62

Refinement Step for Parameter Estimation in the CRS Method

F. Majana, W. Mascarenhas, M. Tygel, and L.T. Santos

email: lucio@ime.unicamp.br
keywords: CRS, Optimization, Stacking

ABSTRACT

The Common Reflection Surface (CRS) method is a powerful extension of the well established Com-
mon Midpoint (CMP) method in the sense that it is able to accept, at each trace location on the
zero-offset (ZO) section to be constructed, reflection data from source and receiver pairs that are arbi-
trarily located around that point. The CRS method uses the general hyperbolic moveout, that depends,
in the 2D situation considered in this work, on three parameters. One of these parameters is the
classical NMO velocity. As in the single-parameter CMP method, the CRS parameters or attributes
are estimated by a direct application of suitable coherence analysis to the input multicoverage data.
The estimation of the three CRS parameters is generally performed in two steps. The first step has
a global character and aims in obtaining an initial estimate of the parameters. The second step has
a local character, trying to refine the previous initial values to more accurate values. Here we focus
on the refinement step assuming that initial estimates have been already provided. We review and
compare three of these methods and compare their performances on illustrative synthetic and real data
examples. Comparisons with the application of the conventional CMP method are also provided.

INTRODUCTION

This work discusses the estimation of the Common Reflection Surface (CRS) parameters for seismic imag-
ing in the 2D situation. More specifically, we assume that sources and receivers are located on a single
seismic line, for simplicity supposed to be horizontal and, moreover, that propagation occurs on the ver-
tical plane below the seismic line. A final assumption is that of a known, locally constant near-surface
velocity at each central point. This means that, at each central point, x, the medium velocity, v is sup-
posed to have negligible gradients. Note, however, that the velocities, vy may vary for varying central
points, xg.

As the classical CMP method, the CRS method leads to simulated zero-offset (ZO) sections for points
of interest along the seismic line. As usual practice, we consider that the traces of the ZO section to be
simulated are located at given CMPs. Each ZO trace location, called a central point, is specified by its
(midpoint) coordinate, x, along the seismic line. Both methods, CMP and CRS, gives rise to a simulated
ZO trace at x, by stacking the data at each time sample ;.

In the CMP method, the stacked value corresponding to (o, to) is obtained taking into account only the
traces in the CMP gather that refer to xq. The stack is performed according to the NMO traveltime formula
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where h is the half-offset of the source-receiver pair under consideration and vy a0 is the NMO-velocity
associated to the point (z, o). The parameter vy ro is estimated applying a coherence (e.g., semblance)
analysis to the CMP gather related to xo. The procedure is generally known as velocity analysis and is
performed for a few user-selected time samples only. These correspond to key reflection events that are
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manually picked by the interpreter. The NMO-velocity values at the remaining time samples are obtained
by simple interpolation, yielding the vx ;0 Vvalues for the whole ZO trace at .

The CMP method has well-known advantages: enhancement of signal-to-noise ratio, attenuation of
undesirable events and a quick and efficient implementation. However, it has two drawbacks: the coherency
analysis is restricted to CMP gathers, which encompass only part of the available data and the need to
manually pick the data on selected events. The CRS method, although computationally more expensive,
does not have such drawbacks and preserves the good features of the CMP method. It applies the general
hyperbolic traveltime moveout given by
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for all source receivers in an appropriate neighborhood of the central point, zo. In the above formula, =
denotes the midpoint and half-offset coordinates of the source receiver pair for which the traveltime is com-
puted. As a result, the CRS method makes a better use of the available data, because such neighborhoods
contain significantly more traces than the CMP gather. Moreover, the CRS method is fully automatic and
does not depend on the manual specification of NMO velocities.

The 2D hyperbolic traveltime moveout (2) depends on three parameters, as opposed to the single v x a0
parameter in equation (1). It is convenient to write these three parameters as
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where 3 is the angle between the ZO ray and the surface’s normal at the central point ¢ and v is the
medium velocity at that point. Coefficient C' corresponds to its NMO traveltime counterpart in equation
(1). Coefficient B has an analogous expression using the quantity vpgr, the post-stack velocity. In the
present situation of a horizontal seismic line, the coefficients B and C' can be alternatively written as

A

2t 2 2t 2
_ 2locos B and o= 20 B (@)
Vo Vo

B

where Ky and K ;p represent the wavefront curvatures of the so-called normal (N) and normal-incident-
point (NIP) waves (Hubral, 1983). As described in Chira-Oliva et al. (2001), the CRS method can be
used under more general hypothesis than the ones assumed here (for example, on may have a curved
measurement surface and also non-zero velocity gradients at the central points). Under these more general
conditions, the relationships between the CRS coefficients and the parameters 3, K xyp and Ky, become
more complicated. However, in this work we restrict ourselves to the particular cases in which (4) holds
and treat 3, Ky and K p as the CRS parameters.

