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ABSTRACT

The image-wave equation for depth remigration is a partial differential equation that is similar to the
acoustic wave equation. In this work, we study its finite-difference solution and possible applica-
tions. The conditions for stability, dispersion and dissipation exhibit a strong wavenumber depen-
dence. Where higher horizontal than vertical wavenumbers are present in the data to be remigrated,
stability may be difficult to achieve. Grid dispersion and dissipation can only reduced to acceptable
levels by the choice of very small grid intervals. Numerical tests demonstrate that, upon reaching the
true medium velocity, remigrated images of curved reflectors propagate to the correct depth and those
of diffractions collapse to single points. These properties and first applications to inhomogeneous me-
dia point towards the method’s potential of being useful as a tool for migration velocity analysis. In
horizontally layered media, the reflector images reach their true depth when the remigration velocity
equals the inverse of the mean medium slowness.

INTRODUCTION

Seismic remigration is an imaging technique that envisages the construction of an improved migrated
section for an updated macrovelocity model on the basis of a previously migrated section as obtained
with a different initial macrovelocity model. If the two macrovelocity models do not differ too much, one
generally calls the imaging procedure that corrects the image a “residual migration” (Rothman et al., 1985).
Where significant differences between both models are allowed, the process is referred to as remigration
(Hubral et al., 1996) or velocity continuation (Fomel, 1994).

The sequence of images of a certain reflector as subsequently migrated with varying migration velocities
creates an impression of a propagating wavefront. This “propagating wavefront” was termed an “image
wave” by Hubral et al. (1996). The propagation variable, however, is not time as is the case for conventional
physical waves as described, e.g., by the acoustic wave equation, but the migration velocity.

From the kinematic behaviour of these image waves as a function of the constant migration velocity,
partial differential equations, termed “image-wave equations,” have been derived in 2D (Hubral et al., 1996)
and 3D (Mann, 1998). These image-wave equations describe the “propagation” of the reflector image as a
function of migration velocity for both, time and depth remigration.

The image-wave equation for time remigration has already been theoretically studied and implemented,
successfully applied to real data from ground-penetrating radar (Jaya et al., 1999, see also references there).
Recently, its use for migration velocity analysis has been discussed by Fomel (2003). The consistency and
stability of FD schemes for the 3D image-wave equation for depth remigration has been theoretically
and numerically studied by Schleicher et al. (2002). Here, we extend that investigation to dispersion and
dissipation and discuss the potential of the depth remigration image-wave equation as a technique for
migration velocity analysis in homogeneous and vertically inhomogeneous media.
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IMAGE-WAVE PROPAGATION

As derived in detail by Mann (1998) and briefly reviewed by Schleicher et al. (2002), the 3D image-wave
equation for depth remigration is given by

pxx + pyy + pzz +
v

z
pvz = 0 . (1)

Here, an index represents a partial derivative with respect to the corresponding variable. Symbol v stands
for the actual (constant) value of the migration velocity for a supposedly homogeneous medium. Moreover,
p(x, y, z, v) denotes the “image wavefield” as a function of the spatial coordinates and the migration ve-
locity. In other words, p(x, y, z, v) is a depth-migrated section considered as a snapshot of the image-wave
propagation.

Variations of this image-wave equation can obtained by variable transformations of the propagation
variable v. Upon replacement of v by α = v2, the differential equation becomes

pxx + pyy + pzz +
2α

z
pαz = 0 . (2)

Correspondingly, replacement of v by β =
√
v leads to

pxx + pyy + pzz +
β

2z
pβz = 0 . (3)

Finally, the most interesting transformation is achieved by replacing v by γ = ln v, which yields

pxx + pyy + pzz +
1

z
pγz = 0 . (4)

In this paper we compare the numerical properties of FD schemes for these equations to those for the
original image-wave equation (1).

