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ABSTRACT

I present a tomographic inversion scheme that makes use of finite-offset (FO) kinematic wavefront at-
tributes to determine smooth, laterally inhomogeneous, isotropic 2D subsurface velocity models. The
kinematic wavefield attributes are associated with rays starting at a common reflection point (CRP) in
the subsurface. An optimum model is found iteratively by minimizing the misfit between measured
and modeled data in the least-squares sense. The required forward modeled data are obtained during
each iteration by dynamic ray tracing. Fréchet derivatives contained in the tomographic matrix are
calculated by ray perturbation theory. The tomographic inversion is successfully tested on a synthetic
example.

INTRODUCTION

A tomographic inversion scheme for the construction of smooth 2D isotropic velocity models for depth
imaging based on kinematic wavefield attributes was recently established by Duveneck (2002). The method
makes use of the curvature of normal incidence point (NIP) wavefronts, emergence angles of selected zero-
offset (ZO) central rays and the corresponding one-way traveltimes. All kinematic wavefield attributes used
in this inversion can be extracted in a robust way from seismic prestack data with the Common-Reflection-
Surface (CRS) Stack (Mann et al., 1999). An alternative formulation (Duveneck et al., 2003) uses first and
second order spatial derivatives of traveltime in place of angles and curvatures.

In this paper the method is extended to the finite-offset (FO) case. Both alternative formulations are
explained and their relationship is described.

KINEMATIC WAVEFIELD ATTRIBUTES

Kinematic wavefield attributes are all kinematic characteristics of a selected wave observable at the surface.
The traveltime of a selected wave can be approximated around an observation point on the surface by
parabolic and hyperbolic traveltime expansions (Schleicher et al., 1993). They provide the first and second
order traveltime derivatives at the observation point. Beside the traveltime t itself this are the wavefield
attributes used further in this paper. They can be related to hypothetical experiments yielding the same
attributes. In the following only P-waves propagating in isotropic inhomogeneous media are considered.
The associated rays are perpendicular to the wavefront. Only primary reflection events are taken into
consideration.

In order to introduce the wavefront attributes used in the inversion process I will start with the ZO-case.
Then I will extend the ZO case to finite offsets.

ZO-case

In a ZO-experiment, the central ray associated with a selected wavefront hits the reflecting interface nor-
mally. Therefore the point of incidence on the reflector is called normal-incidence-point (NIP). The down-
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and up-going ray segments are identical. The kinematic reflection response of a reflector segment around
NIP is approximated by the ZO-CRS operator. This operator is expressed by the emergence angle β of
the central ray and the curvatures of two eigenwaves measured at the surface. The near surface velocity
v is assumed to be constant around the observation point. The two eigenwaves are associated with two
hypothetical experiments. A point source at NIP provides the so-called NIP wave (Hubral, 1983) emerging
on the ground surface with the curvature KNIP . An exploding reflector segment around NIP provides
the so-called normal wave (Hubral, 1983) emerging at the observation point with the curvature KN . The
emergence angle β is related to the first-order spatial derivative of the one-way traveltime with respect to
the midpoint coordinate xm as follows:

∂T

∂xm
=

sinβ

v
, (1)

where T = t/2 denotes the one-way traveltime and xm = 1
2 (xs + xG) is the location of the midpoint at

the measurement surface. The source and receiver locations are denoted by xS and xG respectively. The
x-axis of the coordinate system is assumed to be tangential at the measurement surface in the considered
measurement point. The curvatureKNIP of the emerging wave due to the point source at NIP is related to
the second-order spatial derivative of the one-way traveltime with respect to the half-offset h as follows:

∂2T

∂h2
=
KNIP

v
cosβ2 , (2)

where h is defined by h = 1
2 (xG − xS). Please notice that the NIP wave experiment does not include any

reflector characteristics. Thus it is possible to place a point source in a subsurface velocity model and to
calculate the approximate kinematic traveltime response at the surface. Adjusting the velocity model and
the location of the point source provides the same traveltime response actually extracted from the data by
means of the CRS-stack. This is the basic idea of the inversion presented by Duveneck (2002).

