
236

Estimation of the statistical parameters from the traveltime
fluctuations of refracted waves
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ABSTRACT

Traveltime fluctuations of refracted waves in random elastic media are studied in the framework of
geometrical optics approach. Covariation function of traveltime fluctuations is derived for the case
of a constant gradient of the average wave velocity. The random inhomogeneities are supposed to
be strongly anisotropic (anisomeric): for example vertical correlation scale, lz can be much smaller
than horizontal, lx , one. In this case, a surprising phenomenon has been found: unlike expectations
traveltime variance starts decreasing at sufficiently large offsets for the case when velocity fluctuations
are proportional to the average velocity. This new phenomenon is proved by the results of numerical
modelling for traveltime fluctuations in random media. Theoretical consideration is in agreement
with the results of numerical modelling. Numerical modelling demonstrates also an opportunity for
extracting statistical parameters of random media from empirical data on traveltime fluctuations.

INTRODUCTION

The problem of wave propagation through randomly inhomogeneous media was very popular in 60th -
70th of last century mainly because of its wide applications in optics, radar and underwater acoustics
(Chernov, 1960; Tatarskii, 1961, 1967 and 1971). Studies of statistical characteristics of elastic waves in
rocks attracted somewhat less attention, probably, because destructive role of random inhomogeneities in
seismic problems was not so evident as compared to other natural media. In the present time, statistical
characteristics of elastic media are of much more interest as compared to period of 20-30 years before,
which is motivated by several reasons.

Firstly, information on statistical properties of inhomogeneities in the elastic medium are neccessary
for estimating uncertainities of seismic images. This is especially important for inhomogeneities of size
on a limit of the seismic resolution. Secondly, small random inhomogeneities affect seismic amplitudes.
This effect must be understood and described in order to allow interpretation of seismic attenuation. The
amplitude effects of random inhomogeneities can be compensated, if their statistics is known. Thirdly,
statistical properties of heterogeneities can be used in the seismic inversion combined with geostatistical
approaches. Similar approach is applied quite often in the characterization of hydrocarbon reservoirs.
Finally, statistics of heterogeneities might serve as a new seismic attribute useful for making a bridge
between seismic and lithological rocks description.

Significant progress in solution of statistical inverse problems in seismics was achieved due to efforts
of Touati (1996), Iooss (1998), Iooss et al. (2000), Gaerets et al. (2001), who suggested to extract statistical
parameters of elastic media from traveltime fluctuations of signal, reflected from sufficiently contrast inter-
face. Such an observation scheme is known as reflection seismics. In the framework of above mentioned
approach the rays twice cross random inhomogeneities, so that elastic wave experiences double passage ef-
fect, which manifest itself also in other geophysical situations: under radio wave reflection from randomly
inhomogeneous ionosphere (Denisov and Erukhimov 1962; Kravtsov 1965) and under light reflection from
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a mirror in a turbulent atmosphere (Kravtsov and Saichev 1982 and 1985). Detailed analysis of traveltime
statistics of reflected seismic waves was performed recently by Kravtsov et al. (2003).

In this publication we intend to study the potential of another observational scheme - refraction geom-
etry, which implies traveltime fluctuation measurement for signals which, return to the earth surface due
to refraction. The main instrument for data interpretation both in reflection and in refraction seismics is
geometrical optics (GO) method. The necessary information on the GO method is outlined and the general
properties of covariation function for traveltime fluctuations along curved rays are presented. The variance
for traveltime fluctuations is derived in a plane stratified elastic media with a constant gradient of wave
velocity. This variance is shown to reduce at large offsets, what is an important new result of the study.
Numerical simulations are performed in order to verify the theoretical consideration. Theoretical results
are shown to be in good agreement with the results of numerical simulations.

