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ABSTRACT

This paper is concerned with numerical considerations of fluid effects on wave propagation. The
focus is on effective elastic properties (i.e. velocities) in different kinds of dry and fluid-saturated
fractured media. We apply the so-called rotated staggered finite-difference grid (RSG) technique. Us-
ing this modified grid it is possible to simulate the propagation of elastic waves in a 2D or 3D medium
containing cracks, pores or free surfaces without explicit boundary conditions and without averag-
ing elastic moduli. Therefore the RSG allows an efficient and precise numerical study of effective
velocities in fractured structures. We simulate the propagation of plane waves through three kinds
of randomly cracked 3D media. Each model realization differs in the porosity of the medium and is
performed for dry and fluid-saturated pores. The synthetic results are compared with the predictions
of the well known Gassmann equation and the Biot velocity relations. Although we have a very low
porosity in our models, the numerical calculations showed that the Gassmann equation cannot be ap-
plied for isolated pores (thin penny-shaped cracks). For Fontainebleau sandstone we observe with
our dynamic finite-difference approach the exact same elastic properties as with a static finite-element
approach. For this case the Gassmann equation can be checked successfully. Additionally, we show
that so-called open-cell Gaussian random field models are an useful tool to study wave propagation in
fluid-saturated fractured media. For all synthetic models considered in this study the high-frequency
limit of the Biot velocity relations is very close to the predictions of the Gassmann equation.

INTRODUCTION

The problem of effective elastic properties of fractured solids is of considerable interest for geophysics,
material science, and solid mechanics. Strong scattering caused by complex rock structures can be treated
only by numerical techniques since an analytical solution of the wave equation is not available. In this
paper we consider the problem of a fractured medium in three dimensions. Alternative numerical studies
of elastic moduli of porous media of Arns et al. (2002) and Roberts and Garboczi (2002) employ a (static)
finite-element method (FEM). This FEM uses a variational formulation of the linear elastic equations and
finds the solution by minimising the elastic energy using a fast conjugate-gradient model. Dynamic at-
tenuation effects can not be described with this method. Finite difference (FD) methods discretise the
wave equation on a grid. They replace spatial derivatives by FD operators using neighbouring points. This
discretisation can cause instability problems on a staggered grid when the medium contains high contrast
discontinuities (strong heterogeneities). These difficulties can be avoided by using the rotated staggered
grid (RSG) technique (Saenger et al., 2000; Saenger and Bohlen, 2004). Since the FD approach is based
on the wave equation without physical approximations, the method accounts not only for direct waves,
primary reflected waves, and multiply reflected waves, but also for surface waves, head waves, converted
reflected waves, and waves observed in ray-theoretical shadow zones (Kelly et al. 1976). The main objec-
tive of this paper is a numerical study of effective elastic properties of fractured 3D-media with connected
pores [numerical results of fractured 2D- and 3D- media with isolated cracks can be found in Saenger and
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Shapiro (2002), Saenger et al. (2002) and Orlowsky et al. (2004)]. Here we simulate the propagation of
plane waves through a well defined fractured region with dry or fluid-filled pores.

THE GASSMANN EQUATION

The Gassmann equation (Gassmann 1951) predicts the elastic moduli of a fluid-saturated porous media
using the known elastic moduli of the solid matrix, the frame and the pore fluid:

Ksat
K0 −Ksat

=
Kdry

K0 −Kdry
+

Kfl
φ(K0 −Kfl)

(1)

µsat = µdry (2)

ρsat = ρdry + φρfl (3)

where:

Kdry effective bulk modulus of dry rock frame

Ksat effective bulk modulus of the rock with pore fluid

K0 bulk modulus of mineral making up rock

Kfl effective bulk modulus of pore fluid

φ porosity

µdry effective shear modulus of dry rock

µsat effective shear modulus of rock with pore fluid

ρsat density of the rock with pore fluid

ρdry density of the dry rock frame

ρfl pore fluid density

BASIC ASSUMPTIONS IN THE GASSMANN EQUATION

The basic assumptions in the Gassmann equation are Wang and Nur (2000):

1. the rock or porous medium (both the matrix and the frame) is macroscopically homogeneous and
isotropic;

2. all the pores are interconnected or communicating;

3. the pores are filled with a frictionless fluid (liquid, gas or mixture);

4. the rock-fluid system under study is closed (undrained);

5. the relative motion between the fluid and the solid is negligibly small compared to the motion of the
saturated rock itself when the rock is excited by a wave; and

6. the pore fluid does not interact with the solid in a way that would soften or harden the frame.