Finite differences

For the finite-difference schemes, we consider a grid of depth points with initial point at (x0, y0, z0) and
a discretized velocity axis with initial value v0. The image wavefield at a given grid point (xk , yl, zm) =
(x0 +k∆x, y0 + l∆y, z0 +m∆z), as calculated for a certain migration velocity vn = v0 +n∆v, is denoted
by pnk,l,m. On this grid, we approximate the derivatives in equation (1) by finite differences. As shown in
Schleicher et al. (2002), the reverse forward/forward FD scheme

pn+1
k,l,m =

zm∆v∆z

vn

{
δ

(2)
x,4p+ δ

(2)
y,4p+ δ

(2)
z,4p

}
+ pn+1

k,l,m+1 − pnk,l,m+1 + pnk,l,m , (5)

and the direct forward/backward FD scheme

pn+1
k,l,m = −zm∆v∆z

vn

{
δ

(2)
x,4p+ δ

(2)
y,4p+ δ

(2)
z,4p

}
+ pn+1

k,l,m−1 + pnk,l,m − pnk,l,m−1 , (6)

are stable under certain conditions for increasing and decreasing migration velocity, respectively. Here,
the attributes forward/forward and forward/backward refer to the approximation of the mixed derivative in
equation (1). Moreover, δ(2)

x,4p, δ(2)
y,4p, and δ(2)

z,4p denote the fourth-order finite-difference approximations of
the spatial second derivatives pxx, pyy, and pzz, respectively, i.e.,

δ
(2)
x,4p =

1

12∆x2

{
−pnk+2,l,m − pnk−2,l,m + 16(pnk+1,l,m + pnk−1,l,m)− 30pnk,l,m

}
, (7)

with corresponding expressions for δ(2)
y,4p, and δ(2)

z,4p. The initial condition is given by the original migrated
section for the velocity v0. As boundary conditions, we use that the field outside the given target zone of
the input section should be zero.

Other schemes, particularly those for which the velocity derivative in equation (1) is approximated by
a backward difference, did not provide stable results. Equivalent schemes to (6) and (7) were set up for
the transformed versions (2) to (4) of the image-wave equation. Below we briefly revisit the corresponding
stability conditions and discuss the grid dispersion and dissipation of the stable schemes.
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CONSISTENCY, STABILITY, GRID DISPERSION AND DISSIPATION

In order to determine whether an FD scheme can be actually used for a numerical realization of the image-
wave propagation, its consistency and stability as well as grid dispersion and dissipation need to be inves-
tigated. This may lead to certain conditions for the step size ∆v as a function of the medium parameters
and the grid intervals ∆x, ∆y, and ∆z. These conditions guarantee that the scheme is stable and suffers
less from numerical artifacts. Below, we outline this analysis for schemes (5) and (6).

Consistency and stability

As shown by Schleicher et al. (2002), scheme (5) is unconditionally consistent with the differential equation
(1). As can be readily verified by an analogous analysis, the same is true for scheme (6) and the equivalent
schemes for equations (2) to (4). To determine the conditions under which these schemes are stable,
we apply the von Neumann criterion (see, e.g., Thomas, 1995). It consists of substituting the Fourier
component

pnk,l,m = ξn exp{ikκx∆x} exp{ilκy∆y} exp{imκz∆z} (8)

in schemes (5) and (6), where ξ is the so-called amplification factor and κx, κy, and κz are the wavevector
components. An FD scheme is known to be stable, if |ξ| < 1. The grid dispersion and dissipation are
described by the phase and amplitude of ξ, respectively (Strikwerda, 1989).