GEOMETRICAL OPTICS RELATIONS FOR TRAVELTIME

A broad experience shows that the geometrical optics (GO) is a suitable approximation for computation of
seismic traveltimes. In the framework of GO approximation properties of inhomogeneous elastic medium
are characterized by the wave velocity v(r) or by slowness µ(r) = 1/v(r). For our purposes it is conve-
nient to deal with refractive index

n(r) =
v0

v(r)
= v0µ(r), (1)

where v0 is a typical velocity in a given area, say, a velocity near the earth surface.
For wave, propagating in time-independent (stationary) and dispersionless media GO provides preser-

vation of pulse shape on the whole pulse path through inhomogeneous medium. According to Born and
Wolf (1999), (see also Kravtsov and Orlov 1990; Červený 2001) the lowest (zeroth) approximation of GO
suggests the following expression for the wave field:

u(r, t) = A(r)f

(
t− ψ(r)

v0

)
. (2)

Here “optical path” or “eikonal” ψ(r) obeys the eikonal equation

(∇ψ)2 = n2(r), (3)

whereas the amplitude A(r) can be found from the energy flow conservation law in a ray tube.
According to eq. (2), the signal, received in the point of observation r reaches it maximum value at the

time

t||f(t)|=max ≡ t =
ψ(r)

v0
, (4)

which corresponds to condition, that the argument t − ψ
v0

of propagating pulse f
(
t− ψ(r)

v0

)
is zero. Re-

lation (4) is basical for determination of time-delay between emitted and received pulses in the framework
of GO method.

The solution of eikonal equation (3) for “optical path” ψ(r) can be presented in one of two equivalent
forms (Kravtsov and Orlov 1990; Červený 2001):

ψ(r) =

∫
n[r(s)]ds (5)

and

ψ(r) =

∫
n2[r(τ)]dτ. (6)

where r = r(s) is the ray trajectory, s is the arclength and τ is an alternative papametere along ray which
is connected with the arclength s by a relation ds = ndτ .

According to formula (4), traveltime is proportional to the optical path ψ(r):

t =
ψ(r)

v0
=

1

v0

∫
n[r(s)]ds =

1

v0

∫
n2[r(τ)]dτ. (7)
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Therefore all the results, obtained earlier for eikonal variations (Chernov 1960; Tatarskii 1961, 1967, and
1971; see also Ishimaru 1978, 1997; Rytov et al. 1989b), can be equally used for analysis of traveltime
fluctuations, which are of significant interest in seismics.

FIRST ORDER TRAVELTIME VARIATIONS

In a smoothly inhomogeneous random elastic medium refractive index n can be presented as sums of
average (regular), n(r), and random, ñ(r), parts as follows:

n(r) = n(r) + ñ(r). (8)

Smallness of random medium parameters fluctuations allows to restrict analysis by consideration of
only first order perturbations. In the framework of the first order perturbation theory the value ṽ = v− v is
connected with ñ by linear relations

ṽ = −v
2ñ

v0
. (9)

All other values of interest also can be presented in the form like (8):

r = r + r̃, ψ = ψ + ψ̃, t = t+ t̃. (10)

Substitution of n = n + ñ and ψ = ψ + ψ̃ into eikonal eq. (3) brings about the zeroth approximation
equation

(∇ψ)2 = (n)2, (11)

which solution can be written as integral

ψ =

∫
(n)2dτ =

∫
nds, (12)

along unperturbed ray r = r(τ ) or r = r(s). The first order eikonal equation

∇ψ · ∇ψ̃ = nñ, (13)

lead to well known expression (Chernov 1960; Tatarskii 1961, 1967, 1971; Ishimaru, 1978, 1997; Rytov
et al. 1989b; Kravtsov and Orlov 1990)

ψ̃ =

∫
ñds, (14)

which implies integration of refraction index fluctuations along the unperturbed ray. Correspondingly the
first order theory of perturbation for traveltime fluctuations t̃ gives

t̃ =
ψ̃

v0
=

1

v0

∫
ñds, (15)

which also deals with integration of fluctuations ñ over unperturbed ray. A detailed analysis of the ray
perturbation theory series was performed also by Snieder and Sambridge (1992) and Witte et al. (1996).
Relation (15) arises in their analysis as the first order term. For brevity we shall omit below the upper bar
over regular ray trajectory r and ray parameters τ and s.