Extension to finite-offsets

I consider a point source at the same depth point as in the ZO-case. Let me denote this point by CRP
(common-reflection point). Separating the source and receiver location under the condition that the con-
necting central ray meets Snell’s law at the CRP provides all the source/receiver pairs pertaining to the
CRP-trajectory. This trajectory connects all points in the three-dimensional prestack data volume pertain-
ing to the same depth point. The two ray segments connecting the CRP with the source location xS and
the receiver location xG are no longer identical now. One has to distinguish also between the emerging
wavefronts at the source and receiver location due to the point source at the CRP. This two wavefronts are
the finite-offset equivalents of the NIP wave discussed earlier. The relationship between emergence angles
and wavefront curvatures to first and second order spatial derivatives is analogous to the ZO-case. I make
the necessary distinction using subscripts S and G (source and geophone). In the following I make use of
five kinematic wavefront attributes in the FO-case (see Figure 1): I have to use the measured traveltime
T because it is not known how it is distributed on the two ray segments. Its first derivatives with respect
to the source and receiver locations are given by pS = ∂T

∂xS
and pG = ∂T

∂xG
Further I assume the spatial

second-order derivatives MS = ∂2T
∂x2 and MG = ∂2T

∂x2 associated with the two emerging wavefronts due to
a point source at CRP to be known.

THE TOMOGRAPHIC APPROACH

The wavefront attributes described above are independent of characteristics of the corresponding reflection
point because they are related to theoretical experiments using only a point source placed in depth. Thus
they allow to neglect all reflector effects in the tomographic approach. Billette and Lambaré (1998) discuss
various approaches to tomography including finite-offset ray-pairs. In contrast to me they are not including
second-order spatial derivatives. One possible approach discussed by them is to begin at the surface. The
ray starting directions are known from the data. Ray-tracing can be performed until the traveltimes along
the two ray segments equal the measured traveltime T . Using the correct velocity model the two rays
should end in the same depth point. It is rather difficult to define a measure of misfit for this crossing
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condition. It is more suitable to place a point source in depth and to perform ray tracing until the two
rays reach the surface. The forward modeled traveltime T and angles of emergence or alternatively the
corresponding first-order traveltime derivatives can be compared to the measured quantities. A measure
of misfit can easily be formulated in the least-squares sense. It is ensured that the rays start at the same
point, a condition which is also met in reality. Therefore this approach is physically more suitable. One
has to define for each ray-pair a starting position and two initial directions at the CRP in the subsurface.
The directions can be given as angles to the vertical or as horizontal slowness components pSx and pGx . I
make use of slowness components because they are directly involved in the ray-tracing system (see the
Appendix).

Additionally to Billette and Lambaré (1998) I make also use of second order traveltime derivatives
associated with the waves due to the point source at the CRP, i.e I require the emerging wavefronts to focus
at the CRP if propagated back from the surface to depth . Thus I do not use a measure of misfit between
first order but between second order traveltime expansions at the measurement surface. For an overview of
data and model components view Figure 1.

PSfrag replacements
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x
(xS , pS , MS) (xG, pG, MG)

(x, z, pxS
, pxG

)

1

Figure 1: Overview over data and model components. The two central rays propagating in an isotropic
inhomogeneous medium connect the source and receiver location. They start in a common point, the CRP.

As the ray-starting positions and directions at the CRP in the subsurface are not known a priori, they
have to be included as model parameters to be inverted for. The velocity model v(x, z) is represented by
two-dimensional B-splines:

v(x, z) =

nx∑

i

nz∑

j

vijβi(x)βj(z) , (3)

where βi(x)andβj(z) are B-spline basis functions and nx and nz are the chosen numbers of knots in the
horizontal and vertical direction. During the inversion process smooth third derivatives of the velocity are
required. That is why the B-spline basis functions have to be at least of degree four.

The inverse problem can be formulated as follows: The velocity model can be seen to be consistent
with the data if all forward modeled quantities due to a point source in depth equal the measured quantities.
This leads to the problem of minimizing a merit function S in the least-squares sense:

S = ‖dmea − dmod‖22 =
1

2
∆dT (m)C−1

D ∆d(m) , (4)

where ∆d is defined as the difference between the vectors containing the measured data dmea and modeled
data dmod. The matrix CD is sometimes called the data covariance matrix, here assumed to be diagonal,
which weights the different data components. The modeled data are calculated using a nonlinear forward
modeling operator f :

dmod = f(m) , (5)
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where m is a vector containing all model parameters. Because of the nonlinearity of f the inverse problem
has to be solved iteratively. The forward modeling operator is linearized during each iteration. Starting
with a first guess model m0, a sequence of model updates ∆m is found, hoping that the process converges
to a global minimum. Having found a model m(n) in the n’th iteration, the modeling operator f is locally
linearized by (Duveneck, 2002)

f(m(n) + ∆m(n+1)) = f(m(n)) + F(n)∆m(n+1) . (6)

The matrix F(n) is a matrix containing the Fréchet-derivatives ∂(T,MS ,MG,pS ,pG,xS,xG)
∂(x,z,pSx ,p

G
x ) . The Fréchet

derivatives can be obtained during forward modeling by ray-perturbation theory (Farra and Madariaga,
1987). Their calculation is described in detail in the appendix. A necessary condition for a minimum of S
is ∇mS = 0. Using equation (6) one obtains

∇mS ≈ −FTC−1
D (∆d(m(n))− F∆m) = 0 . (7)

This leads to a least-squares solution for ∆m if the inverse of FTC−1
D F exists.