Substitution of the discrete Fourier transform (8) in equations (5) and (6), and solution of the resulting
equation for ξ, yields the expressions

ξ = 1 +
2Λ

eiκz∆z − 1
= (1− Λ)− iΛ cotφz (9)

and

ξ = 1− 2Λ

e−iκz∆z − 1
= (1 + Λ)− iΛ cotφz , (10)

respectively, where φz =
κz∆z

2
and

Λ =
2zm
3vn

∆v∆z

(∆x)2
sin2 φx

[
3 + sin2 φx

]
+

2zm
3vn

∆v∆z

(∆y)2
sin2 φy

[
3 + sin2 φy

]

+
2zm
3vn

∆v∆z

(∆z)2
sin2 φz

[
3 + sin2 φz

]
. (11)

The von Neumann condition |ξ| ≤ 1 provides the stability conditions

0 ≤ Λ ≤ 2 sin2 φz (12)

for scheme (5), and
−2 sin2 φz ≤ Λ ≤ 0 (13)

for scheme (6). Since Λ is directly proportional to ∆v, the conditions for the sign of Λ in equations (12)
and (13) are immediate conditions for the sign of ∆v. We conclude that scheme (5) can only be used for
∆v > 0, i.e., increasing velocities, and scheme (6) only for ∆v < 0, i.e., decreasing velocities. Apart from
this difference, the properties of these schemes are sufficiently similar to be discussed at once, using the
absolute value |∆v|.

The presence of the term sin2 φz as the limit for Λ in both equations (12) and (13) has an important
consequence. It means that FD remigration with schemes (5) and (6) is only possible if the input data
are of limited frequency content. If wavenumbers κz are present in the data that make sinφz vanish, no
choice for the increments in velocity and space will be possible such that the stability conditions (12) and
(13) are met. Even for data with a limited frequency content, care has to be taken to define spatial grids
in such a way that for all wavenumbers involved, sinφx ≈ sinφy ≤ sinφz in order to avoid violations of
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conditions (12) and (13). This means that for data where horizontal wavenumbers are larger than vertical
ones, a standard square grid will cause instabilities.

We can obtain a rule of thumb for the choice of |∆v|, if we suppose the grid sizes to be chosen as
∆x = ∆z/νx and ∆y = ∆z/νy such that κx∆x ≈ κy∆y ≈ κz∆z. In this situation, the above conditions
can be divided by 2 sin2 φz to yield

4

3

zmax

vmin
ν2
x

|∆v|
∆z

+
4

3

zmax

vmin
ν2
y

|∆v|
∆z

+
4

3

zmax

vmin

|∆v|
∆z

≤ 1 =: |∆v| ≤ g

4

vmin

zmax
∆z, (14)

where we have used that 3 + sin2 κz∆z
2 ≤ 4. Moreover, we have replaced zm and vn by their maximum

and minimum values, zmax and vmin, respectively. The grid asymmetry factor g is given by

g =
3

1 + ν2
x + ν2

y

. (15)

For κx ≈ κy ≈ κz, a square grid can be chosen, and thus g = 1. If the layering is predominantly horizontal,
the data will contain only small horizontal wavenumbers, i.e., κx ≈ κy << κz. In such a situation, larger
horizontal grid sizes can be chosen, which implies small factors νx and νy and thus a g close to 3.

Grid dispersion and dissipation

For grid dispersion and dissipation, we have to analyze the phase and amplitude of the von Neumann
amplification factor ξ, respectively. Expanding both into Taylor series up to second order in |∆v| and the
spatial grid sizes ∆x, ∆y, and ∆z, we find

arg ξ ≈ ±
(
κ2zm
κzvn

|∆v|+ κ4z2
m

2κzv2
n

|∆v|2∆z − κzκ
2zm

12vn
∆z2|∆v|

)
, (16)

where the upper sign holds for scheme (5) and the lower one for scheme (6), and

ln |ξ| ≈ κ4z2
m

2κ2
zv

2
n

|∆v|2 − κ2zm
2vn

∆z|∆v| . (17)

Here, we have introduced κ as defined by κ2 = κ2
x + κ2

y + κ2
z.