TRAVELTIME COVARIANCE FUNCTION IN A MEDIUM WITH QUASI-HOMOGENEOUS
STATISTICS

The covariance of traveltime registered by two receivers, placed at pointsR1 andR2 on the Earth surface,
as shown in Figure 1, has a form of averaged product of fluctuations t̃(R1) and t̃(R2), given by eq. (15):

Ct(R1,R2) = 〈t̃(R1)t̃(R2)〉 =
1

v2
0

∫ S(R1)

0

ds1

∫ S(R2)

0

ds2Cn[r1(s1), r2(s2)]. (16)
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Here S1(R1) and S2(R2) are arclengths of the rays, arriving correspondingly to the receiversR1 andR2.
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Figure 1: Transverse (a) and longitudinal (b) displacement of observation points R1 and R2.

For a covariance function
Cn(r1, r2) = 〈ñ(r1)ñ(r2)〉 (17)

of refractive index fluctuations we make use of the model of quasi-homogeneous fluctuations, (QHF),
(Rytov et al. 1989a; 1989b):

Cn(r1, r2) = σ2
n(r+)Kn(r1 − r2; r+). (18)

Here r+ = (r1+r2)/2 is the radius vector of center of gravity of vectors r1 and r2, andKn is a normalized
correlation function (correlation coefficient) which equals to unit at r1 − r2 = 0,

Kn(0; r+) = 1,

and is supposed to be reduced significantly, when distance | r1−r2 | exceeds a characteristic (correlation)
length lc.

Model of QHF allows to describe anisomeric (statistically anisotropic) fluctuations with different corre-
lation lengths lx, ly and lz in x, y and z directions, respectively. By introducing new variables into equation
(16):

s− = s1 − s2, s+ =
s1 + s2

2
(19)

and expand trajectores r1(s1) and r2(s2) into power series in difference variable s−, saving only the
zeroth and first order terms in a difference r(s1;R1)− r(s2;R2) and only the zeroth-order term in r+ =
(r1 + r2)/2 = r+(s+) the difference r1 − r2 in (18) becomes

r1(s1)− r2(s2) ∼= κ(s+)s− + δ(s+), (20)

where κ(s+) = dr+

ds is a unit vector, tangent to the “middle” ray r = r(s+) (Figure 2) and δ(s+) is a
vector, connecting the nearest points at the neighbouring rays. Taking into account that ds1ds2 = ds−ds+,
one can transform eq. (16) as follows

Ct(R1,R2) =
2

v2
0

∫ S<

0

σ2
n[r+(s+)]ds+

∫ ∞

0

ds−Kn[κ(s+)s− + δ(s+)]. (21)
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Figure 2: Expansion of difference r1 − r2 into sum of transverse δ and longitudinal s−κ components
(illustration to derivation of (20)).

Taking in eq. (20)R1 = R2 = R, what brings about δ = 0, one can obtain a traveltime variance:

σ2
t̃ = V ar[t̃(R̃)] =

2

v2
0

∫ S(R)

0

ds+σ
2
n[r+(s+)]leff (κ; s+), (22)

where leff (κ; s+) is an effective correlation length in the point r+(s+) along the ray direction κ(s+) =
dr+
ds :

leff (κ; s+) =

∫ ∞

0

Kn(κs−)ds−. (23)

For an anisomeric normalized correlation functionKn(4r) is given as

Kn(4r) = β[g(∆r)], ∆r = r1 − r2, (24)

where (Iooss, 1998)

g(∆r) =

[
(∆x)2

l2x
+

(∆y)2

l2y
+

(∆z)2

l2z

]1/2

. (25)

We suppose for definiteness that the main axes of correlation function (24) are oriented along x, y and z
coordinate axis, and that lx ≥ ly ≥ lz. Let ∆r = κs− and unit vector κ has components sin θ cosφ,
sin θ sinφ, cos θ, θ being polar and φ azimuthal angles. Then

leff =

∫ ∞

0

Kn(∆r)ds− =

∫ ∞

0

β[s−/lκ(θ, φ)]ds− = lκ(θ, φ)