In practice, F is usually ill-conditioned because not all model components are sufficiently constrained
by the data alone. Additional information is introduced to further constrain the model and to regularize
the problem. I am looking for the simplest model explaining the data. Thus, I require the velocity to
be smooth. The second spatial derivatives of the velocity v(x, z) give a measure of smoothness. The
smoothness criterion is detailed in the appendix. Its application leads to a matrix equation of the following
form (Duveneck, 2002):

F̂∆m = ∆d̂ , (8)

where

F̂ =

(
C
− 1

2

D F
[0,B]

)
, ∆d̂ =

(
C
− 1

2

D ∆d(m(n))
−[0,B]m(n)

)
. (9)

The matrix F̂ is large for a relatively little amount of data. It is sparse as the Fréchet derivatives relating
parameters of one ray-pair to those of another are identically zero. Also each ray-pair is influenced only by
a fraction of the total number of velocity knot-point values. This sparsity is taken advantage of using the
LSQR algorithm (Paige and Saunders, 1982a,b).

SYNTHETIC DATA EXAMPLE

To test the inversion algorithm introduced in the previous section I apply it to a synthetic data example. The
model to be inverted for is shown in Figure 2. It is described by 8×8 B-spline coefficients with a horizontal
spacing of 500m and a vertical spacing of 400m. 108 data points consisting of (T,MS,MG, pS , pG, xS , xG)i,
i = 1, ..., nData, are generated directly by dynamic ray tracing, each ray segment starting at the correspond-
ing CRP with an absolute value of p = 0.15 · 10−3 s

m of the horizontal component of the slowness vector.
This leads to different starting angles depending on the local velocity at the different CRP’s. The results
are source-receiver pairs separated by a wide range of finite offsets. The offset varies between 300m and
3500m.

During the inversion process I used no spatially variable weighting of the different regularization terms.
The different terms were initially weighted using εxx = εxz = εzz = 0.005 and ε = 1.5 · 10−5 (see
Appendix). The different data components were weighted using the following weighting terms:

σx = 1.0 σT = 1.0 σM = 0.9 σpx = 0.2 ,

where the different σ’s are the elements on the main diagonal of C
1
2

D. To start the inversion process I
used a constant velocity medium with v = 3000ms . Before I show the inversion results let me remark
that all graphics except the ones showing differences between two models have been clipped using the
extremal values of the model shown in Figure 2, i.e. all figures have been clipped against vmin = 1500.0ms
and vmax = 3500.0ms . As can be seen the model is well reconstructed (see Figure 3). The maximum
difference between the inversion result and the model used for forward modeling is in the range of±110ms
as can be seen in Figure 4.
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Figure 2: Model used for forward modeling of inversion input. Also shown are the forward modeled ray
segments.
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Figure 3: Inversion result and ray segments after 12 iterations.
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Figure 4: Difference between the inversion result and the model shown in Figure 2.
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Figure 5: Comparison of forward modeled data values and those obtained after the inversion process.



134 Annual WIT report 2003

Let me now compare the inverted with the forward modeled data. I will show four examples in Figure
5. Each subfigure shows the difference between the forward modeled and inverted data values. To give an
impression of how the inversion process progresses I present three intermediate steps in Figure 6.

CONCLUSIONS

I have presented a tomographic inversion scheme which makes use of finite-offset kinematic wavefield
attributes to determine smooth, laterally inhomogeneous subsurface velocity models. The method is a
logical extension of the ZO inversion presented by Duveneck (2002). I have tested it successfully with a
synthetic example.