The phase of the amplification factor ξ relates to the (dispersive) image-wave propagation velocity c as

c =
arg ξ

κ∆v
≈ κzm
κzvn

+
κ3z2

m

2κzv2
n

|∆v|∆z − κzκzm
12vn

∆z2 , (18)

and the amplitude of ξ relates to the (exponential) damping coefficient b as

b = − ln |ξ|
|∆v| ≈ −

κ4z2
m

2κ2
zv

2
n

|∆v|+ κ2zm
2vn

∆z . (19)

We observe from equation (18) that the image-wave equation possesses intrinsic dispersion since the main
term of c depends on the spatial frequencies as κ/κz. From equation (19), it becomes clear that the
image-wave equation (1) does not possess intrinsic dissipation. In other words, a perfect solution would
automatically preserve amplitudes. Moreover, we observe from equations (18) and (19) that b and c depend
not only on the wavenumbers κ and κz but also on zm and vn, i.e., the propagation velocity and the
amplitude loss are different at different depths and different migration velocities.

Grid dispersion can be reduced to a minimum even for relatively large values of ∆z and ∆v, if we can
choose these increments in such a way that the second an third terms in expression (18) cancel each other.
This implies

|∆v| = 1

6

κ2
z

κ2

vn
zm

∆z ≈





1

18

vn
zm

∆z if κx ≈ κy ≈ κz
1

6

vn
zm

∆z if κx ≈ κy << κz
. (20)
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Figure 1: Relative number of necessary steps in variables α = v2 (dotted line) β =
√
v (dashed line) and

γ = ln v (dash-dotted line) as a function of vmax/vmin. The solid line represents the number of steps in v.

In the same way, grid dissipation can be reduced if the increments can be chosen so that the first two term
of the Taylor series (19) cancel. This leads to

|∆v| = κ2
z

κ2

vn
zm

∆z ≈





1

3

vn
zm

∆z if κx ≈ κy ≈ κz
vn
zm

∆z if κx ≈ κy << κz
. (21)

In fact, we know from the stability analysis above that the latter condition must be corrected by a factor of
3/4 that accounts for the higher terms of the Taylor series. This is because stability means nothing more
than that the damping factor b as defined in equation (19) must not become negative. This is guaranteed by
conditions (12) and (13).

From the above expressions (20) and (21), we recognize that the best choices for ∆v to reduce grid
dispersion and dissipation are different. This means that both numerical effects cannot be reduced at the
same time by a clever choice of ∆v and ∆z. Moreover, both dispersion and dissipation depend on the
depth and on the migration velocity. In other words, it is impossible to choose ∆v and ∆z in such a way
that dispersion or dissipation would be reduced at all velocity steps and all depths. The only way to achieve
an overall improvement of both grid dispersion and dissipation is to choose as small values for ∆v and ∆z
as the increasing computation time allows.

Transformed equations

The corresponding conditions for the forward/forward and forward/backward schemes for the transformed
versions (2) to (4) of the image-wave equation can derived in a completely analogous way. The analysis
shows that they can be obtained from the above conditions by a simple substitution of vn by 2αn, βn/2, or
1, respectively. As a consequence, their behaviour with respect to stability, grid dispersion, and dissipation
does not fundamentally differ from the schemes studied above. All conclusions drawn above for schemes
(5) and (6) apply equivalently to the corresponding schemes for the other versions of the image-wave
equation.

There is one single difference between these FD schemes for the different versions of equation (1) that
is worthwhile mentioning. It concerns the number of steps (and thus computing time) that is necessary to
realize a desired remigration between minimum and maximum velocities vmin and vmax. Upon choosing
a step size that exactly satisfies the corresponding stability condition, the numbers of necessary steps for
the implementation of each scheme can be compared. In Figure 1, the relative step number for each
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Figure 2: Image wave propagation. Reverse implementation. (a) Input data for the remigration example:
data after migration with a wrong migration velocity of v0 = 2 km/s. (b) Remigrated image for v =
2.3 km/s. (c) Remigrated image for v = 2.7 km/s. (d) Remigrated image for v = 3.0 km/s.

variable (normalized with respect to the number of necessary steps in v) is plotted as a function of the ratio
vmax/vmin. We see that of the considered variables, γ = ln v always allows for the fewest steps.