∫
β(g)dg = Γlκ(θ, φ), (26)

where

lκ(θ, φ) =

(
κ2
x

l2x
+
κ2
y

l2y
+
κ2
z

l2z

)−1/2

=

[
(sin θ cosφ)2

l2x
+

(sin θ sinφ)2

l2y
+

cos2 θ

l2z

]−1/2

(27)

is a characteristic scale of function g(∆r) in the ray direction κ and Γ is a formfactor, which depends only
on the profile of function β(g):

Γ =

∫ ∞

0

β(g)dg. (28)

For instance, the value Γ for Gaussian coefficient of correlation β(g) = exp(−g2) is equal

Γ =

∫ ∞

0

exp(−g2)dg =

√
π

2
, (29)
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whereas exponential correlation coefficient β(g) = exp(−g) gives

Γ = 1. (30)

In the case of horizontaly isotropic (isomeric) fluctuations, for which lx = ly = lh, the value leff and lκ
do not depend on azymuthal angle φ:

leff = Γlκ = Γ

[
sin2 θ

l2h
+

cos2 θ

l2z

]−1/2

. (31)

TRAVELTIME VARIANCES IN A LAYERED MEDIUM

We consider a regular ray trajectory in a plane layered medium with refractive index n and a constant
velocity gradient depending on vertical coordinate (depth) z. The depth dependent velocity is represented
by

v(z) = v0(1 + z/H) = v0 + kz, (32)

where depth z = H corresponds to doubling of velocity value, k = v0/H is a velocity gradient. In this
case refraction index n(z) takes a form

n(z) =
v0

v(z)
=

1

1 + z/H
, (33)

and the ray trajectory which has a depth dependence on x is given as

z =
√
H2 + xX − x2 −H, z > 0, (34)

whereX is a final point of the ray. The regular (mean) traveltime t along the ray trajectory can be calculated
as

t =
2H

v0
ln

[
X

2H
+

√
1 +

X2

4H2

]
. (35)

We suppose that velocity fluctuations ṽ are proportional to average velocity v(z):

ṽ = vξ (36)

where ξ is statistically homogeneous random field with variance σ2
ξ and a given normalized correlation

functionKξ(r1 − r2):
< ξ(r1)ξ(r2) >= σ2

ξKξ(r1 − r2). (37)

According to (9), in the framework of the model (36) one has

ñ = −v0ξ

v
= −nξ, (38)

and
σ2
n = (n)2σ2

ξ , σ2
v = (v)2σ2

ξ . (39)

As a result eq.(22) converts into

σ2
t =

2σ2
ξ

v2
0

∫ S

0

n2ds+leff . (40)

This integral can be transformed to the form, convenient for numerical analysis. For this, we shall use
offset x as a variable along the ray:

ds+ =
dx

sin θ
. (41)

Refractive index n for a medium with constant velocity gradient can be written, according to eq. (33), as

n [z(x)] =
1

1 + z
H

=
1√

1 + α(x)
H2

=
1√

1 + ν(γ − ν)
, (42)
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where ν = x/H , γ = X/H . Thirdly, involving the ratio ρ = lz/lx one can rewrite effective correlation
length (31) as

leff = Γlz
[
ρ2 sin2(θ) + cos2(θ)

]−1/2
, ρ = lz/lx . (43)

Considering the ray going along the x axis and using the relation

dz

dx
=
±
√
n2(z)− sin2 θ0

sin θ0
= cot θ, (44)

where θ0 is the polar angle of incidence counted from the vertical axis z one can readily show that

sin θ =
√
B2 − η2/B, cos θ = −η/B, n = (B2 − η2)1/2, (45)

where

η = ν − γ

2
=
x−X/2

H
, B =

√
1 +

(γ
2

)2

. (46)

Substituting eqs. (41)-(46) into eq. (40), and using variable η instead of x , we have