Analogously to the NMO velocity, the CRS parameters are estimated as maximizers of some coherence
measure, i.e., they are found using an optimization process. In all implementations of the CRS method that
we are aware of (Birgin et al., 1999; Garabito, 2001; Mann, 2002) the optimization process is performed
in two steps. The first step solves simplified problems in order to get rough estimates for the parameters.
The second step refines the previously obtained parameters. The first step involves global optimization
procedures. The second step uses local optimization methods. In this work we focus our attention to the
refinement step of the CRS method. Namely, we assume that initial estimations of the CRS are already
available. We consider and discuss three local optimization methods to refine the initial parameter values:
Nelder-Mead, Newton and BFGS (Quasi-Newton). The performance and accuracy of the methods are
examined by means of illustrative synthetic and real data examples. For a description of all the well-known
optimization schemes used in this work, the reader is referred to any basic text on the subject, for example
Gill et al. (1981).

OPTIMIZATION PROBLEM

For a given point (zo, o) and for fixed CRS parameters (3, K n, K n1p), the graph of the function T'(x, h) =
t(x, h; B, Kn, Knrp) is a surface within the volume of multicoverage data points (z, h,t). If the point
(x0,to) pertains to a reflection event at the ZO section to be simulated and the CRS triplet (3, K n, Kn1p)
provides the correct coefficients of the representation of that event in accordance with the hyperbolic trav-
eltime (2), then, following ray theory, the graph of 7" is, up to second order, tangent to the event’s reflection
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traveltime surface. As a consequence, the coherency of the data samples along the graph of 7', for some
suitable vicinity (called aperture) of (x¢,to), is expected to yield a large value. If the time sample under
consideration does not belong to a reflection or the CRS triplet departs from the correct one in the case
of a reflection, the coherency value is bound to be low. The CRS parameter estimation problem is then
formulated as follows:

For each midpoint and traveltime (z,t) at the ZO section to be simulated, find the CRS parame-
ter triplet (3, K, Kn1p) for which the coherence function attains a maximum for source-receiver pairs
within a given spatial aperture around o and for time samples within a time window around .

We consider the most popular coherence measure used in seismic processing, the semblance function
(Neidel and Taner, 1971). It can be turned into a differentiable function of the CRS parameters by inter-
polating the seismic data appropriately. Differentiability is important because BFGS and Newton methods
require differentiable objective functions.

The semblance function is given by
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where w;(t) is the interpolated sample value for trace 7 at time ¢, w is the time-window, and
ti = ti(B, Kn, Kn1p) = t(zi, hi; B, Kn, Kn1p) (6)

is the hyperbolic traveltime (2) corresponding to the i-th trace midpoint z; and half offset /,. Note that S'is
a differentiable function with respect to u,; and, moreover, ¢; is a differentiable function with respect to the
CRS parameters. Therefore, by the chain rule, the semblance function .S will be differentiable with respect
to the CRS parameters if the interpolated sample values u;(¢) are differentiable with respect to ¢. In this
case we can even compute the partial derivative of S with respect to a CRS parameter p explicitly by
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The second derivatives are a bit more complicated but can also be explicitly evaluated.

In the experiments reported below, we used simple cubic interpolations in order to get a differentiable
semblance function. Our interpolation has first derivatives at every time sample and second derivatives
except for a few time simples. Formally, we used the cubic function w; such that
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where At is the time sample increment, ®;;. is the value of the k-th sample of trace ¢ and [tmin, tmax] IS
the time interval covered by the seismic data. In words, u; is zero outside the time interval of interest and
interpolates the seismic data at the time samples, the derivatives coming from a centered finite differences
scheme.