NUMERICAL ANALYSIS

Model 1

To demonstrate the FD image-wave remigration, we had to restrict scheme (5) to the corresponding 2-D
one, in order to meet the computational limitations. For the first simple test, we have used ray-synthetic data
from a simple earth model consisting of two homogeneous halfspaces, separated by a horizontal reflector
at a depth of 550 m. The velocities above and below the reflector are c1 = 3 km/s and c2 = 3.5 km/s. The
simulated seismic survey is a zero-offset experiment with 401 source-receiver pairs, located at every 10 m
between -2000 m and 2000 m along the x-axis.

The input data to the remigration where generated by a zero-offset depth migration with a wrong mi-
gration velocity of v0 = 2 km/s. The resulting depth image is depicted in Figure 2(a). Note that the wrong
migration velocity causes the reflector to be imaged at a wrong depth of about 370 m.
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(a) (b)

Figure 3: (a) Wavelet at the remigrated reflector image, as obtained with different grid sizes. Observe
the amplitude loss due to grid dissipation as a function of grid size as indicated in the upper right corner.
The black dotted line represents the reference pulse as obtained from a direct depth migration with the true
medium velocity, i.e., without remigration. (b) Same pulses as in (a), scaled to unit amplitude. The pulse
stretch, caused by grid dispersion, reduces with decreasing grid size.

This input section was then remigrated using FD scheme (5). The grid size of the depth region was
∆x = ∆z = 10 m and the velocity increment was ∆v = 4 m/s. This is in accordance with the 2-D version
of stability condition (14) (where the factor 1/4 is replaced by 3/8). Parts (b), (c), and (d) of Figure 2 show
the snapshots of the image wave for velocities v = 2.3 km/s, v = 2.7 km/s, and v = 3.0 km/s, respectively,
the latter being the true medium velocity. We observe that the reflector image in Figure 2(d) is remigrated
to the correct depth of 550 m.

As a final observation, let us comment on the pulse stretch of FD remigration (Figure 2). It is much
stronger than the conventional pulse stretch due to depth migration, which is proportional to the migration
velocity (Tygel et al., 1994). The reason for the additional stretch is the grid dispersion as theoretically
discussed above.

Figure 3 numerically demonstrates the effects of grid dispersion and dissipation. It shows the pulse
across the remigrated horizontal reflector image at the true medium velocity and depth, as obtained by
remigration with different grid sizes. All images were obtained from the same synthetic zero-offset data
by a depth migration with the wrong velocity v0 = 2 km/s onto a depth grid of different step sizes and a
subsequent remigration to the correct velocity of 3 km/s. The grossly dotted reference curve is the pulse as
obtained from a direct true-amplitude depth migration with the true medium velocity.

In Part (a) of Figure 3, all pulses are depicted with relative amplitudes scaled with respect to the ref-
erence pulse. The different amplitudes of the different pulses demonstrate the increasing dissipation for
larger grid increments in depth. In all remigrations, ∆v was chosen accordingly so as to obey the respec-
tive stability condition. Part (b) of Figure 3 depicts the same pulses as Part (a), however scaled to unit
amplitude. The stretch effect as a consequence of grid dispersion clearly reduces with decreasing grid
size. Note that the remigration with ∆x = ∆z = 1.25 m took about 500 times longer than the one with
∆x = ∆z = 10 m.

