech and Pšenčík, 1989; Červený, 2001). They are situated into the plane perpendicular to the ray
in the isotropic background medium, and, therefore, can be considered as vectors determining S-wave
polarization vectors.

The traveltimes in the weakly anisotropic medium τqP , τqS1, and τqS2 are supposed to be obtained by
observations. With the known parameters of the isotropic background medium, the traveltimes τp and τs,
the slowness vectors of the P - and S-waves and the wavefront normal n can be calculated by standard
isotropic ray method. As a result, in the case of qP -waves, the traveltime perturbation τqP − τp and the
perturbations of the elastic parameters ∆aiklm are linearly related. In the case of qS-waves, the vectors g(1)

and g(2) depend on the perturbations ∆aiklm and, therefore, can not be determined until the perturbations
∆aiklm are known. This leads to a non-linear behavior of the qS-wave traveltime perturbation with respect
to the perturbation of the elastic parameters ∆aiklm. If the vectors g(1) and g(2) were known, the relations
between the traveltime perturbations τqS1 − τs or τqS2 − τs and the perturbations ∆aiklm of the elastic
parameters become linear and formally identical to the relations for qP -waves.

How can we find or estimate the vectors g(1) and g(2) without a priori knowledge about ∆aiklm? For
this purpose, let us consider the physical meaning of these vectors. The vectors g(1) and g(2) are mutually
orthogonal and situated in the plane orthogonal to the ray in the isotropic background medium. For brevity,
we will denote this ray reference ray. These vectors can be considered as polarization vectors of the shear-
waves propagating in the isotropic background medium along the reference ray. Since the isotropic medium
itself does not fix the polarization of the shear-wave, it can be described by any unit vector in the plane
orthogonal to the ray. In perturbation theory, however, the specification of the vectors g(1) and g(2) is
unique. It is controlled by the perturbations ∆aiklm. Thus, we get different vectors g(M) for different
∆aiklm. Contrary to isotropic media, any anisotropic medium uniquely fixes the qS-wave polarizations
(with exception of so-called singular directions). To provide a continuous and smooth transformation from
isotropy to anisotropy, the vectors g(1) and g(2) must also be close to the qS-wave polarization vectors in
the weakly anisotropic medium. Using this reasoning, we suggest to determine the unknown vectors g(1)

and g(2) from the observed qS-wave polarization vectors.
The qS-wave polarization vectors are available from the experiment as well as traveltimes. Usually,

to obtain traveltimes, the two qS-waves should be separated by some processing. For this separation the
difference in qS-wave polarizations is used (see, e.g., Alford, 1986; Li and Crampin, 1993; Dellinger et al.,
1998). Therefore, the qS-wave polarization vectors are automatically obtained as a by-product of the qS-
wave separation.

To determine the vectors g(1) and g(2) from the observed qS-wave polarization vectors, the following
procedure is performed (see Fig. 1a): Let us assume that at a receiver point observations of two polarization
vectors AqS1 and AqS2 are available. First, the reference ray in the isotropic background medium con-
necting the source and the receiver is calculated. The determination of the reference medium is discussed
below. Then, at the receiver point, a plane orthogonal to the reference ray is constructed. The observed

qS1

plane orthogonal to ray

A

AqS2

reference ray

g

g

(1)

(2)

g

g(1)~

~ (2)

a) b)

Figure 1: Estimation of the vec-
tors g(1) and g(2). The observed
qS-wave polarization vectors AqS1

and AqS2 are projected onto the
plane orthogonal to the reference
ray (a). The unit vectors corre-
sponding to the projections are de-
noted by g̃(1) and g̃(2) (b). These
vectors are used in eqs. (3) instead
of the unknown vectors g(1) and
g(2).
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polarization vectors AqS1 and AqS2 are projected onto this plane and their projections are normalized to
unit vectors. The normalized projections will be denoted as g̃(1) and g̃(2). Although these vectors g̃(1) and
g̃(2) are usually not orthogonal, we suggest to use them in equations (3) instead of the unknown vectors
g(1) and g(2) (see Fig. 1b). The accuracy of this approximation is investigated below.

As a result, the tomographic system is now composed by the following equations which contain the
vectors g̃(1) and g̃(2) instead of g(1) and g(2):

τqP
τp
− 1 = −1

2
pi pm nk nl ∆aiklm, (4)

τqSM
τs
− 1

︸ ︷︷ ︸
yi

= −1

2
pi pm g̃

(M)
k g̃

(M)
l

︸ ︷︷ ︸
Xik

∆aiklm
︸ ︷︷ ︸

ak

, M = 1, 2,

where the traveltimes τqP , τqS1, τqS2 and the vectors g̃(1) and g̃(2) are obtained by observations. The
brackets are explained in the next section. For the given isotropic background medium equations (4) pro-
vide linear relations between the traveltime perturbations and the perturbation of the elastic parameters for
both types of waves.