GENERAL ESTIMATION STRATEGY

The CRS estimation problem is, in general, not amenable to a full three-parameter search. In realistic data
sets the amount of samples is too large for a direct search. The natural approach is, then, to divide the task
into simpler searches conducted on smaller data subsets.
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The first formulation and implementation of the CRS-parameters was proposed by Muller (1999). The
initial step in that formulation has three one-parameter searches. The first one, applied to the CMP gather,
is similar to the search of NMO-velocities in the NMO method. However, it is carried out on every time
sample of the simulated ZO section to be constructed. In Miller’s approach, the CMP search estimates
the combined parameter ¢, which is related to the v ;0 and to the CRS parameters § and K np by the

formula
2’0()
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In analogy to the NMO method, a stack is performed on the CMP data and the obtained section is assumed
to be an approximation of a ZO section.

The next two one-dimensional searches are performed in this approximated (stacked) ZO section. The
second search, performed within a small aperture, estimates the angle parameter 5 and combines it with
the parameter ¢ to produce the K xp parameter. The last search, performed on a larger aperture, uses the
estimated /3 to compute the remaining parameter K .

Muiller’s strategy was extended in Mann (2002) with the inclusion of a search in Common-Shot gath-
ers to handle conflicting dips. More recently, Garabito (2001) introduced a new initial step approach,
where a two-parameter search using a Simulated Annealing algorithm is applied for coherence analysis
along diffraction traveltimes, i.e., hyperbolic moveouts (2) under the diffraction condition B = C or
Kxn = Knyp. This search simultaneously estimates 3 and K yyp. The parameter K is estimated by an
additional one-dimensional search.

Once good initial estimates for the CRS attributes are obtained, a refinement setp is necessary, taking
into account a larger data set. The idea is to apply a local optimization scheme to produce better ap-
proximations for the parameters. As previously mentioned, we discuss here three different optimization
methods for the refinement: Nelder-Mead (Flexible Simplex), Newton (Quadratic Approximation) and
BFGS (Quasi-Newton).

The Nelder-Mead method has been the one used at the refinement step in the Karlsruhe’s CRS imple-
mentation (Mann, 2002). The BFGS method has been applied by Garabito (2001). To our knowledge, the
present work is the first application of Newton’s method for the refinement step. The main contribution
here is the implementation of the three methods as user-selected choices to perform the refinement in our
WIT-Campinas CRS program. A more comprehensive comparison of the different methods applied for the
refinement step will be the object of a future work.

NUMERICAL EXPERIMENTS

To understand and compare the estimation procedures discussed above, as well as the quality of the stacked
sections they produce, we applied them to synthetic and a real data examples. We focused on the refinement
step in both cases and used the same initial estimates for all the refinement methods. The datasets were
stacked by the CRS method, as implemented by the program MuLTISIs, which was developed by the au-
thors at the Laboratory of Computational Geophysics at the State University of Campinas (LGC/Unicamp).
MuLTISIS adopts the same initial-step strategy as in Mann (2002). For comparison, we also stacked the
data with the CMP method as routinely carried out in the industry, with the software PROMAX of Land-
mark Graphics Corporation.

SYNTHETIC DATA

To verify the accuracy of the parameters estimated by the methods discussed above, we generated two
synthetic datasets. The datasets and the modelled CRS parameters were obtained by ray-tracing using
INTERSIS? along with SE1S882. We compared the modelled parameters with the ones estimated by the
MuLTISIS software. The stacks obtained with the three different methods after the refinement step are
quite similar, and for that reason not shown here.

1INTERSISIs a graphical interface for seismic modelling developed at the Laboratory of Computational Geophysics of the UNI-
CAMP. The current version of INTERSISallows to work with ray tracing and finite differences.

25EI1s88 is a ray tracing program developed in the Geophysics Department at Charles  University.
http://seis.karlov.mff.cuni.cz/software/seis
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In order to quantify the accuracy of the processed parameters, we compared their values along each
reflector with the corresponding curve for the modelled parameter. The Quadratic Deviation (Q) is used as a
measure of the agreement between processed and computed curves of parameters: For two N-dimensional
vectors ¢ and ¢, Q is given by

, X
Q= NZ(@*%‘)Q- (10)

Synthetic Example 1

To test the refinements methods in extreme conditions, we generated a model with strong geometrical
changes. Figure 1 depicts a four layered acoustic model with three curved interfaces. Observe the geo-
metrical variations near the middle of the model where the dips are up to 67°. Simulated multicoverage
acquisition was carried out over the entire profile using 200 shot records of 60 receivers each.

= = A

Figure 1: 2D isovelocity layered model. Horizontal distance and depth are in kilometers.