Model 2

To study the effect of finite-difference image-wave depth remigration on dipping and curved interfaces,
we have devised Model 2. It consists of a constant-velocity background model with wavespeed 3.0 km/s
and three interfaces of different shape representing density contrast. The curved top reflector separates the
upper half-space with density 1 g/cm3 from the first layer with density 2 g/cm3. The second layer with
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Figure 4: Image wave propagation with the forward/forward FD scheme from vmig = 2.0 km/s to vmig =
3.0 km/s.

density 4 g/cm3 is separated from the first one by a planar interface that dips to the left, and from the lower
half-space with density 8 g/cm3 by a horizontal reference reflector at a depth of 1500 m. The densities
were chosen so as to guarantee equal reflection coefficient at all interfaces.

In this model, a synthetic zero-offset section was simulated by 2.5D ray modelling using the Norsar ray
tracer without transmission loss. Coincident source-receiver pairs were regular distributed along the x-axis
between -500 m and 1500 m. These synthetic data were depth-migrated onto a 10 m×10 m depth grid by
constant-velocity true-amplitude Kirchhoff migration, using the (wrong) migration velocity 2 km/s. The
resulting migrated image is depicted in Figure 4(a). Superimposed are the correct positions of the reflectors.
These migrated data have then been subjected to an FD remigration with the forward/forward scheme (5)
that allows for increasing remigration velocities. To guarantee stability and reduce grid dispersion we have
chosen a step size of ∆v = 0.2 m/s. Figures 4(b) to (d) show snapshots of the resulting image-wave
propagation at remigration velocities 2.4 km/s, 2.8 km/s and 3.0 km/s. Observe the perfect coincidence
between the remigrated reflector images and the true reflector positions at the correct velocity of 3.0 km/s.

A corresponding test was carried out with the forward/backward FD scheme. For this purpose, the
same synthetic data were migrated with a too high migration velocity of 4.0 km/s. FD remigration was
then applied toward lower velocities. Figure 5 shows four snapshots of the corresponding image-wave
propagation. Again, when the remigration velocity reaches the true medium velocity of 3.0 km/s, the
coincidence of the reflector images and their correct positions in depth is perfect.

Note that for remigration in the direction of decreasing velocities, a larger step size of ∆v = −2 m/s
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Figure 5: Image wave propagation with the forward/backward FD scheme from vmig = 4.0 km/s to vmig =
3.0 km/s.

could be chosen. The reason is that the intrinsic dispersion of the image-wave equation, which describes the
correct migration pulse stretch, now causes a contraction of the pulse. In this way it has the opposite effect
to grid dispersion, which tends to enlarge the pulse. Therefore, the overall pulse stretch is considerably
reduced for propagation to lower velocities. In fact, attention has to be paid not to choose ∆v too small, so
as to avoid problems with the wavenumber content of the pulse becoming too high for equation (12) to be
satisfied. Such problems have been reported by Mann (1998).

Model 3

After having confirmed that FD image-wave remigration indeed propagates curved reflectors to their correct
position in depth when the true remigration velocity is reached, our next objective is to use this property
for velocity analysis. If the true reflector depth at some point (e.g., at a borehole) is a priori known,
FD image-wave remigration can be used to detect the best migration velocity. Unfortunately, this is not
generally the case. Therefore, we need another way of detecting the previously unknown best migration
velocity by remigration, a way that must not rely on the knowledge of the reflector depth. A possibility is
demonstrated by Model 3, which consists of a single diffraction point at a depth of 550 m in a constant-
velocity background with v = 3.0 km/s (see Figure 6).

For this model, synthetic ray data have been simulated and then depth-migrated with the same pa-
rameters as before. The sequence of remigration snapshots in Figure 7 shows that the wrongly migrated
diffraction nicely collapses at the true medium velocity into a single point at the correct depth and then de-
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Figure 6: Model with a single diffraction point at depth 550 m in a homogeneous background model with
v = 3.0 km/s.

focuses again. It is easy to determine from this sequence of snapshots that the true medium velocity for this
model must be close to 3 km/s. In conclusion, it is possible to use such a sequence of images to determine
the best migration velocity from FD image-wave remigration if visible diffraction events are present is the
migrated zero-offset data.