In the ZO case kinematic wavefield attributes derived from seismic data using the CRS stack are used
as input for the inversion process. In the FO case, attributes derived with the FO CRS stack should be used
(Zhang et al., 2001). This requires to extract the second-order traveltime derivatives associated with waves
due to a point source at CRP from the FO CRS surface. A way to do this is part of current research.
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Figure 6: Three intermediate results of the inversion process.
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APPENDIX A

FORWARD MODELING AND CALCULATION OF FRÉCHET DERIVATIVES

The central rays connecting the point source at CRP and the measurement surface are found using standard
ray theory with the model parameters of the current inversion iteration as initial conditions. Ray theory
is formulated using a Hamiltonian formalism in general Cartesian coordinates. The Hamiltonian function
follows directly from the eikonal equation:

H(x, z, px, pz) =
1

v2(x, z)
− p2

x − p2
z = 0 . (10)

As I do not consider turning points with respect to the z-coordinate, I can solve equation (10) for pz using z
as the independent variable in the ray tracing process. This way I derive the reduced Hamiltonian operator
HR:

HR = −pz =

√
1

v2(x, z)
− p2

x . (11)

The corresponding ray tracing system reads:

dx

dz
=
∂HR

∂px
,

dpx
dz

= −∂H
R

∂x
(12)

Traveltime T is determined by integration of:

dT

dz
=

1

v2(x, z)pz
(13)

Having found the central rays the traveltime T is simply the sum of the traveltimes of the two rays pertaining
to one CRP. The first order derivative of T with respect to the x-coordinate is given by px at the surface.

The second-order spatial derivatives of T for fixed ray starting locations in the subsurface are calculated
performing dynamic ray tracing along the known central rays. Perturbations of x and px at the ray endpoint
may be linearly related to the corresponding properties at the ray starting point with the ray propagator
matrix, which will be denoted by T. The ray propagator matrix is obtained solving

d

dz

(
∆x0

∆px0

)
= S

(
∆x0

∆px0

)
. (14)

The matrix S is the so called system matrix containing four elements:

S =

(
∂2HR

∂x∂px
∂2HR

∂p2
x

∂2HR

∂x2
∂2HR

∂x∂p2
x

)
. (15)

All derivatives have to be evaluated on the central ray. The quantities ∆x0 and ∆px0 are perturbations
of the initial conditions. The solution of equation (14) relating the perturbations of x and px at the ray
endpoint to the perturbations of the initial conditions at the ray starting point reads:

(
∆x
∆px

)
= T(z, z0)

(
∆x0

∆px0

)
(16)

The quantities ∆x and ∆px describe the perturbations of x and px at the ray end point. The propagator
matrix T contains four elements

T =

(
A B
C D

)
(17)

and fulfills the initial condition T(x0,x0) = I, where I denotes the identity matrix. It coincides with the
surface-to-surface propagator matrix T introduced by Bortfeld (1989) specialized to the case of horizontal
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anterior and posterior surfaces. Furthermore the second order derivative of the traveltime T is derived from
the surface-to-surface propagator matrix given in equation (17) using (C̆ervený, 2001):

∂2T

∂x2
= M = DB−1 . (18)

Changes in the final slowness and position values due to changes in the velocity model can be calculated
using a perturbed reduced Hamiltonian operator (Farra and Madariaga, 1987):

HR = HR
0 +

∂HR
0

∂v
∆v = HR

0 + ∆HR , (19)

where HR
0 denotes the unperturbed Hamiltonian. This results in the following inhomogeneous system at

the ray starting position:

d

dz

(
∆x0

∆px0

)
= S

(
∆x0

∆px0

)
+

( ∂∆H
∂px

−∂∆H
∂x

)
. (20)

All derivatives have to be evaluated on the unperturbed central ray. The solution of equation (20) can again
be found using propagator techniques (Farra and Madariaga, 1987):

(
∆x
∆px

)
= T0(z, z0)

(
∆x0

∆px0

)
+

∫ z

z0

T0(z, τ)

( ∂∆H
∂px

−∂∆H
∂x

)
dτ . (21)

Now I have to look for paraxial rays in the perturbed medium. The paraxial ray tracing system in the
perturbed medium is obtained by analysis of the perturbation of the system matrix S (Farra and Madariaga,
1987):

S = S0 + ∆S1 + ∆S2 , (22)

where ∆S1 is a term due to perturbations ∆v of the velocity, while ∆S2 is due to perturbations ∆x and
∆px of the central reference ray:

∆S1 =

(
∂2∆HR

∂x∂px
∂2∆HR

∂p2
x

−∂2∆HR

∂x2 −∂2∆HR

∂x∂px

)
(23)

∆S2 =

(
∆x

∂

∂x
+ ∆px

∂

∂px

)


∂2HR0
∂x∂px

∂2HR0
∂p2
x

−∂
2HR0
∂x2 − ∂2HR0

∂x∂px


 (24)

The paraxial rays in the perturbed medium are calculated analogous to the ones in the unperturbed medium:
(

∆x
∆px

)
= T(x,x0)

(
∆x0

∆px0

)
, (25)

with T now given by (Farra and Madariaga, 1987)