THE SYNTHETIC FRACTURE-MODELS

In order to consider fluid effects on wave propagation we design a number of synthetic fracture-models
(size: 4003 gridpoints) with a well known number of pores or porosity. We consider three different types
of fractured media:

• Type 1: The fractured region is filled at random with randomly oriented non-intersecting thin penny-
shaped cracks. A typical model is shown in Figure 1. In the Gassmann equation both phases, the
fluid and the mineral, are assumed to be continuous. This is not the case for isolated cracks. However,
we want to numerically clarify if the Gassmann-equation can be used for such configurations in the
low-porosity limit.
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Figure 1: Non-intersecting thin penny-shaped cracks

• Type 2: The second model (Figure 2) is a microtomographic image of Fontainebleau sandstone.
We use a 4003 cubic set of the model fb7.5 of Arns et al. (2002). Therefore, our numerical estimates
of effective elastic properties derived with our dynamic FD approach can be directly compared with
the results of the static approach of Arns et al. (2002).

• Type 3: To generate realistic synthetic microstructures we use the approach described in Roberts
and Garboczi (2002), the so-called open-cell Gaussian random field (GRF) scheme. To ensure a
100% connectivity of the pores we eliminate isolated pores. Some details of our models used are
listed in Table 1. Figure 3 shows two different realizations. The similarity to the microtomographic
image of Fontainebleau sandstone (Figure 2) for the model with the lower porosity is amazing.

Figure 2: A X-ray microtomographic image of Fontainebleau sandstone (porosity φ = 0.084). The struc-
ture shown is the porespace, the transparent part is the rock frame. For details refer to Arns et al. (2002).
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Figure 3: Two open-cell Gaussian random fields (GRF). Top: porosity φ = 0.034. Bottom: porosity
φ = 0.1322. For details refer to Roberts and Garboczi (2002).

MEDIUM: GRF 1 GRF 2 GRF 3 GRF 4
(φ = 0.0342) (φ = 0.0877) (φ = 0.1322) (φ = 0.0802)

Gaussian 1
corr. len. [0.0002m] 25 25 25 13

0 < cut min. < 1 0.4 0.4 0.4 0.4
0 < cut max. < 1 0.6 0.6 0.6 0.6

Gaussian 2
corr. len. [0.0002m] 30 30 30 15

0 < cut min. < 1 0.485 0.48 0.4575 0.4904
0 < cut max. < 1 0.515 0.52 0.5415 0.5296

Tab. 1: Some details concerning the GRF-models used in our numerical study.

MODELING PROCEDURE

The synthetic fracture-models are embedded in a homogeneous region. The full models are made up of 804
× 400× 400 grid points with an interval of 0.0002m. In the homogeneous region we set vp = 5100 m/s,
vs = 2944 m/s and ρg = 2540 kg/m3. For the dry pores we set vp = 0 m/s, vs = 0 m/s and
ρg = 0.0001 kg/m3 which approximates vacuum. For the fluid-filled pores we set vp = 1500 m/s,
vs = 0 m/s and ρg = 1000 kg/m3 which approximates water. It is important to note that we perform
our Modeling experiments with periodic boundary conditions in the two horizontal directions. For this
reason our synthetic penny-shaped crack and GRF models are generated also with this periodicity. To
obtain effective velocities in different models we apply a body force plane source at the top of the model.
The plane wave generated in this way propagates through the fractured medium (see Figure 5). With two
horizontal planes of geophones at the top and at the bottom, it is possible to measure the time-delay of the
mean peak amplitude of the plane wave caused by the inhomogeneous region. With the time-delay one
can estimate the effective velocity. Additionally, the attenuation of the plane wave can be studied. The
source wavelet in our experiments is always the first derivative of a Gaussian with a dominant frequency
of 8 ∗ 105 1/s and with a time increment of ∆t = 2.1 ∗ 10−9s. The resulting power spectrum of the plane
wave is shown in Figure 4. From the modelling point of view it is important to note that all computations
are performed with second order spatial FD operators and with a second order time update. Due to the size
of the models we have to use large-scale computers (e.g. CRAY T3E) with a MPI implementation of our
modelling software.
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Figure 4: Power-spectrum of the generated plane wave.

Figure 5: A displacement-snapshot of a plane wave propagating through a fractured 3D model with penny
shaped cracks. We use a non-linear colorscale to emphasise the scattered wavefield.

NUMERICAL RESULTS

Our numerical setup enables us to compare 3D fractured media with exact the same pore positions for
fluid-filled and for empty pores (i.e. the dry rock frame is exactly the same in both simulations). Therefore
we can test the applicability of the Gassmann-equation and the Biot velocity relations [see e.g. Mavko et al.
(1998)] for our 3D fractured materials without any additional effective medium theory. For all synthetic
models we fulfil the assumptions (1), (3), (4) and (6) of the Gassmann equation (discussed above).
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Figure 6: Effective shear (µ) moduli versus porosity for six different synthetic fracture models. µ DRY
[triangles joined with a (red) solid line] and µ SAT [boxes joined with a (blue) solid line] are estimated
from numerical velocity measurements using the rotated staggered finite-difference grid (for each synthetic
fracture model we have exact the same rock frame). The high-frequency limit of the Biot velocity relations
[stars joined with a (black) dashed line] is calculated using µ DRY. The shear modulus of the rock frame is
displayed with a horizontal line; the dotted line displays the upper Hashin-Shtrikman bound.

