
249

Stress sensitivity of elastic moduli and electrical resistivity in porous
rocks

A. Kaselow and S. A. Shapiro

email: kaselow@geophysik.fu-berlin.de
keywords: Stress sensitivity, seismic velocities, electrical resitivity, formation factor, porosity, confining

stress, pore pressure

ABSTRACT

Stress dependencies of elastic moduli and velocities for anisotropic rocks and electrical resistivity are
derived as functions of pore space deformation due to an applied arbitrary load. All dependencies have
the form of a four parametric exponential equation V (P ) = A + KP − B exp(−DP ). The stress
dependencies are mainly controlled by the tensor of stress sensitivity. One result of our derivations
is that if this tensor is isotropic and the rock sample is loaded hydrostatically the argument D of the
exponential term is a univers quantity for all mentioned rock characteristics. We show that laboratory
derived velocity, dilatancy, and resistivity measurments as a function of effective pressure support this
result.

INTRODUCTION

Understanding stress dependencies of elastic moduli and seismic velocities is important for interpretation
of very different seismic and seismologic data. For example, it is necessary for studies of earthquakes and
seismogenic processes, for exploring tectonic stress distributions in space and time, for borehole construc-
tions and developments of hydrocarbon and geothermal reservoirs. Specifically, in the exploration seismol-
ogy knowledges of velocity stress dependencies are required in different applications ranging from AVO
and velocity analysis to overpressure prediction and 4D seismic monitoring of hydrocarbon or geothermal
reservoirs.

Many studies have shown that seismic velocities are sensitive to changes of the in situ state of stress as
induced by reservoir depletion or fluid injection. Due to the combination of this sensitivity with high spatial
resolution seismic methods are frequently used for reservoir monitoring purposes. In order to interprete the
signature of the current state of stress and induced changes on seismic waves theoretical approaches are
required to relate elastic moduli to stress. Some of these approaches take into account that rocks behave like
non-linear elastic bodies or even more complex. Several, quite successful attempts to use the formalism
of non-linear elasticity theory for this goal are known from recent literature (e.g., Sarkar et al., 2003;
Johnson and Rasolofosaon, 1996; Winkler and Liu, 1996; Rasolofosaon, 1998). However, these models
are restricted to small ranges of stress variations only. As a consequence, the resulting stress dependencies
of elastic properties are principally linear functions of stress only.

Several other approaches can be understood as attempts to specify models of pore space geometry in
order to arrive at a more specific elastic non-linear rock characterization. These are spherical contacts
models (Duffy and Mindlin, 1957) or crack contacts models (Gangi and Carlson, 1996; Mavko et al.,
1995). These approaches are used in geophysical applications (see Merkel et al., 2001; Carcione and
Tinivella, 2001). They lead to different quite complex stress dependencies of elastic properties. Moreover,
some of them work in very limited ranges of pore pressure changes or under very restrictive geometrical or
geomechanical conditions.
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Figure 1: Best fit of anisotropic velocities (1(a): P-waves; 1(b): S-waves) from metamorphic rock sample.
A successful fit with a universe D = 0.031 1/MPa indicates an isotropic stress sensitvity tensor.

However, laboratory observations show that under hydrostatic load pore pressure, confining stress and
differential pressure dependencies of seismic velocities or elastic moduli are phenomenologically described
by the following simple relationship (Zimmerman et al., 1986; Eberhart-Phillips et al., 1989; Freund, 1992;
Jones, 1995; Prasad and Manghnani, 1997; Khaksar et al., 1999; Carcione and Tinivella, 2001; Kirstetter
and MacBeth, 2001)

V (P ) = A+KP −B exp (−PD), (1)

where P = Pc−Pfl is the differential pressure, Pc = −σii/3 is a confining pressure, σij is a component of
the total stress tensor (here, the compression stress is negative and the summation over repeating indices is
assumed) and Pfl is a pore pressure. The coefficientsA,K,B and D of equation (1) are fitting parameters
for a given set of measurements.

It is often observed that equation (1) or similar ones provide very good approximations for velocities and
elastic moduli of dry as well as saturated rocks in a range of stress changes of several hundred Megapascal.
Moreover, it is also observed that this equation provides a very good approximation for elastic properties
even in the case of anisotropic rocks (see Figure 1) and Kaselow and Shapiro (2003).