INVERSION

Let us assume that there are N observations of qP - and qS-wave traveltimes τ1, τ2, . . . , τN in a weakly
anisotropic medium. Each ti corresponds to τqP , τqS1 or τqS2. Based on these observations, the tomo-
graphic system is constructed from equations (4). Each traveltime τi for either qP - or qS-waves adds a
corresponding equation in the tomography system. The system can be written in the form (see also the
brackets in eqs. 4):

yi =
L∑

k=1

Xik ak (i = 1, . . .N, N > L), (5)

where the vector y is specified as yi =
τi

τ
(0)
i

− 1. The components yi are formed by the traveltimes τi

of the qP - and qS-waves and the corresponding traveltimes τ (0)
i of the P - and S-waves in the isotropic

background medium. The vector y has a dimension N of the total number of the qP - and qS-wave
traveltime observations for all receivers from all sources. The vector a of the perturbations ∆aiklm of the
elastic parameters has the dimension L. The maximum value of L is equal to 21. The value of L can be
reduced. For example, if the anisotropic medium under consideration is transversely isotropic, L is equal
to 5. The elements of the N × L matrix X are composed by components of the P - or S-wave slowness
vectors and the vectors n, g̃(1) or g̃(2). As soon as the reference ray connecting a source and a receiver is
constructed, the corresponding element of the matrix X can be obtained according to eqution (4).

The system of equations (5) is solved by the minimizing the misfit function η2 (Linnik, 1961)

η2 =

N∑

i=1

[
τ

(0)
i

]2
(
yi −

L∑

k=1

Xik ak

)2

. (6)

The singular value decomposition (SVD) method is used for the minimization (see e.g. Menke, 1984).

DETERMINATION OF THE ISOTROPIC BACKGROUND MEDIUM

The inverse problem discussed is linear only if the isotropic background medium is known. With an
unknown background medium the inversion is non-linear for qP - as well as for qS-waves. In general, the
isotropic background medium is unknown as well. We can only make assumptions about the background
medium. To overcome this problem the inversion procedure is embedded into an iteration procedure for
the determination of the isotropic background medium. Properties of the isotropic background medium
are specified by the velocities vp and vs of the P - and S-waves propagating in the homogeneous isotropic

medium. First, the initial velocities v(0)
p and v(0)

s are defined. For example, they can be estimated for several
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source-receiver pairs as the distance divided by the corresponding traveltimes. In the next step the elastic
parameters of the anisotropic medium are determined by the inversion using the isotropic background
medium defined by v(0)

p and v(0)
s . Then, the inverted elastic parameters of the anisotropic medium are used

to construct an updated isotropic background model v(new)
p and v(new)

s using the formulae for the best-
fitting isotropic medium derived by Fedorov (1968). The inversion and update of the isotropic background
are repeated until the old velocities and the new velocities of the isotropic background differ only by a
small value (e.g., 0.01 km/s).

ACCURACY OF VECTORS g̃(1) AND g̃(2)

In this section we investigate how close the vectors g̃(1) and g̃(2) estimated from the qS-wave polarization
vectors, AqS1 and AqS2, are to the vectors g(1) and g(2) (we will call these vectors as exact vectors). For
this purpose, the angles, α̃1 and α̃2, between the exact and estimated vectors are calculated (see Fig. 1b):

α̃1 = ∠ (g̃(1),g(1)), α̃2 = ∠ (g̃(2),g(2)). (7)

For comparison also the angles between the vectors AqS1 and AqS2, and the corresponding vectors g(1)

and g(2) derived from the perturbation theory are computed:

α1 = ∠ (AqS1,g
(1)), α2 = ∠ (AqS2,g

(2)). (8)

Calculations of the angles (7) and (8) are carried out for three homogeneous anisotropic media: an
orthorombic medium with 10.6% relative mean square (RMS) deviation from isotropy and a VTI medium
with 11% RMS deviation from isotropy (Thomsen parameters: ε = 0.125, γ = 0.049 and δ = 0.045). The
elastic parameters of the orthorombic and VTI media are given in Table 1 (see columns with Atrue

ik ).
The angles are computed for different ray directions defined by an inclination angle θ and an azimuth

angle ϕ. Each pair (θ, ϕ) defines a ray connecting a source and a receiver. The qS1- and qS2-waves
propagating along this ray are considered. The qS-wave polarization vectors AqS1 and AqS2 at the receiver
are calculated by standard anisotropic ray theory.

