
263

Numerical Rock Physics: Effects of parallel crack distributions on
effective elastic properties

B. Orlowsky, E.H. Saenger, Y. Guéguen, and S.A. Shapiro

email: boris@geophysik.fu-berlin.de
keywords: parallel cracks, effective elastic parameters

ABSTRACT

This paper is concerned with numerical studies of effective elastic properties of cracked solids. We
concentrate on two dimensional media containing different patterns of parallel crack distributions.
We use the Rotated Staggered Grid (RSG) which allows one to simulate elastic wave propagation
very accurately in fractured media. Our aim is to compare the predictions given by several effective
medium theories to the effective properties we derive from our numerical experiments. Namely, these
are the “Non-interaction approximation (NIA)”, the “Differential scheme (DS)” and an extension of
the DS (EDS). According to our results, the DS theory and its extension perform well. Simulations
of media containing very few cracks prove that for our setup the effective properties stabilise at low
numbers of cracks. Finally, we studied parallel cracks clustered in stacked columns. We found that,
as expected, the shielding effects dominate in such patterns.

INTRODUCTION

Understanding the relations between crack microstructure and effective elastic properties of a solid has
always been of great interest. Theoretical predictions of these relations often differ significantly. Ex-
act knowledge of real crack microstructure is usually not available, making a direct comparison between
theoretical predictions and experiment data difficult. Numerical simulations allow one to determine the
effective properties of solids with known microstructures. They are therefore attractive for testing effective
medium theories, if the simulated microstructures correspond to the assumptions of the theories. Here we
rely on a finite difference (FD) scheme, the Rotated Staggered Grid, which simulates the propagation of
elastic waves very accurately, even for models containing high contrasts in elastic parameters. A detailed
description of the procedure is given by Saenger et al. (2000).

We present a numerical study of effective wave velocities and of the corresponding elastic moduli of
two dimensional fractured media. First, we consider parallel cracks with uncorrelated positions, oriented
perpendicular to the direction of shear and compressive wave propagation. The obtained results are com-
pared to the ones of several effective media theories. According to our results, the DS theory performs well.
Second, two families of parallel cracks, at an angle of 30◦ to each other, are placed at random in the model
area. Waves propagate along the symmetry axes in the two dimensional plane. We find the agreement be-
tween our data and the EDS theory to be partly acceptable. Finally, we study models with randomly located
clusters of five parallel cracks stacked in columns. Spacings between cracks within the clusters are varied
in order to examine the effects of crack interactions in these particular patterns on effective velocities.

THEORY

This section gives an overview of the effective media theories relevant for our simulations. We consider
two dimensional models with randomly distributed parallel cracks. As we work within the plane strain
framework, our two dimensional plane can be understood as one of the symmetry planes of a three dimen-
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sional orthotropic solid. Seismic velocities are linked to the elastic moduli by (see, for example, Mavko
et al. (1998), from where notations are taken):

c11 = ρgv
2
P (0◦), c22 = ρgv

2
P (90◦), c44 = ρgv

2
SV (90◦) = ρgv

2
SV (0◦) (1)

where ρg denotes the gravitational density, cpq are elements of the stiffness matrix and vP , vSV are the
phase velocities.

The stiffness matrix is given by the inverse of the compliance matrix:
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E, ν and G denote the Young’s modulus, the Poisson’s ratio and the shear modulus of the solid, re-
spectively. Brackets <> indicate effective moduli as given by effective media theories described in the
following sections.

A common parameter to characterise cracked solids is the crack density ρ, which is given by (Bristow,
1960):

ρ =
1

A

N∑

i=1

l2i . (3)

A denotes the reference area, li the half length of the i-th crack and N is the number of cracks in A.

One family of parallel cracks

For models with one family of parallel cracks (see Fig. 1), Kachanov (1993) discusses three different
theoretical descriptions which can be applied here - the NIA, the DS and the EDS theory. We overview
briefly the underlying concepts of these theories.
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Figure 1: Part of cracked regions for ρ = 0.2 with randomly distributed parallel cracks (model 4p, see
Tab. 1), left, and of the cracked region for ρ = 0.2 containing two families of parallel cracks, at an angle
of 30◦ (model 2f, see Tab. 1), middle. On the right, a part of the cracked region with columnar clusters of
five cracks (model 2.2b, see Tab. 2).

Non-interaction approximation (NIA) This approximation assumes that to obtain the elastic potential
of a solid with cracks, the energy which is needed to insert a single crack into the unfractured media can
simply be added to the elastic potential for each crack [as in Bristow (1960)]. The effective moduli are
(cracks are parallel to the x-axis):

ENIA,1 = E′0, ENIA,2 = E′0[1 + 2πρ]−1, GNIA = G0[1 + πρ(1− ν0)]−1 (4)

where E′0 denotes E0/(1− ν2
0), the Young’s modulus for the plane strain case.