Regarding the stacked sections, Figure 2 shows the NMO stack, the CRS initial and the CRS Nelder-
Mead, Newton and BFGS refined stacks. As a result of the strong dips in the model, the stacked sections
present a zone with caustics near CMP 300. As can be observed, there are not too many differences between
these stacks. Figure 3 displays the modelled, initial and optimized emergence angle for the third reflector.
The parameter curves for Ky and K p have the same behavior as the one for 5. As a consequence, we
refrain from presenting them here.

| Parameter | Reflector [ Initial | N.-Mead | Newton | BFGS |

1 0.17138 | 0.20216 | 0.17186 | 0.17197

16} 2 0.18223 | 0.19767 | 0.19108 | 0.18498

3 0.25457 | 0.23350 | 0.24263 | 0.22913

1 0.23005 | 0.23920 | 0.22253 | 0.22485

Knip 2 0.42805 | 0.43400 | 0.63960 | 0.57535
3 0.27851 | 0.26265 | 0.24708 | 0.24586

1 0.37848 | 0.34333 | 0.31974 | 0.30768

Kn 2 0.68887 | 0.66835 | 0.66310 | 0.66568
3 0.71351 | 0.66676 | 0.63413 | 0.62286

Table 1: Q for CRS parameters at reflectors for Example 1

In Figure 4, we focus on the two boxes depicted in Figure 3. From the picture on the left, we observe
that the optimization process may not improve the initial value of the parameter. The picture on the right
shows the angle values in the caustic region between CDPs 280-360. Table 1 summarizes the values of Q
for the CRS parameters for each reflector.
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Figure 2: Synthetic stacks. The one in the top was obtained using PROMAX.



68 Annual WIT report 2003

e T T T T T T I
+  Modeled
100 * Initial M
— 8k % Melder-head | |
g < Mewton
B, B0 & BFGS
i
© 40 B
=
o 0F —
2
e w —
=
o 20 o
£
w40 - -
B0 |- -
B0 1 1 | 1 1 1 1 1
50 100 150 200 250 300 350 400 450

CDP binh number

Figure 3: Modelled, initial and optimized emergence angles for the third reflector. The boxes are zoomed
in Figure 4.
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Figure 4: Zoomed boxes (caustic regions) of Figure 3. Left box (km 2.7 to km 3.7 in the velocity model).
Right box (km 7.0 to km 8.5 in the velocity model). Note that initial values may be closer to modelled ones
than optimized values.

Synthetic Example 2

This model has the objective of testing the refinement step for a more realistic case. Figure 5 depicts a
four layer acoustic model with three curved interfaces. The acquisition parameters are the same as in the
previous experiment.

As expected, the stacks obtained using the CMP and the CRS techniques are quite similar. For that
reason, Figure 6 only shows the one obtained with CRS using Newton’s method at the refinement step. The
differences between the parameter curves are not visible. The values for Q are indicated in Table 2.

From these two synthetic experiments, we observed that no matter which method we use for the refine-
ment step, the process has a smoothing effect over the CRS parameters. To illustrate this fact, Figure 7
depicts the initial and refined estimates of the emergence angle for the first reflector of the synthetic Exam-
ple 2.

As a consequence of the smoothing effect, the stacks obtained with the refined parameters are, locally,
smoother than the ones obtained with the initial parameters. This fact will be better observed in the next
experiment with real data.

REAL DATA

We have applied the refinement approach to a real marine dataset. Figure 8 shows the NMO stack, ob-
tained from the commercial seismic software PROMAX, and the CRS stack using Newton’s method in the
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Figure 5: 2D isovelocity layered model. Horizontal distance and depth are in kilometers. Velocities are in
m/s.
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Figure 6: Newton version of CRS stack of synthetic Example 2.
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Figure 7: Emergence angle for the first reflector of synthetic Example 2. The continuous line represent the
refined values and the dots the initial estimative.
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| Parameter | Reflector | Initial | N.-Mead | Newton | BFGS |

1 0.30698 | 0.19617 | 0.19563 | 0.19580

8 2 0.26200 | 0.14740 | 0.14717 | 0.14732

3 0.30005 | 0.26201 | 0.26328 | 0.26337

1 0.11607 | 0.11371 | 0.10637 | 0.10638

Knrip 2 0.09699 | 0.09702 | 0.09761 | 0.09760
3 0.05753 | 0.05749 | 0.05747 | 0.05741

1 0.02903 | 0.02588 | 0.02517 | 0.02523

Ky 2 0.04755 | 0.04637 | 0.04581 | 0.04600
3 0.52302 | 0.50175 | 0.50176 | 0.50177

Table 2: Q for CRS parameters at reflectors for Example 2.

refinement step. The CRS stacks using the three refinements (Nelder-Mead, Newton and BFGS) are quite
similar, and for that matter not shown here. In fact, the BFGS provided a slightly smoother section, but not
significant to justify a discussion here.