The vectors AqS1 and AqS2 are considered as observed qS-wave polarization data and are used for the
estimation of the vectors g̃(1) and g̃(2). The background isotropic medium is constructed as a best-fitting
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Figure 2: Maps of angles α1,
α2, α̃1 and α̃2 (for determi-
nation of angles see text) in
the orthorombic medium from
Tab. 1a. The inclination an-
gle θ and azimuth angle ϕ de-
fine the ray direction. The two
upper maps, (a) and (b), rep-
resent the angles α1 and α2

between the vectors g(1) and
g(2) obtained from perturba-
tion theory and the polarization
vectors of the two qS-waves
AqS1 and AqS2 computed by
standard anisotropic ray theory.
The two lower maps, (c) and
(d), represent the angles α̃1 and
α̃2 between the vectors g(1)

and g(2) and the vectors g̃(1)

and g̃(2) estimated from AqS1

and AqS2. Note that the regions
with the largest angles (dark)
correspond to singular regions
in the orthorombic medium.
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Figure 3: Maps of angles
α1, α2, α̃1 and α̃2 in the VTI
medium from Tab. 1b. The in-
clination angle θ and azimuth
angle ϕ define the ray direction.
The two upper maps, (a) and
(b), represent the angles α1 and
α2 between the vectors g(1)

and g(2) obtained from per-
turbation theory and the polar-
ization vectors of the two qS-
waves AqSV and ASH com-
puted by standard anisotropic
ray theory. The two lower
maps, (c) and (d), represent
the angles α̃1 and α̃2 between
the vectors g(1) and g(2) and
the vectors g̃(1) and g̃(2) esti-
mated from AqSV and ASH .
Note that the regions with
the largest angles (dark) corre-
spond to singular regions in the
VTI medium.

isotropic medium. In the homogeneous case, the reference ray in the isotropic background medium is a
straight line connecting the source and the receiver. The vectors AqS1 and AqS2 are projected onto a plane
perpendicular to the reference ray. The exact vectors g(1) and g(2) are obtained by perturbation theory.

Figure 2 shows maps of the angles α1 (a), α2 (b), α̃1 (c) and α̃2 (d) for the orthorombic medium. Each
point on the maps represents a ray direction. The magnitude of the angles are shown by a grayscale: The
larger the magnitude of the angle, the darker it is presented. One can see that the angles do not exceed
15 degrees (white and light-gray) for most rays. The largest angles (nearly black) correspond to singular
directions of the orthorombic medium considered where the two shear wavefronts cross each other. In
these directions the perturbation theory fails as well as the standard anisotropic ray theory. Therefore, these
directions have to be excluded from our consideration. Comparison of the two upper (a,b) and the lower
(c,d) maps shows that the angles α̃1 and α̃2 between the vectors g̃(1) and g̃(2) obtained by projection of the
polarization vectors, AqS1 and AqS2, and the exact vectors g(1) and g(2) are smaller than the corresponding
angles α1 and α2 between the polarization vectors AqS1 and AqS2 and the vectors g(1) and g(2).

Figure 3 shows similar maps of the angles α1 (a), α2 (b), α̃1 (c) and α̃2 (d) for the VTI medium. As
in the previous case, the largest angles (dark) correspond to the singular directions of the VTI medium
considered. There, qSV - and SH-wavefronts are tangent to each other around θ ≈ 0◦ and cross each
other around θ ≈ 60◦. In the case of qSV -waves, the projections g̃(1) of the polarization vectors AqSV

provide a better approximation of g(1). The angles are smaller on map (c) in comparison with map (a).
The SH-wave polarization vectors, ASH , are already situated in the plane orthogonal to the reference ray.
Therefore, projection does not improve the approximation of g̃(2) (see maps (b) and (d)).

According to Figures 2 and 3 the angular deviations between g̃(1) and g̃(2) estimated from the qS-wave
polarization vectors and the exact g(1) and g(2) vary from 0 till 15 degrees for the regular (non-singular)
areas. The maximum deviation outside singular regions does not exceed 5 degrees for the VTI medium and
15 degrees for the orthorombic medium.