Annual WIT report 2003 265

Differential scheme (DS) Here, analysis is done incrementally: crack density is increased in small steps
dρ, effective matrix moduli are recalculated after each step. The effective moduli are:

EDS,1 = E′0, EDS,2 = E′0e
−2πρ, GDS = G0e

−π(1−ν0)ρ. (5)

Extension of the DS (EDS) This model (Kachanov, 1993) extends the DS to arbitrary crack orientation
statistics by multiplying the elastic potential given by NIA by the function g(ρ) which is based on results
of the DS theory. This yields the following effective moduli for cracks parallel to the x-axis:

EEDS,1 = E′0, EEDS,2 =
E′0

1 + 2πρeπρ
, GEDS =

G0

1 + πρ(1− ν0)eπρ
. (6)

Two families of parallel cracks

We consider two families of parallel cracks of equal density inclined at 30◦ to each other (see Fig. 1). For
this arrangement, as the orientation of cracks needs to enter the theoretical prediction explicitly, we apply
only the NIA and the EDS theory.

If the coordinate system is oriented in such a way that its axes coincide with the principal axes of the
crack orientation distribution as in Fig. 1, one obtains, for the effective moduli according to the NIA:

ENIA,1 = E′0[1 + πρ(1 +
√

3/2)]−1, ENIA,2 = E′0[(1 + πρ(1−
√

3/2))]−1,

GNIA = G0[1 + πρ(1− ν0)]−1. (7)

The EDS theory yields

EEDS,1 =
E′0

1 + πρeπρ(1 +
√

3/2)
, EEDS,2 = E′0[1 + πρeπρ(1−

√
3/2)]−1,

GEDS = G0[1 + πρeπρ(1− ν0)]−1. (8)

NUMERICAL EXPERIMENTS

For our numerical simulations, we use the Rotated Staggered Grid FD scheme, which allows an accurate
simulation of wave-propagation in media with high contrasts in elastic properties (Saenger et al., 2000).

Typical models have 2300 × 1000 (y × x) gridpoints with periodic boundary conditions in the x-
direction. Spacing between gridpoints in both directions is 0.0001 m. The cracked region is placed between
a depth of 650 and 1650 gridpoints. For the elastic parameters of the homogenous background, we chose
velocity vP = 5100 m/s, velocity vSV = 2944 m/s and the gravitational density ρg = 2590 kg/m3. For
cracks, we set vP = vSV = 0 and ρg = 0.0001 kg/m3, which approximate vacuum. The source wavelet
of our plane wave was always the first derivative of a Gaussian with a dominant frequency of 50 kHz and
a time increment of 5 × 10−9 s. Two lines of geophones above and below the cracked region allow to
measure the time delay of the mean peak amplitude caused by the cracked region and to calculate effective
velocities. Due to the sharp contrasts in the model, computations were performed with second order spatial
FD operators. Further details on such experiments can be found in Saenger and Shapiro (2002). From the
obtained velocities, the P -wave modulus M and the shear modulus G are derived:

M = G(4G−E)(3G−E)−1 = ρgv
2
P , G = ρgv

2
SV . (9)

Randomly distributed parallel cracks

The models we examined in this section contained randomly distributed cracks parallel to the x-axis (see
Fig. 1 left). We compared our results for different crack densities (Tab. 1) to the predictions of the theories
described in section 2. This comparison is given in Fig. 2. The DS theory is in good agreement with our
results, while the NIA and the EDS theory are not. Similar results for isotropic crack distributions were
presented in Saenger and Shapiro (2002).



266 Annual WIT report 2003

No. crack length number porosity φ number
density of cracks of cracks of the of model
ρ [0.0001m] crack region realizations

1p 0.025 56 32 0.0018 1
2p 0.050 56 64 0.0036 1
3p 0.100 56 128 0.0073 5
4p 0.200 56 255 0.0145 5
5p 0.400 61 430 0.0262 1

1f 0.1 61 107 0.0098 3
2f 0.2 61 215 0.0193 3
3f 0.3 61 322 0.0291 3
4f 0.4 61 430 0.0388 3
5f 0.6 61 644 0.0581 3
6f 0.8 61 860 0.0775 3

Table 1: Details of crack arrangements. Model numbers with “p” refer to randomly distributed cracks
parallel to the x-axis, those with “f” refer to two families of parallel cracks.