σ2
t = DJ(ρ, γ), (47)

where

D =

√
πlzσ

2
ξH

v2
0

, (48)

and

J(ρ, γ) = B2

∫ γ/2

−γ/2

dη

(B2 − η2)3/2
√
ρ2(B2 − η2) + η2

. (49)

Integral (49), calculated numerically for ρ = 0.1 is presented on Figure 3 by a continious line. At small
distances, γ = X/H , the integral J rapidly increases as

J(ρ, γ) ≈ γ

ρ
,

reaching the value J ≈ 2 at γ ≈ 2ρ. Then J approaches the maximum value Jmax = 4.57 at γ = 1.9
and then slowly reduces, tending to asymptotic value J∞ = 2 when γ → ∞. Reducing J at large
distances looks unusual: this phenomenon was never met before neither in acoustics and optics, nor in
radio wave propagation. Traveltime variance reducing with a distance results due to fast “diving” of the
ray into deeper layers where refractive index fluctuates weaker and due to strong anisotropy (anisomery) of
random inhomogeneities: at ρ = lz/lx = 1 (isomeric inhomogeneities) and ρ = lz/lx = 10 (anisomeric
inhomogeneties, lz � lx ) reducing of J does not occure (Figure 3, dashed and dotted lines, respectively).
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Figure 3: Dependence of factor J(ρ, γ) for determining traveltime variance σ2
t on dimensionless distance

γ = X/H . The curves corresponds to the model σ2
v = v2σ2

ξ : for ρ = 0.1 (continious curve), ρ = 1.0
(dashed curve) and ρ = 10.0 (dotted curve).

TRAVELTIME TRANSVERSE AND LONGITUDINAL CORRELATION SCALES IN A
LAYERED MEDIUM

Involving variable dx = sin θds like in eq. (40), one can rewrite the basic formula (22) for a layered
medium in a form:

Ct(R1,R2) =
2

v2
0

∫ X<

0

dx+

sin θ0
σ2
n[r+]

∫ ∞

0

ds−Kn(κs− + δ). (50)

This formula allows to estimate both transverse and longitudinal correlation scales.
Let the pointR2 = (X,∆Y, 0) is shifted in y direction relatively the pointR1 = (X, 0, 0) (Figure 1a).

In this case δz = δx = 0, whereas current distance δy between the rays, arriving to points R1 and R2, is
proportional to x :

δy =
x

X
∆Y. (51)

The argument g of anisomeric correlation function (24) in this case is equal to

g =

(
κ2
x

l2x
+
κ2

z

l2z

)
s2
− +

(∆Y )2

l2y

( x
X

)2

. (52)

One can readily conclude from eqs. (50) and (52) that transverse correlation scale ∆Yc is comparable
with ly or, if lx = ly = lh , with horizontal correalation scale lh . Similar properties are characteristic for
spherical and cylindirical waves in statistically homogeneous random media (Rytov et al., 1989b).

Estimates for longitudinal correlation scale ∆Xc happen to be somewhat troublesome. Let the points
of observationR1 andR2 are seperated by the interval ∆X in x direction (Figure 1b):

R1 = (X, 0, 0), R2 = (X + ∆X, 0, 0). (53)

Under these conditions distance between the rays can be calculated from the relation

δ ≡
(
δ2

z + δ2
x

)1/2
= |∆Z| sin θ, (54)

where |∆Z| is a current vertical distance between the rays, arriving to the points X and X + ∆X :

∆Z(x) =
√
H2 + x(X + ∆X)− x2 −

√
H2 + xX − x2. (55)
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Considering x + ∆X to be small as compared to H2, one can expand eq. (55) into Taylor series in ∆X .
Restricting ourselves by linear term in ∆X and taking into account that sin θ =

√
H2+xX−x2√
H2+(X/2)2

one has

δ(x) =
x∆X

2
√
H2 + (X/2)2

. (56)

Taking into account that κ = (sin θ, cos θ) and δ = (δ cos θ,−δ sin θ) one can present the argument g,
eq.(25) of correlation function (24) as

g =

[
(s− sin θ + δ cos θ)2

l2x
+

(s− cos θ − δ sin θ)2

l2z

]1/2

. (57)