On the other hand it is known that electrical resistivity is remarkably more sensitive to porosity, temper-
ature, and fluid saturation than seismic velocities (e.g., Wilt and Alumbaugh, 1998). Numerous laboratory
experiments have been conducted in the past to understand the electrical properties of very different rock
types. A review of these studies can be found, e.g., in Wyllie (1963); Olhoeft (1980); Parkhomenko (1982).
However, in high porosity reservoir rocks electrical resistivity is usually assumed to be independent from
changes in the in situ stress field. For example, Daily and Lin (1985) found that the electrical conductivity
primarily resulted from electrical volume conduction and that resistivity is not effected by changing elastic
moduli through crack closure due to compression as long as the large aspect ratio pores remain open. Lock-
ner and Byerlee (1985) compared the stress dependent complex resistivity of Westerly granite with the one
of Berea sandstone. They found that the stress dependence of resistivity is much smaller in sandstones than
in granites. For one granitic sample the real part of the low-frequency conductivity dropped of by 94 % at
200 MPa confining pressure whereas the conductivity of the sandstone decreased by only 24 %. Crystalline
rocks seem to behave like sandstones when partially saturated (Brace and Orange, 1968).

This work attempts to explain observations referred to above. We follow the concept of stress sensitivity,
introduced by Shapiro (2003). We understand the stress dependence of elastic moduli in isotropic as well
as anisotropic porous rocks as the result of pore space deformation. The porosity is assumed to consist of
a stiff and compliant part (fig. 2). The stiff porosity consists of more or less isometric pores, the compliant
porosity represents cracks and grain contact vicinities. A general relation is derived which defines the stress
dependence of the pore space deformation. Then, we use the separation of the pore space into two different
porosity domains with a distinct deformation behaviour to relate the dry rock compliance to porosity. We
derive an equation for the dependence of porosity on an arbitrary load. This result is used to obtain a
first order relation between the compliances of an anisotropic rock and applied stress. Then, we restrict
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Figure 2: Sketch of complex pore structure consisting of crack-like compliant voids and stiff more or less
isometric pores. Σ denotes the outer surface of the sample, indicated by the thick black line, while the
dashed red line illustrates the inner surface of the rock, encasing the pore space (denoted as Ψ). The zoom
square shows a situation where the external surface cuts a pore and thus coincides with the inner surface.
Note, their normals are defined positive in opposite directions. In 3D all pores build an interconnected
space effective for fluid flow.

our considerations to isotropic rocks and derive the dependence of bulk and shear modulus, P and S wave
velocity, and electrical resistivity on the applied load. Our results for elastic properties are applicable to a
broad range of rocks.

However, the dependence of electrical resistivity and hydraulic permeability on porosity is more sophis-
ticated. In order to obtain a stress dependence of electrical resistivity using the load dependent deformation
of the pore space, we have to restrict our derivations to rocks where only electrolytic charge transport
through an interconnected pore space occurs.

STRESS DEPENDENCE OF POROSITY

Two load components can act on a porous rock, an externally applied confining stress σc
ij and an internally

applied stress σf
ij. In most realistic geological situations σc

ij corresponds to the overburden stress and -σf
ij

to the pore pressure Pfl. Moreover, in hydrostatically conducted laboratory experiments -σc
ij becomes the

confining pressure Pc. Both load components acting compressionally with respect to the rock material are
negative per definition.

In poromechanics it is common to combine both load components. Hereby, the differential pressure
Pdiff is usually defined as

Pdiff = Pc − Pfl. (2)

In the case of a non-hydrostatic confining load, we define the difference between confining stress σc and
the internally applied stress σf as the effective stress σe

ij, since the term ’differential stress’ would lead to
confusion with the corresponding definition used in tectonophysics where it denotes the difference between
the minimum and maximum principal stresses. Thus,

σe
ij = σc

ij + δijPfl, (3)

where δij is the Kronecker delta function. Moreover, we will show in the following under which conditions
only the difference between confining stress and internal stress is effective for porosity changes and elastic
and transport properties as well. Thus, in the case of hydrostatic load differential pressure equals effective
pressure:

Peff = Pdiff

In order to describe the deformation of the pore space resulting from the application of a load, we define
two surfaces of the porous rock. The surface Σ is the external surface of the rock (fig. 2). Where Σ cuts
a pore it simultaneously seals the latter. The second surface Ψ is the internal surface of the rock. In this
way, we can represent the bulk and pore space volume of the rock sample in terms of the encasing surfaces
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Σ and Ψ, respectively. Thus, it is possible to describe changes of both volumes by the displacement of the
surface points of Σ and Ψ.

Let us assume that the confining and/or pore pressure have changed from an initial state of stress
(P 0

eff , P
0
fl ) to the current state (Peff , Pfl). As a result, points of the external surface have been displaced by

ui(x̂). The displacement is assumed to be very small in comparison to the size of the rock volume under
consideration.