Model 4

Up to now, we have applied the FD image-wave depth remigration only in constant-velocity models, for
which its theory has been developed. To be of actual practical use, however, the technique needs to be ex-
tended to inhomogeneous media. With Model 4, we investigate whether the same image-wave remigration
equation can be applied in horizontally layered media and what would be the meaning of the remigration
velocity in such a situation.

The model consists of two homogeneous layers between two homogeneous halfspaces, separated by
horizontal reflectors at depths of 200 m, 650 m, and 1550 m. The velocities in the halfspaces and layers
are, from top to bottom, v1 = 2.0 km/s, v2 = 3.0 km/s, v3 = 6.0 km/s, and v4 = 12.0 km/s. The
simulated seismic survey is again a zero-offset experiment with 401 source-receiver pairs, located at every
10 m between -2000 m and 2000 m along the x-axis. The synthetic data have been modelled by the 2.5D
finite-difference solver of the acoustic wave equation of Novais and Santos (2002).

The input data to the remigration where generated by a zero-offset depth migration with a wrong migra-
tion velocity of v0 = 1.5 km/s. The resulting depth image is depicted in Figure 8a. Also indicated are the
true depths of the three horizontal reflectors. Note that the too low migration velocity causes the reflectors
to be imaged at too shallow depths.

This input section was then remigrated using FD scheme (5). The grid size of the depth region was
∆x = ∆z = 5 m and ∆v = 0.2 m/s. The actual value of ∆v was chosen smaller than indicated by
stability condition (14), in order to reduce the effects of grid dispersion and dissipation in accordance with
formulas (20) and (21). The parts of Figure 8 shows the original migrated image at v = 1.5 km/s and three
snapshots of the image wave for velocities v = 2.02 km/s, v = 2.62 km/s, and v = 3.90 km/s. The depicted
images are those where the migrated images of the reflectors seem to be correctly positioned in depth. We
refer to the corresponding velocity values as “focusing velocities”. To confirm that at these velocities, the
reflector images are at the right depth, we look at a single depth trace. Figure 9(a) shows three remigrated
pulses from the center of the image at the velocities of 2.00 km/s, 2.02 km/s, and 2.04 km/s. The pulse
for 2.02 km/s seems to be best positioned at the true depth of the first reflector indicated by a vertical line.
Correspondingly, Figures 9(b) and 9(c) show three remigrated pulses at velocities of 2.60 km/s, 2.62 km/s,
and 2.64 km/s as well as 3.88 km/s, 3.90 km/s, and 3.92 km/s, respectively. In each of these Figures, a
solid black line indicates the true depth of the corresponding reflector.
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Figure 7: Image wave propagation of the image of a diffraction point. (a) Input data for the remigration
example: diffraction data after migration with a wrong migration velocity of v0 = 2 km/s. (b) Remigrated
image for v = 2.5 km/s. (c) Remigrated image for v = 2.9 km/s. (d) Remigrated image for v = 3.0 km/s.
The image of the diffraction collapses into a point. (e) Remigrated image for v = 3.1 km/s. (f) Remigrated
image for v = 3.5 km/s.
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Reflector No. focusing velocity mean slowness velocity rms velocity mean velocity
1 2.02 2.0000 2.0000 2.0000
2 2.62 2.6000 2.6458 2.6923
2 3.90 3.8750 4.2279 4.6129

Table 1: Comparison of average velocities and focusing velocities.

To understand the focusing velocities, we have calculated three different types of average velocities for
the three reflectors, these being the mean velocity, the inverse of the mean slowness and the rms velocity.
The theoretical values of these average velocities at the reflector depths are summarized in Table 1. Note
the almost perfect coincidence between the theoretical values of the mean slowness velocities and the
migration velocities that remigrate the reflectors to the correct depths. The reason for the fact that the
focusing velocities are slightly higher than the mean slowness velocities is probably the slight asymmetry
of the migrated pulse. This coincidence confirms the claim that image-wave remigration has the potential
to be used in vertically inhomogeneous media for migration velocity analysis. Depending on the average
slowness rather than rms velocity, it can provide an independent measure of interval velocities. Further
investigations will have to show how far the concept can be stretched to laterally inhomogeneous media.