Dealing with Gaussian correlation function Kn(g) = exp(−g2) one can show that internal integral in eq.
(50) equals ∫

Kn(κs− + δ)ds− = leff exp

(
−δ

2

l2δ

)
. (58)

where effective correlation length leff is given by eq.(31) with Γ =
√
π/2 and characteristic transverse

length lδ is

lδ =
[
l2z sin2 θ + l2x cos2 θ

]1/2
= lz

[
sin2 θ +

1

ρ2
cos2 θ

]1/2

. (59)

As a result longitudinal covariance function takes a form

Ct(X,X + ∆X) =
2Γσ2

ξ lz

v2
0

∫ X<

0

n2dx√
ρ2 sin2 θ + cos2 θ

exp

(
− (x∆X)2

(4H2 +X2)l2δ

)
. (60)

In dimensionless variables η and γ, used in eq. (46), longitudinal covariance (60) takes a form

Ct(X,X + ∆X) = DP (ρ, γ,Λ), (61)

where

P (ρ, γ,Λ) =

∫ γ/2

−γ/2

Bdηexp (−Q)

(B2 − η2)
3/2√

ρ2 (B2 − η2) + η2
, (62)

where factor D is given by (48),

Q =

(
η + γ

2

)2
Λ2

B2 [ρ2 (B2 − η2) + η2]
, (63)

and

Λ =
∆X

lx
. (64)

Note that at Λ = 0 integral (62) turns out to be equal J :

P (ρ, γ, 0) = J (ρ, γ) . (65)

Dimensionless longitudinal correlation radius Λc = ∆Xc/lx can be determined then at given values ρ and
γ, from the equation:

P (ρ, γ,Λc) =
1

2
P (ρ, γ, 0) =

1

2
J (ρ, γ) . (66)

Numerical solution of this equation for ρ = 0.1 is presented in Figure 4. According to this plot, longitudinal
correlation radius Λc exceeds a unit, Λ > 1 (∆Xc > lx ) at small distances γ < 0.5, takes a minimum
value Λmin = 0.53 at γ = 2.19 and slowly increases at γ > 2.19. It is worth noticing that on the most
part of the plot, presented on Figure 4, longitudinal correlation radius ∆Xc is less than lx , ∆Xc < lx , but
at least five times as larger than lz .
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Figure 4: Dependence of dimensionless longitudinal scale Λc = ∆Xc/H on distance γ = X/H .

NUMERICAL MODELLING

In order to verify the theoretical results, numerical calculations were performed by using ray tracing method
in 2D elastic random media. The random field ξ was generated with a Gaussian probability density function
with zero mean and unit variance and multiplied by the square root of the Gaussian correlation function in
the wave number domain. The random field in real space which represents the velocity fluctuations was
obtained by taking the inverse Fourier transform. The random media represented with the refractive index
fluctuations are calculated by using eq.(9). The average value of velocity v is supposed to grow with a
depth z as v = v0 + az, whereas the random part of the velocity ṽ is taken proportional to the average
velocity: ṽ = (v0 + az)ξ. The grid points for the model were selected with an increment of 10m in both
directions (∆x = ∆z). Total number of the grid points was nz = 1024 in z direction and nx = 2048 in x
direction. The inhomogeneity scale lengths are selected as lz = 50m and lx = 500m in z and x directions
respectively so that (lz � lx ) what gives a ratio of ρ = 0.1. The initial velocity and the velocity gradient
were selected as v0 = 2000m/s, a = 0.8s−1 respectively. Standart deviation σξ of dimensionless velocity
fluctuations ξ = ṽ/v was σξ = 0.01.

Traveltime fluctuations t̃ were calculated by using eq.(15) which was transformed to the form

t̃ =
1

v0

√
H2 +

X2

4

∫ X

0

ñ [x, z (x)] dx√
H2 + xX − x2

. (67)

which is more convenient for numerical calculations. The refractive index fluctuation field ñ [x, z(x)] =
ξv0/v was calculated in each grid point of the model. The rays were traced by using eq. (34). Linear
interpolation was performed in all the cases, when the ray trajectories did not match the grid points.