Following Brown and Korringa (1975) we introduce a symmetric tensor

ηij =

∫

Σ

1

2
(uinj + ujni)d

2x̂. (4)

In the case of a continuous elastic body replacing the porous rock (i.e., a differentiable displacement is
given at all its points) the Gauss’ theorem gives

ηij =

∫

V

1

2
(∂jui + ∂iuj)d

3x. (5)

The integrand here is the strain tensor. Thus, εij = ηij/V is the volume averaged strain.
We see that the tensor ηij is related to the deformation of the rock sample. In the same way, we introduce

also a second symmetric tensor related to the deformation of the pore space.

ζij =

∫

Ψ

1

2
(uinj + ujni)d

2x̂, (6)

where Ψ is the surface of the pore space, x̂ is a point of this surface, ui is a component of the displacement
of points x̂ of this surface slightly deformed by changing of the load, and ni is a component of the outward
normal to this surface (the normal is directed into the space of pores). In points, where surface Σ seals the
pores it coincides with surface Ψ. However, their normals are opposite (fig. 2).

In analogy to the paper of Brown and Korringa (1975), we introduce three fundamental compliances of
an anisotropic porous body:

Sdrij = − 1

V
(
∂ηij
∂Peff

)Pfl
, (7)

Smtij = − 1

V
(
∂ηij
∂Pfl

)Peff
, (8)

Spij =
1

Vp
(
∂ζij
∂Pfl

)Peff
, (9)

Using the reciprocity theorem we can define a fourth, but not independent compliances S ′ijkl :

S′ij = Sdryij − Smtij . (10)

Sdryij is the compliances of the dry (drained) rock matrix, Smtij is the compliances of the grain material, and
Spij is the compliance of the pore space. The compliances Sxij defined above have the following relation to
the 4th rank tensors of elastic compliances:

Sxij = Sxijkk = Sxij11 + Sxij22 + Sxij33, (11)

where x represents mt, dry, and p.
In the special case of an isotropic rock the corresponding bulk moduli are:

1

Kdry,mt,p
= Sdry,mt,p11 + Sdry,mt,p22 + Sdry,mt,p33 . (12)

Note, in the literature (e.g., Mavko et al., 1998) bulk moduli Kmt and Kp are usually denoted as K0 and
Kφ, respectively. In the following, we limit our consideration to isotropic rocks and use the latter notation.
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If the applied load hydrostatically changes, the quantity ζij will change due to δPeff by keeping a
constant pressure Pfl plus an effect of applying δPfl from inside and outside while keeping Peff = const.:

δζij = −(
∂ζij
∂Peff

)Pfl
δPeff − (

∂ζij
∂Pfl

)Peff
δPfl. (13)

Also for the quantity ηij an analogous equation can be written:

δηij = −(
∂ηij
∂Peff

)Pfl
δPeff − (

∂ηij
∂Pfl

)Peff
δPfl. (14)

Note that δV = δηii:

δV = −(
∂ηii
∂Peff

)Pfl
δPeff − (

∂ηii
∂Pfl

)Peff
δPeff . (15)

Note also:

δφ = δ(
Vp
V

) =
δVp
V
− φδV

V
. (16)

Thus, with definition (7) - (9) using equation (12) and (13) - (16), we can now formulate a general
pressure dependence of porosity changes for isotropic rocks as:

δφ =

(
1

Kdry
− 1

K0
− φ

Kdry

)
δPeff − φ

(
1

Kφ
− 1

K0

)
δPfl. (17)

Equation (17) shows that, in general, porosity is a function of the difference between confining pressure
and pore pressure as well as the pore pressure itself. However, if the grain matrix is homogeneous and
linear ( Kφ= K0), i.e., if the rock is in the Gassmann limit, and/or porosity is small, then porosity is a
function of the pure difference between confining stress and pore pressure alone. This coincides with
the results from Zimmerman et al. (1986). By substituting the bulk moduli in equation (17) with the
corresponding compliances and the pressure components by corresponding stresses this equation can be
extended to arbitrary anisotropic rocks under arbitrary load changes.

In equation (17) only two quantities are significantly stress dependent: Kdry and φ. However, φ obvi-
ously depends on Kdry and, the other side, Kdry depends on φ in a complex manner. A necessary equation
relating them to each other can not be found directly, sinceKdry depends especially on the geometry of the
pore space rather than on the magnitude of φ alone.