T(z, z0) = T0(z, z0) +

∫ z

z0

T0(z, τ) (∆S1 + ∆S2) T0(τ, z0)dτ , (26)

where T0 denotes the propagator matrix in the unperturbed medium.
So far no perturbation of the initial z-coordinate is considered. Let me define the perturbation ∆T of

T due to a perturbation ∆z0 of the initial z-coordinate:

∆T = T(z1, z0 + ∆z)−T(z1, z0) . (27)

Using the chain rule (C̆ervený, 2001) this expression can be rewritten in the following form:

∆T = T(z1, z0)
(
T−1(z0 + ∆z, z0)− I

)
. (28)
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Using the fact that
∂T

∂z
= S T , (29)

one can perform a Taylor expansion around z0, yielding a term for T−1(z0 + ∆z, z0). This leads to an
expression for the perturbed surface-to-surface propagator matrix.

The perturbed surface-to-surface propagator matrix is a summation of the individual terms (Duveneck,
2002):

T(∆x,∆z,∆px,∆v) = T0 + ∆T(∆x,∆px) + ∆T(∆z) + ∆T(∆v) . (30)

The above presented equations together with

∆M = B−1∆D −DB−2∆B

suffice to calculate all Fréchet derivatives needed in the inversion process.

APPENDIX B

REGULARIZATION OF THE TOMOGRAPHIC MATRIX

Because the tomographic matrix F is in general ill-conditioned the inversion problem has to be regularized
by introducing additional constraints on the model parameters. I am looking for a smooth model without
any artificial structure. A physically sensible way to obtain such a model is to require the velocity model
to have minimum curvature, i.e., minimum second spatial derivatives. In order to be as much as possible
independent of the discrete structure of the velocity knot points the minimum curvature condition is applied
on the smooth model itself, not on the B-spline coefficients.

The second spatial derivative of the velocity, described by B-splines is (x-component):

∂2v(x, z)

∂x2
=
∑

i

∑

j

vij
∂2βi(x)

∂x2
βj(z) . (31)

The z- and mixed components are derived in an analogous fashion. The L2-norm of (31) is given by

∥∥∥∥
∂2v

∂x2

∥∥∥∥
2

2

=

∫

x

∫

z

(
∂2v(x, z)

∂x2

)2

dzdx = mT
(v)D

xxm(v) , (32)

where m(v) denotes that part of the model parameter vector containing the B-spline coefficients. Similar
expressions are derived for the second derivatives with respect to z and for the mixed derivatives. This
leads to the following term included in the merit function S:

∫

x

∫

z

ε(x, z)

[
εxx
(
∂2v(x, z)

∂x2

)2

+ εxz
(
∂2v(x, z)

∂x∂z

)2

+ εzz
(
∂2v(x, z)

∂z2

)2

+ εv2(x, z)

]
dzdx

= mT
(v)D

′′m(v) (33)

Therein ε(x, z) is a spatially variable weighting function represented by B-splines. It is based on the same
knot point locations as the velocity model. The factors εxx, εxz, εzz and ε are used for normalization and
to balance the contributions of the different terms.

Including the term (33), the merit function to minimize is given by (compare to equation (4)):

2S(m) = ∆dT (m)C−1
D ∆d(m) + ε̂mT

(v)D
′′m(v) , (34)

where ε̂ is the highest value of εxx, εxz, εzz and ε. The different ε in equation (33) are normalized by ε̂. For
further calculations I need to find a matrix B with BTB = ε̂D′′ (Duveneck, 2002). This is only possible
if D′′ is positive definite. Therefore the term εv2(x, z) is included in equation (33). Because there is no
physical reason for minimizing the velocity itself, ε has to be chosen much smaller than the other weighting
factors.
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Assuming the forward modeling operator can be locally approximated around m(n) by f(m(n+1)) ≈
f(m(n)) + F∆m(n+1) (Duveneck, 2002), where m(n+1) = m(n) + ∆m(n+1), one obtains

∇mS = −FTC−1
D (dmea − f(m)) + ε̂D′′m(v)

≈ −FTC−1
D ∆d(m(n)) + FTC−1

D F∆m(n+1) + ε̂D′′(m(n)
(v) + ∆m(n+1))

. (35)

The necessary condition ∇mS = 0 for a minimum of the merit function (34) leads to the system which
has to be solved (Duveneck, 2002):

F̂∆m = ∆d̂ , (36)

with

F̂ =

(
C
− 1

2

D F
[0,B]

)
, ∆d̂ =

(
C
− 1

2

D ∆d(m(n))
−[0,B]m(n)

)
. (37)

The searched for model update ∆m is the least squares solution to equation (36). The updated model
components are given by m(n+1) = m(n) + λ∆m(n+1), where 0 < λ ≤ 1.