The numerical calculations were performed for 100 realization of the medium. An example of 10
realizations of travel time fluctuations versus distance are plotted in Figure 5. The variance of the traveltime
fluctuations was calculated as a function of distance and shown in Figure 6 as a thin wavy curve. Significant
variations of “empirical” curve σ2

tnum are caused by limited number of realizations N=100: expected value
of relative variations can be estimated as 1/

√
N = 0.1, that is about±10%.

σ2
tnum =< t̃2 >=

1

N

N∑

i=1

[
t̃i(x)

]2
, N = 100. (68)
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Figure 5: Examples of traveltime fluctuations along x axis, obtained by numerical simulations. Each trace
has a dimension of time in seconds versus x(km) distance.

Considering the values σ2
tnum as “empirical data”, one can fit the theoretical curve (47) to the “empirical

data” and thereby extract the medium statistical parameter σ2
ξ lz (fluctuation variance multiplied by the

inhomogeneity scale length in z direction) and ρ = lz/lx (correlation scales ratio). Performing nonlinear
fit procedure, “empirical” σ2

ξ lz was estimated as 0.005, in agreement with model value σ2
ξ lz = 0.005.

Empirical estimate of ρemp = 0.12 is also sufficiently close to the model value ρ = lz/lx = 0.1. It is seen
that numerical results satisfactorily agree with the theoretical derivations.

The correlation radius ∆Xc was calculated from the equation:

Cov
[
t̃(X), t̃(X + ∆Xc)

]
num

≡ 1

N

N∑

i=1

t̃i(X)t̃i(X + ∆X) =
1

2
σ2
tnum (69)

where t̃i(X) are data, obtained by numerical simulation. Resulting correlation radius (∆Xc)num is pre-
sented in Figure 7 by a thick curve.

The plot in Figure 7 allows to retrieve the horizontal correlation length lx by fitting theoretical depen-
dence

(∆Xc)theo = lx (Λc)theo

(thin curve in Figure 7) to the results of numerical modelling. Here dimensionless correlation radius
(Λc)theo is the root of the eq. (66), (plot of this value versus dimensionless distance γ = X/H is shown in
Figure 4).

The fitting procedure provides the best result at (lx)num = 448m, which is a sufficiently good approx-
imation to the original correlation length lx = 500m, corresponding to the medium model.

Having revealed the ratio ρ = lz/lx = 0.12 from previous calculations (Figure 6) one can estimate
the vertical correlation scale lz as lz = ρlx = 0.12 ∗ 448m = 54m and fluctuation intensity σξ from
σ2
ξ lz = 0.005 as σξ =

√
0.0050/54 = 0.01.
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Figure 6: Variance of traveltime fluctuations obtained by numerical simulations (continious curve).
Dashed curve is theoretical dependence of (47), fitted to “empirical” data.

Numerical

Theoretical

Figure 7: Longitudinal correlation scale ∆Xc versus distance γ = X/H : Numerical calculation (thick
curve) and theoretical dependence (thin line) fitted to the “empirical” data.

CONCLUSIONS

In this paper the statistics of the traveltime fluctuations is studied for refraction geometry. The most impor-
tant result of the study is that in a realistic medium with linear gradient of velocity the travel time variance
decreases at larger distances and approaches a constant value. The reason for such an unusual behaviour is
the fast rays diving into the deeper layers where refractive index fluctuates weaker in combination with the
strong anisomery of the random inhomogeneities.

Calculations, performed in this paper, showed that refraction seismics is in position to deliver valuable
information on random inhomogeneities of the elastic media. Though interpretation of experimental data
in refraction geometry, is a little bit cumbersome as compared to reflection geometry, refraction seismics
allows to estimate the main statistical parameters of random media: variance of refractive index, horizontal
and vertical scales of inhomogeneities.
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