RECURRENT INVERSION SCHEME

In inhomogeneous anisotropic models the elastic parameters vary from one point in space to the other. The
isotropic background model also becomes inhomogeneous. As a result the vectors g(1) and g(2) rotate
along the reference ray due to two reasons: (1) inhomogeneity of the isotropic background medium, and
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Figure 4: Recurrent inversion scheme: The model consists of three layers. The inversion procedure is performed in
a layer-by-layer manner. (a) The perturbations ∆aiklm in the first layer are inverted using the observed data at the
receivers situated in the first layer. (b) Traveltimes along the rays in the first layer are subtracted from the traveltimes
observed at the receivers situated in the second layer. Then, these newly obtained traveltimes are used for inverting for
∆aiklm in the second layer. (c) To invert ∆aiklm in the third layer, traveltimes along the rays in the first and second
layers are subtracted from the observed traveltimes.

(2) changes of the anisotropic parameters along the reference ray. To estimate the vectors g(1) and g(2),
the observations of the polarization vectors AqS1 and AqS2 at each point along the reference ray would
be needed. But the information about the polarization vectors AqS1 and AqS2 is available only at the
receiver points. In the general case of inhomogeneity, this is not sufficient. But there are two types of
inhomogeneous models, where the suggested inversion procedure can be applied.

The first type concerns media, where the rotations of the vectors g(1) and g(2) along the ray are ini-
tiated only by inhomogeneities of the isotropic background medium. An example of a such medium is
the factorized anisotropic inhomogeneous (FAI) medium suggested by Červený and Simões-Filho (1991).
In the FAI media, the rotations of the vectors g(1) and g(2) along the ray in the background medium are
caused only by the inhomogeneity of the background medium. Therefore, the vectors g(1) and g(2) along
the reference ray can be obtained by the standard isotropic ray method.

The second type consists of piecewise homogeneous anisotropic media. Piecewise homogeneous media
are common in exploration seismics. For these media a recurrent inversion procedure can be suggested. To
obtain the elastic parameters of an anisotropic layered model the inversion procedure described above can
be applied recurrently. The model structure is supposed to be known, i.e., a VSP experiment is assumed.
This means that the number of the layers and their depths are known. All receivers are divided into K
groups, where K is the number of layers in the model considered. The inversion procedure is performed
in K steps in a layer-by-layer manner. Figure 4 explains the procedure for an example of a three-layers
model.

To estimate the elastic parameters of the first layer, only the observed data at the receivers situated in
the first layer is used (K = 1). Since the layer is homogeneous, its elastic parameters are determined as
described above. For the following steps the elastic parameters of the first layer and the corresponding
background isotropic medium are assumed to be known from the inversion.

In the second step, data observed at the receivers from the second layer is used (K = 2). The reference
ray paths in the isotropic background medium obtained for all waves recorded at these receivers consist of
two parts (see Fig. 4b) those in the first layer (SB) and in the second layer (BC). The traveltime τ of each
wave thus consists of two terms

τ = τ (I) + τ (II),

where τ (I) is the traveltime in the first layer and τ (II) is the traveltime in the second layer. With the
known elastic parameters of the first layer, the traveltimes τ (I) in the first layer can easily be calculated
by the equations (3) with the perturbation method. Then, the calculated traveltime τ (I) is subtracted from
the whole traveltime τ recorded at the receiver. As a result the traveltime τ (II) along the ray path BC in
the second layer is obtained. The second layer is homogeneous, therefore, the polarization vector at the
receiver can be used to estimate the corresponding vector g̃(M) along the ray path BC. With the traveltime
τ (II) and the vector g̃(M) as input data, the inversion of the perturbations ∆aiklm in the second layer can
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be performed in the same manner as in the first layer. Note that the parameters of the isotropic background
medium in the first layer are fixed, whereas the parameters of the isotropic background medium in the
second layer are searched with the help of the iteration procedure described above. Therefore, the reference
ray paths have to be recalculate as soon as the parameters of the isotropic background medium in the second
layer are changed.

In a similar way the elastic parameters of the third layer can be determined, see Fig. 4c. Now, the
elastic parameters of the first and second layer are assumed to be known. Therefore, the traveltimes along
the path in the first (SB) and second (BC) layers can be calculated. Then, the calculated traveltimes are
subtracted from the observed traveltimes at the receivers of the third layer. The newly obtained traveltimes
and polarization vectors at the receivers of the third layer are used to invert for the perturbations ∆aiklm
in the third layer. Note that the parameters of isotropic background media in the first and second layers
are known from the previous steps. Therefore, the iteration procedure for the construction of the isotropic
background medium is only applied for the third layer.

In conclusions, the elastic parameters of all layers can be determined in the layer-by-layer manner using
the already known elastic parameters of the upper layers and the observed traveltimes and polarization
vectors in the layers under consideration.