In the central part of the stacked sections, the CRS stack presents less aleatory noise, better continuity
of the primaries and less quantity of reverberations. Due to these characteristics, the CRS stack is able to
better define the unconformity that occurs between 1.3 s and 1.5 s all along the section.

Between CMPs 700 and 1500, the CRS stack has made more evident a probable basement structure.
It is out of the scope of the present paper, however, to undertake a detailed investigation on the NMO and
CRS stack results. Our aim here is just to point out that there are significant differences that require a better
understanding and interpretation.

As already mentioned, the initial step of the MuULTISIS software adopts the same strategy as in Mann
(2002). This strategy allows quality control at the first search, that one applied on each CMP section of the
dataset, called AUTOCMPSTACK. As this one-parameter search is equivalent to a conventional NMO stack,
but with automatic picking of events that presents the higher coherences, the stack produced in this step is
expected to look like the NMO stack. Regarding this stack, between CMPs 1300 and 1400 for ¢ = 1.5 s, we
find a horizontal event of interest, as shown in the top of Figure 9. Taking a closer look to a CMP section
in this range by means of a semblance map, we see that the AUTOCMPSTACK is stacking a back scattering
energy, as indicated in Figure 10. This problem can be solved constraining the range for the search of the
NMO velocity, and running again the AUTOCMPSTACK. The result is that the horizontal event disapears,
as shown in the bottom of Figure 9.

Finally, regarding the smoothing effect commented in the synthetic experiments, we show in Figure 11
the stack obtained with the initial estimates of the CRS parameter and the one obtained after the refinement
step using Newton’s method. The smoothing effect is clearly visible, confirming the observations made
with the synthetic data.

CONCLUSIONS

We have provided an overview of the Common-Reflection-Surface (CRS) method, encompassing a brief
description of both its theoretical and implementation aspects. Our description considered the 2-D situation
in which sources and receivers were located on a single seismic horizontal line and the multicoverage data
is aimed in producing, by stacking, a simulated ZO section. The CRS method uses a three-parameter
hyperbolic traveltime moveout and the heart of the method is the estimation of these parameters.

The general strategy is to split the estimation into two steps. In the first step (initial), a quick estimation
is performed using a suite of simplified versions of the problem. The next step (refinement) optimizes the
parameters using the initial estimates and the full multicoverage data. Assuming that initial estimates of
the parameters were given, we have examined three local optimization schemes to refine them, namely the
Nelder-Mead, Newton and BFGS methods.

Our experiments show that the three refinement methods lead to similar stacked sections. The CRS, as
well documented in the literature, produces, in general, sharper sections with less noise, as compared to
the usually smoother NMO sections. Being a more automatic procedure, the CRS sections may, however,
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also enhance undesirable events such as multiples.

Regarding the estimation of the CRS parameters, our experiments show that, surprisingly, the refine-
ment step may not always lead to better parameter estimates. Sometimes the refinement step may even lead
to less accurate estimates. One possible reason for this behaviour is that the goal of the refinement step is
to fit the best parameters to the hyperbolic moveout formula. However, the true values for the parameters
came from a Taylor’s interpolation. Therefore, depending on the aperture for the stacking, the fitted pa-
rameters can be quite different from the exact values. The same phenomena appears in the estimation of
the NMO velocity from CMP gathers, as well explained in Castle (1994). At the moment we are engaged
in more experiments and research to gain a better understanding on this subject.

Our tests with a real dataset showed a few significant differences between the CRS and NMO stacks.
These differences, briefly addressed in the text, indicate the potential of the CRS method to be used in
practice. In fact, we hope that this work stimulates further investigations on the CRS method, especially
on the interpretative aspects of the obtained sections.
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Figure 8: Marine real data stacks. Top: NMO (PROMAX). Bottom: CRS (Newton).
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Figure 10: Velocity analysis of CMP 1320. The higher semblance value near 1.5 s (A) is most probably
due to back scattering energy. The right value of velocity, (B), is about 2520 m/s.
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Figure 11: Effect of parameter refinement on real data stacks. Top: stack obtained with the initial estima-
tive of the CRS parameter triplet. Bottom: stack obtained with a Newton refined CRS parameter triplet.