Penny-shaped cracks

The calculated normalised effective moduli for fluid-filled and for empty non-intersecting cracks (model
type 1) are compared in Figure 6 and 7. There is a relative big difference between the shear moduli of the
models below the range of the connectivity percolation threshold. This bring us to the conclusion that the
Gassmann-equation cannot be applied to isolated fluid-filled cracks even with a low porosity in the used
models. From a practical point of view this has the following well-known consequence: If one applies the
Gassmann-equation one has to distinguish between the isolated fraction and the continuous fraction of the
fluid. The isolated fluid fraction should be considered as a part of the ’dry’ rock frame.

Fontainebleau Sandstone

The calculated normalised effective shear moduli µ∗/µ0 for the dry and fluid-saturated Fontainebleau sand-
stone (model type 2) are 0.766 and 0.770, respectively (compare with Figure 6. For this model the pre-
diction of the Gassmann equation (equation 2) is very accurate. Moreover, our dynamic approach gives
approximately the same result as the static approach of Arns et al. (2002) [µ∗/µ0 ≈ 0.765, for the dry
and fluid-saturated case from Figure 5b of Arns et al. (2002)]. This is very interesting because the con-
nectivity of the pores is not 100% perfect (compare with assumption (2) of the Gassmann equation). The
numerical estimated bulk modulus (Figure 7) is also in good agreement with the theoretical predictions of
the Gassmann equation and the high frequency limit of the Biot velocity relations.
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Figure 7: Effective bulk (K) moduli versus porosity for six different synthetic fracture models. K DRY
[triangles joined with a (red) solid line] and K SAT [boxes joined with a (blue) solid line] are estimated
from numerical velocity measurements using the rotated staggered finite-difference grid (for each synthetic
fracture model we have exact the same rock frame). K GAS [stars joined with a (green) dashed-dotted line]
is calculated using the Gassmann-equation with µ DRY and K DRY. The high-frequency limit of the Biot
velocity relations [stars joined with a (black) dashed line] is also calculated using µ DRY andK DRY. The
bulk modulus of the rock frame is displayed with a horizontal line; the dotted lines display the Hashin-
Shtrikman bounds.

Open-cell Gaussian random fields (GRF)

The calculated normalised effective moduli for the open-cell Gaussian random field models are shown in
Figure 6 and 7. With an increase of the porosity (GRF 1, GRF 2 and GRF 3) we observe an increasing
mismatch between the predictions of the Gassmann equation (equation 2) and our numerical results. As
mentioned above, the connectivity of pores for the open-cell GRF models [assumption (2)] is 100%. There-
fore, we explain this mismatch with the relative large structures of the open-cell GRF models compared
to the Fontainebleau sandstone model. Note, the Gassmann equation is only valid in the long wavelength
limit [connected with assumption (5)]. However, the mismatch for a porosity of φ = 0.034 is about 1%.
This is a promising starting point for our numerical considerations to fulfil all assumptions [from (1) to (6)]
of the Gassmann equation. A first step in this direction is the model GRF 4 with the appendant numerical
results of elastic moduli shown in Figure 6 and 7.

CONCLUSIONS

Finite-difference modelling of the elastodynamic wave equation is very fast and accurate. We use the ro-
tated staggered FD grid to calculate elastic wave propagation in fractured media. Our numerical modelling
of elastic properties of dry rock skeletons can be considered as an efficient and well controlled computer
experiment. In this paper we consider 3D isotropic dry and fluid-saturated fractured media. We have tested
the applicability of numerical methods to these media with respect to the predictions of the Gassmann
equation and the Biot velocity relations. As for measured data [laboratory experiments, see Wang (2002)]
our synthetic data usually gives higher effective properties for the fluid-saturated rocks as predicted by



276 Annual WIT report 2003

the Gassmann equation. For isolated thin penny-shaped cracks the standard Gassmann equation cannot be
applied although we have a very low porosity in our models. For the Fontainebleau sandstone model we
obtain with our dynamic FD approach exactly the same elastic properties as the static approach applied in
Arns et al. (2002). For this model the Gassmann equation can be verified. Additionally, we show that so-
called open-cell Gaussian random field models are a useful synthetic database to consider fluid-saturated
3D fractured media.
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