CASE STUDY FOR THE THREE LAYER MODEL

A layered model was used to test the suggested recurrent inversion procedure. The model consists of
three layers. The first layer is an anisotropic medium with orthorombic symmetry, the second layer is
a transversely isotropic medium with vertical axis of symmetry (VTI). The density-normalized elastic
parameters (in km2/s2) of the anisotropic layers are given in Table. 1 (see columns with Atrue

ik ). The
third layer is isotropic and the P - and S-wave velocities are Vp = 3.87 km/s and Vs = 2.24 km/s.

As observed data we used traveltimes and polarization vectors computed by the ANRAY package (see
Gajewski and Pšenčík, 1990) in a synthetic vertical seismic profiling (VSP) experiment. The scheme of the
VSP experiment is shown in Figure 5. A vertical borehole contains 25 aligned three-component receivers
with 30 m vertical spacing until a depth of 750 m. There are 10 receivers in the first layer, 11 receivers
in the second layer and 4 in the third isotropic layer. The receivers record the wavefields from 12 sources
situated around the borehole on the Earth surface. In Figure 5 these 12 source positions are denoted by
triangles. All sources are vertical forces.

According to the anisotropic ray theory, three waves arrive at each receiver in the first layer: one qP
and two quasi-shear waves. Therefore, for each receiver in the first layer there are three traveltimes (qP ,
qS1 and qS2 waves). On the interface between two anisotropic layers each quasi-shear wave produces
two quasi-shear waves. One wave is the same type as the incident wave, the other is a converted wave.
Therefore, two incident quasi-shear waves produce four quasi-shear waves in the second layer (qS1-qS1,
qS2-qS2, qS1-qS2 and qS2-qS1). As a result for each receiver in the second layer there is one qP -
wave traveltime and four quasi-shear wave traveltimes. The converted qP − qS and qS − qP waves
are not considered. Since the third layer is isotropic, there is one qP -wave traveltime and four qS-wave
traveltimes.
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Figure 5: A vertical borehole contains 25 aligned three-
component receivers with 30 m vertical spacing until a
depth of 750 m. All sources are vertical forces. The 12
source positions are denoted by triangles.
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INVERSION FOR THE FIRST LAYER

Inversion of the elastic parameters of the first layer is performed just as it is performed in homogeneous
anisotropic media. The observed data from the first 10 receivers is used. There are 120 observations of
qP -wave traveltimes, 120 and 115 observations of traveltimes and polarization vectors of qS1- and qS2-
waves respectively. (Note that here and in the subsequent discussions the different number of observations
of qP - and qS-waves is due to the excluding of some observations from the inversion. No observations
were obtained for regions where the ray theory fails, e.g. for singular directions or for receivers situated
closely to an interface.) Noise is added to the synthetic traveltimes and qS-wave polarization vectors. The
noisy data have a standard deviation of 2 ms for the traveltimes and a standard deviation of 10◦ for the
inclination (α) and the azimuth (β) angles specifying the qS-wave polarization vectors. The final isotropic
background medium has vp = 3.14 and vs = 1.99 km/s.

Let us assume that there is no a priori knowledge on the type of anisotropy. Therefore, an inversion for
all 21 elastic parameters must be performed. The results of the inversion are given in the third column of
Table 1(a). The misfit function η2 is 0.0013 s2. Since the condition number (ration of the maximal singular
value to the minimal singular value) of the SVD was 28, the inversion problem for 21 parameters was well
conditioned. Therefore all inverted parameters are acceptable. The inverted parameters are close to the
exact ones. The RMSD of the inverted parameters,Aest

ik (21) from the exact parameters, Atrue
ik , is 2.46%.

For each inverted parameter, we obtained also a confidence interval with a probability coefficient of
99%. The non-orthorombic parameters of Aest

ik (21) are relatively small. The corresponding confidence
intervals show that these small parameters can not be distinguished from zero. Therefore, we can conclude
about the orthorombic symmetry of the considered medium. In this case we can restrict the inversion to
nine independent elastic parameters: A11, A12, A13, A22, A23, A33, A44, A55 and A66. The results of
the inversion for the 9 parameters are given in the fourth column of Table 1(a). The inverted parameters
Aest
ik (9) are given with the confidence intervals of 99% probability (I99%). The misfit function η2 equals

to 0.0013 s2. The RMSD of the inverted parameters Aest
ik (9) from the exact parameters, Atrue

ik , is 2.41%.
Note that the inversion problem for 9 parameters was well conditioned, because the condition number of
the SVD was 28.