Usually, effective media theories rely on the assumption of large numbers of cracks. To examine the
importance of this factor, we simulate media with only 20 parallel cracks (ρ = 0.018). The scattering of
our results for different model realizations turnes out to be negligible. Yet, if ρ increases while the number
of cracks remains constant, this scattering becomes more significant. To study this problem by the means
of simulating wave propagation however becomes difficult as the numerical setup runs out of the long
wavelength limit.
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Figure 2: Normalised effective moduli for parallel cracks versus crack density. Dots: Numerical re-
sults, Lines: Theoretical predictions taken from the Non-interaction approximation (NIA), the Differential
scheme (DS) and an extension of the DS (EDS).

Two families of parallel cracks

The arrangements we studied in this section contained two families of randomly distributed parallel cracks
inclined at 30◦ to each other (see Fig. 1 middle). Both families have the same crack density. For details,
see Table 1.

In our simulations, the sensitivity of velocities to crack density turned out to be much more significant
for P -waves than for S-waves. Therefore we focus here on P -waves. Fig. 3 shows our results from
simulations for different crack densities. Both the NIA and the EDS differ from our data for the fast
symmetry direction. For the slow symmetry direction, our data matches the EDS predictions quite well,
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while the NIA is not satisfying. The behaviour of the EDS theory may be a consequence of its heuristic
derivation.
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Figure 3: Numerical results (dots) for wave propagation in media with two families of parallel cracks
along the “fast” (1) and the “slow” (2) principal axes. The curves show theoretical predictions taken from
NIA and EDS.

IMPACT OF CRACK CLUSTERING ON EFFECTIVE PROPERTIES

In this section we study arrangements containing columnar clusters of five parallel cracks. The locations of
these clusters are at random (see Fig. 1). We performed numerical simulations for different crack densities,
where for each crack density the vertical spacing v was varied in order to examine the effect of shielding
interactions (details of our models are displayed in Tab. 2). These interactions are described by Kachanov
(1993). The dimensions, elastic parameters and experimental setup for these models are the same as for
the models in the previous section. Yet, as source wavelet we used the first derivative of a Gaussian with a
dominant frequency of 85 kHz and a time increment of 8× 10−9 s.

Crack- Porosity Vertical
Model Density Length [m] Number Φ Spacing v [10−4m]

1r 0.1 0.0061 112 0.0068
1.1b-1.3b 0.1 0.0061 112 0.0068 5 15 50

2r 0.2 0.0061 215 0.0131
2.1b-2.3b 0.2 0.0061 215 0.0131 5 15 50

3r 0.4 0.0061 430 0.0262
3.1b 0.4 0.0061 430 0.0262 5 15

Table 2: Details of the crack arrangements (cluster configuration). Model numbers with “r” refer to ran-
dom, those with “b” refer to a block model. For vertical spacing v, refer to Fig. 1.

Some general observations can be made (see Fig. 4): For all columnar models, P -wave velocity de-
creases less than for the random model with the same crack density. This means that the shielding effects
of crack interactions dominate over the amplifying effects for this particular arrangement. The shielding
effects gain importance as crack density increases. This trend is less clear for SV -wave velocities. These
observations agree with the predictions of Kachanov (1993).
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Figure 4: Numerical results (stars: P -, triangles: SV -waves) for ρ = 0.1 (left), ρ = 0.2 (middle) and
ρ = 0.4 (right). Lines (solid: P -, dashed: SV -waves) indicate normalised velocities for random models.

CONCLUSIONS

The Rotated Staggered Grid FD scheme allows fast and accurate modelling of elastic wave propagation in
fractured media. We concentrate on two dimensional models (plane strain case) which contain different
distributions of parallel cracks. Effective elastic properties are determined in well controlled numerical
experiments. We compare them to theoretical predictions for the microstructures we studied.

One series of simulations was concerned with randomly distributed parallel cracks. The match between
predictions given by different effective media theories and our numerical results was best for the DS and
for the EDS theory. For the second series we considered models with two families of randomly distributed
parallel cracks at an angle of 30◦ to each other. Only theories like the NIA and the EDS theory, which take
crack orientation statistics into account explicitely, can be applied here. The predictions by the NIA do not
agree with our data satisfyingly, while agreement with the EDS theory is partly acceptable.

Finally, we simulated columnar clusters of parallel cracks and varied spacing between cracks within the
clusters. We could confirm qualitative predictions given by Kachanov (1993). According to our results,
clusters of cracks can result in significantly stiffer elastic moduli than randomly distributed cracks do. This
clearly underlines the need for any effective media theory to take the statistics of crack centres into account,
if the latter are not random.
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