As a final observation on grid dispersion and dissipation, let us stress the fact that these effects are
much stronger in Figure 8 for the deeper reflectors than for the shallower ones. This is in accordance with
equations (16) and (17) which predict both effects to be increasing with depth.

CONCLUSIONS

The image-wave equation for depth remigration is a second-order partial differential equation that describes
the “propagation” of a migrated reflector image as a function of a changing migration velocity (Fomel,
1994; Hubral et al., 1996). In this work, we have revisited the stability conditions of two FD schemes for
this equation. The theoretical stability condition obtained from the von Neumann criterion points toward
general difficulties of the process when remigrating data containing unlimited frequency content. For large
wavenumbers in the horizontal directions, care has to be taken to define the grid sizes accordingly.

With the investigated FD schemes, reflector images can be remigrated only either to larger or to smaller
migration velocities. The scheme forward in v and forward in z allows only for an increase, the scheme
forward in v and backward in z only for a decrease of the migration velocity. Other FD schemes with
different approximations of the mixed derivative have not produced stable results.

The theoretical studies of the stable FD schemes have been extended to grid dispersion and dissipation.
We have seen that image-wave propagation suffers from intrinsic dispersion as well as grid dispersion and
dissipation due to chosen FD scheme. The theoretical analysis has shown that the latter effects depend on
velocity and depth as well as on the spatial frequencies. Therefore, they cannot be entirely eliminated for
all frequencies, depths, or velocities by an appropriate choice of the grid size. They can only be reduced
by choosing the grid size as small as possible.

Transformations of the depth-remigration image-wave equation with respect to the propagation vari-
able, i.e., migration velocity, have not brought any improvements with respect to stability, dispersion, or
dissipation. The only advantage of such a transformation was found to be a speedup of the corresponding
implementation because of a reduction of the necessary number of steps.

Several numerical examples have been presented that exhibit the properties of FD image-wave remi-
gration. Using a homogeneous model with a single reflector, the dependency of the grid dispersion and
dissipation on the grid size has been demonstrated. With the help of a three-reflector constant-velocity
model, image-wave propagation to higher and lower velocities has been shown to work well also for dip-
ping and curved reflectors.

By application of the remigration image-wave equation to synthetic data of a single diffraction event,
we have seen that such an event collapses to a single point at the true medium velocity, thus enabling the
detection of this velocity independently of other means. This is an encouraging result as it indicates how
remigration might be employed as a tool for migration velocity analysis.

Moreover, we have demonstrated that the method, although strictly valid for homogeneous media only,
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can be applied in vertically inhomogeneous media. A propagating reflector image reaches its true depths
at a migration velocity that approximately equals the inverse of the mean slowness. In this way, mean
slownesses can be determined from image-wave remigration, thus enabling a new way of migration ve-
locity analysis. Further investigations will have to show how far the concept can be stretched to laterally
inhomogeneous media.
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Figure 8: Image wave propagation in a vertically inhomogeneous medium. (a) Input data for the rem-
igration example: data after migration with a wrong migration velocity of v0 = 1.50 km/s. (b) Rem-
igrated image for v = 2.02 km/s. The first reflector is imaged at the correct depth. (c) Remigrated
image for v = 2.62 km/s. The second reflector is imaged at the correct depth. (d) Remigrated image for
v = 3.90 km/s. The third reflector is imaged at the correct depth.
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Figure 9: Migrated pulses at different velocities. Best migration velocities are those where the center of
the pulse is at the true reflector depth. (a) First reflector. (b) Second reflector. (c) Third reflector.