What happens if we ignore that the medium under consideration is an anisotropic medium? Figure 6
shows traveltime residuals for the first layer obtained after the inversion of noise-free data for the 9 elastic
parameters (crosses) and after the inversion for only 2 parameters (isotropic P - and S-wave velocities)
(stars). The traveltime residuals are given in ms. One can see that the traveltimes for the inverted anisotropic
medium differ from the observed traveltimes by only 1-3 ms for the qP - as well as for the two quasi-shear
waves. The deviations of the isotropic traveltimes, however, are as big as 10-15 ms.
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Figure 6: Traveltime residuals after inver-
sion of noise-free data in the first orthorom-
bic layer. Crosses show traveltime residu-
als after inversion for 9 different elastic pa-
rameters defining the orthorombic medium,
stars show the traveltime residuals after in-
version for 2 isotropic parameters. 120 ob-
servations of the qP -wave traveltimes, 120
and 115 observations of qS1- and qS2-
waves, respectively, were used.

INVERSION FOR THE SECOND LAYER

In the second layer there are 11 receivers. The data includes 132 observations of qP -waves, 131 and 109
observations respectively of qS1− qS1- and qS1− qS2-waves, 128 and 117 observations respectively of
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a) First layer, σt=2ms, σα=10◦, σβ=10◦

Atrue
ik Aest

ik (21) I99% Aest
ik (9) I99%

A11 10.800 10.658 ±0.132 10.656 ±0.130
A12 2.200 2.152 ±0.102 2.153 ±0.101
A13 1.900 1.797 ±0.254 1.797 ±0.251
A14 0. 0.003 ±0.097 0.
A15 0. 0.009 ±0.066 0.
A16 0. 0.000 ±0.052 0.
A22 11.300 11.080 ±0.130 11.080 ±0.129
A23 1.700 1.722 ±0.255 1.722 ±0.252
A24 0. 0.023 ±0.067 0.
A25 0. -0.004 ±0.081 0.
A26 0. -0.001 ±0.050 0.
A33 8.500 8.050 ±0.571 8.052 ±0.563
A34 0. 0.029 ±0.071 0.
A35 0. 0.021 ±0.074 0.
A36 0. 0.008 ±0.084 0.
A44 3.600 3.550 ±0.040 3.550 ±0.040
A45 0. 0.006 ±0.032 0.
A46 0. -0.004 ±0.036 0.
A55 3.900 3.886 ±0.040 3.886 ±0.039
A56 0. 0.004 ±0.039 0.
A66 4.300 4.315 ±0.028 4.314 ±0.027

b) Second layer, σt=3ms, σα=15◦, σβ=15◦

Atrue
ik Aest

ik (21) I99% Aest
ik (9) I99% Aest

ik (5) I99%

A11 13.590 13.611 ±1.237 13.601 ±1.236 14.173 ±1.270
A12 6.800 6.836 ±1.155 6.844 ±1.153 5.919 ±0.247
A13 5.440 5.576 ±0.453 5.568 ±0.452 5.599 ±0.396
A14 0. 0.057 ±0.200 0. 0.
A15 0. -0.111 ±0.182 0. 0.
A16 0. -0.047 ±0.314 0. 0.
A22 13.590 13.657 ±1.240 13.643 ±1.238 14.173 ±1.270
A23 5.440 5.428 ±0.455 5.420 ±0.453 5.599 ±0.396
A24 0. 0.121 ±0.181 0. 0.
A25 0. -0.103 ±0.200 0. 0.
A26 0. 0.014 ±0.311 0. 0.
A33 10.870 10.436 ±1.306 10.421 ±1.303 10.338 ±1.538
A34 0. -0.036 ±0.184 0. 0.
A35 0. -0.076 ±0.185 0. 0.
A36 0. -0.065 ±0.315 0. 0.
A44 4.100 4.050 ±0.249 4.061 ±0.245 4.069 ±0.273
A45 0. -0.006 ±0.094 0. 0.
A46 0. -0.014 ±0.068 0. 0.
A55 4.100 4.107 ±0.247 4.117 ±0.245 4.069 ±0.273
A56 0. -0.006 ±0.061 0. 0.
A66 4.500 4.576 ±0.285 4.577 ±0.284 4.127 ±0.322

Table 1: Results of the inversion of two layers of the three layered model. The first layer is an orthorombic
medium (a); the second layer is a VTI medium (b). The true elastic parameters are given in the columns Atrue

ik .
Random noise with a normal probability distribution is added into the synthetic traveltimes and polarization vectors.
The standard deviation for the traveltimes is denoted as σt and for the inclination (α) and azimuth (β) angles defined
the qS-wave polarization vectors as σα and σβ . For the orthorombic medium the inversion of the noisy data was
performed for 21 and 9 parameters (see Aest

ik (21) and Aest
ik (9)). For the VTI medium the inversion of the noise data

was performed for 21, 9 and 5 parameters (see Aest
ik (21), Aest

ik (9) and Aest
ik (5)). For each estimated parameter the

confidence interval with 99% probability (denoted by I99%) is given.
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Figure 7: Traveltime residuals after the inversion of noise-free data in the second VTI layer. Crosses show traveltime
residuals after the inversion for 5 elastic parameters defining the VTI medium, stars show the traveltime residuals after
the inversion for 2 isotropic elastic parameters.

qS2−qS1- and qS2−qS2-waves. As in the previous examples, noise is added to the synthetic traveltimes
and qS-wave polarization vectors. The noisy data has a standard deviation of 3 ms for the traveltimes
and a standard deviation of 15◦ for the inclination (α) and azimuth (β) angles specifying the qS-wave
polarization vectors. The final isotropic background medium has vp = 3.65 km/s and vs = 1.97 km/s.

If there is no a priori knowledge on the type of anisotropy, the inversion must be performed for all
21 elastic parameters. The results of the inversion are given in Table 1(b). For each inverted parameter, a
confidence interval with a probability coefficient of 99% is given. The misfit function η2 is 0.0060 s2. Since
the condition number of the SVD was 37, the inversion problem for 21 parameters was well conditioned.
Therefore all inverted parameters are acceptable.

The confidence intervals show that the small non-orthorombic inverted parameters of Aest
ik (21) can

not be distinguished from zero. One can conclude that the considered medium possesses orthorombic
symmetry or VTI symmetry. The last two columns of Table 1(b) give the results of the inversion for 9
parameters, Aest

ik (9), and for 5 parameters, Aest
ik (5). The misfit function η2 is 0.0061 s2 in the first case

and 0.0086 s2 in the last case. Note that the condition numbers of the SVD was 35 for the inversion
for 9 parameters and 37 for the inversion for 5 parameters. Therefore, all 9 or 5 inverted parameters
are acceptable. For each inverted parameter the corresponding confidence interval is obtained. Analysis
of these confident interval shows that the inverted parameters Aest

ik (9) can not be distinguished from the
inverted parameters Aest

ik (5). Please note that among the inverted parameters Aest
ik (9), the parameter A11

can not be distinguished from the parameter A22, A44 from A55 and A13 from A23. This means that the
medium of the second layer possesses most likely VTI symmetry. The RMSD of the inverted parameters
Aest
ik (5) from the exact parameters Atrue

ik is 5.9%.
What happens if we ignore that the medium under consideration is anisotropic medium? Figure 7 shows

traveltime residuals obtained after the inversion of noise-free data for the 5 elastic parameters (crosses) and
after the inversion for only 2 parameters (isotropic P - and S-wave velocities) (stars). Traveltime residuals
are given in ms. One can see that the traveltimes for the inverted anisotropic medium differ from the
observed traveltimes by 1–3 ms for the qP - as well as for the two quasi-shear waves. The deviations of the
isotropic traveltimes, however, are as big as 10–15 ms.

INVERSION FOR THE THIRD LAYER

In the third layers 4 receivers are situated. There are 36 observations of the P -waves and 133 observa-
tions of S-waves. According to the discussion on page 337, the observations of the S-waves are separated
into four groups: qS1 − qS1 − S (35 observations), qS2 − qS2 − S (31), qS1 − qS2 − S (34) and
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qS2− qS1− S (33). Noise is added to the traveltimes and qS-wave polarization vectors. The noisy data
has a standared
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residuals [ms]
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Figure 8: Traveltime residuals after the inver-
sion of noise-free data in the third isotropic layer.
Crosses show traveltime residuals after inversion
for the isotropic elastic parameters.

deviation of 3 ms for the traveltimes and standard
deviations of 15◦ for the inclination (α) and az-
imuth (β) angles specifying the qS-wave polar-
ization vectors. The inversion was performed for
2 parameters (the square of P - and S-wave ve-
locities, V 2

p and V 2
s ). The misfit function η2 was

0.0014 s2. The condition number of the SVD was
10. As a result the following P - and S-wave ve-
locities and their confidence intervals with a prob-
ability coefficient of 99% were obtained:

V 2
p = 4.03 km/s I99% = 1.30

V 2
s = 2.26 km/s I99% = 0.44

(The exact velocities of the third layer are
Vp = 3.87 km/s and Vs = 2.24 km/s.)
Figure 8 shows traveltime residuals in the third
isotropic layer after the inversion of noise-free
data for 2 parameters. The residuals are 1–3 ms

CONCLUSIONS

An inversion procedure for weakly anisotropic media using traveltimes of qP - and qS-waves as well as
qS-wave polarizations was suggested. The presented inversion procedure allows to use the same linear
inversion scheme for qP - as well as for qS-wave data. The joint inversion of qP - and qS-waves allows to
determine the full elastic tensor of the anisotropic medium.

The advantage of the presented inversion procedure is that no assumption about any special type of
anisotropic symmetry is needed. If there is no a priori information on the type of anisotropy, all 21 elastic
parameters can be inverted. Then, analysis of the 21 inverted elastic parameters can be carried out. Based
upon the significance and accuracy of each parameter, we can restrict the inversion to a smaller number of
the elastic parameters and determine the symmetry of the media under consideration.

The main restriction of the suggested inversion procedure is that it is based on perturbation theory
which provides a smooth transition from isotropic media to anisotropic media by small perturbations of the
elastic parameters. Therefore, the accuracy of the traveltime computations in the forward modeling problem
and, as a result, the quality of the inversion depend directly on the assumption of weak anisotropy. This
means that the inversion procedure allows to reconstruct the exact elastic parameters only if the anisotropic
medium is weakly anisotropic. In the case of the medium with more then 5% anisotropy, the inversion
does not reconstruct the exact elastic parameters, but only gives close estimates of these elastic parameters
even when the noise-free data are used. But note that because the inversion procedure can be performed
fast and has no restrictions on the types of anisotropic symmetry, it can be used to construct initial models
for non-linear inversion procedures.

In comparison to a conventional tomography scheme, the suggested inversion scheme requires not
only traveltime observations, but also the observed qS-wave polarization vectors. Although the observed
qS-wave polarizations are available from three component data, picking qS-wave polarization vectors from
real data can be a challenging task. However, to obtain traveltimes, the two qS-waves need to be separated
in any case. For this separation the difference in qS-wave polarizations is used (see, e.g., Alford, 1986; Li
and Crampin, 1993; Dellinger et al., 1998). Therefore, the qS-wave polarization vectors are automatically
obtained as a by-product of the qS-wave separation.

For layered models the inversion can be applied in a layer-by-layer manner (recurrently). The recurrent
inversion was tested on a model consisting of three layers: The first layer was an anisotropic medium
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with orthorombic symmetry (10.6% anisotropy), the second layer was a medium with VSP symmetry
(11% anisotropy) and the third layer was an isotropic medium. Synthetic qP - and qS-wave traveltimes
and qS-wave polarization vectors were generated for a VSP experiment by the ANRAY program package
(Gajewski and Pšenčík, 1987). Noisy data was used for the inversion. Errors were introduced in the qP -
and qS-wave traveltimes as well as in the qS-wave polarization vectors. The RMSD of the inverted elastic
parameters from the exact parameters were 2.41% for the first orthorombic layer, 5.9% for the second
VTI layer, and 10% for the third isotropic layer. For each inverted parameter a confidence interval with a
probability coefficient of 99% was constructed. The values of the traveltimes residuals varied from 1–3 ms.
These correspond to errors in picking of traveltimes of the different waves from real data.
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Gajewski, D. and Pšenčík, I. (1987). Computation of hight-frequency seismic wavefields in 3-D laterally inhomoge-
neous anisotropic media. Geophys. J. R. astr. Soc., 91:383–411.
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Jech, J. and Pšenčík, I. (1992). Kinematic inversion for qP and qS waves in inhomogeneous hexagonally symmetric
structures. Geophys. J. Int, 108:604–612.



Annual WIT report 2003 343

Le Bégat, S. and Farra, V. (1997). P -wave traveltime and polarization tomography of VSP data. Geophys. J. Int.,
131:100–114.

Li, X. Y. and Crampin, S. (1993). Linear-transform techniques for processing shear-wave anisotropy in four-component
seismic date. Geophysics, 58:240–256.

Linnik, Y. V. (1961). Method of least squares and principles of the theory of observations. Pergamon Press.

Menke, W. (1984). Geophysical data analysis: discrete inverse theory. Academic Press, Inc.

Williamson, P. R. (1993). Anisotropic crosshole tomography in layered media. Part II: applications, results and con-
clusions. Journ. Seismic. Explor., 2:223–238.