STRESS DEPENDENCE OF ELASTIC MODULI

From numerous observations of elastic velocities as a function of applied effective stress/pressure it is
known that velocities increase remarkably up to an effective stress of approx. 100 to 150 MPa, dependent
on the rock type under consideration. For higher stresses the slope of velocities stress relation decreases
significantly and tapers out to a flat linear increase.

A quite reasonable and common explanation of the increase in velocity with increasing stress is the
closure of porosity. From many observations it is known that velocities change by approx. 10 % over the
mentioned pressure range. In contrast, porosities do not change at all or only by less than 1 %. Although the
interpretation that porosity changes are responsible for velocity variations is still reasonable this illustrates
that treating the porosity as a single scalar quantity is not sufficient. A common interpretation for this
behaviour is the progressive closure of two mechanically distinct porosity domains with increasing effective
stress. The front part of the velocity stress relation is controlled by the closure of cracks and grain contact
vicinities (denoted as compliant porosity) which deform much easier under stress than spherical-like voids
(representing the so-called stiff porosity). The closure of the latter controls the flat back part of the velocity
stress relation when the compliant porosity is assumed to be completely closed.

In analogy to Shapiro (2003) we formulate this separation of porosity as

φ = φc + [φs0 + φs] (18)

Here, φ is the bulk interconnected porosity and φc is the compliant porosity. The stiff porosity is further
separated into a part φs0, defined at Peff = 0, and a part φs induced by an applied pressure. If effective
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pressure is positive φs is negative, if Peff < 0 φs is positive and if no load is applied φs = 0. As a rule of
thumb the following inequation is valid for many rocks:

|φs0| � |φs| � |φc| (19)

In the following we consider only isotropic rocks. We also assume that the rocks remain approximately
isotropic under hydrostatic load. Under this approximation and taking into account that the changes of φs

and φc are in the order of strain and thus small, it is reasonable to approximate the matrix bulk modulus as
a linear function of these quantities:

Kdry([φs0 + φs], φc) = KdryS[1 + θsφs + θcφc] (20)

Here, KdryS is a hypothetical matrix bulk modulus, since it is defined at Peff = 0 with φs= φc= 0. As
shown by Shapiro (2003) the order of magnitudes of quantities θs and θc are 1 and > 102, respectively.
Moreover, θc is approx. proportional to the inverse of the effective crack aspect ratio. We call θc in the
following stress sensitivity.

In its most general form θc is a tensor of rank 6 (Shapiro and Kaselow, 2003). If this tensor is isotropic
only one entry is independent and thus the tensor of stress sensitivity reduces to one single scalar value. In
the following we consider only rocks with isotropic stress sensitivity tensor.

If we assume, that the changes in stiff and compliant porosity are independent we obtain for the effective
pressure dependence of φsand φc(Shapiro, 2003)

φs(Peff ) = −Peff

(
1

KdryS
− 1

K0

)
(21)

φc(Peff ) = φc0 exp

(
−θc

1

KdryS
Peff

)
. (22)

Using equation (21) and (22) with equation (20) we arrive at the dependence of the dry matrix bulk
modulus on stress, that reads:

Kdry(Peff ) = KdryS

[
1 + θs

(
1

KdryS
− 1

K0

)
Peff − φc0θc exp

(
−θc

1

KdryS
Peff

)]
(23)

A similar equation can be arrived for the pressure dependence of the dry matrix shear modulus µdry as well
as for P- and S-wave velocities (see Shapiro, 2003, for details).

We can summarize an alayzis of the derived velocity dependencies as followed:

1. All mentioned stress dependencies have the form of a four parametric exponential equation

Γ(Peff) = AΓ +KΓPeff −BΓ exp (−DΓPeff) (24)

where Γ is the property under consideration.

2. Parameter D = θc
KdryS

is a universal quantity for all properties under consideration.

Empirical relations of the form of equation (24) or similar were used in many studies to investigate the re-
lationship between effective pressure, porosity and velocities, and other properties. For example, Eberhart-
Phillips et al. (1989); Jones (1995); Freund (1992) used empirical relations of this form to fit velocity vs.
pressure relations successfully. Moreover, Eberhart-Phillips et al. (1989) found no correlation between
stress dependence of velocities and porosity or clay content. In fact, they conclude that the most useful
form of pressure dependence is that changes of velocities are proportional to the exponential term. This
result coincides with our derivatives.

An additional important result is that the exponential argument is identical for all elastic moduli and
velocities of a given sample, if a hydrostatic load is applied and the rocks remain isotropic under the load.
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STRESS DEPENDENCE OF ELECTRICAL RESISTIVITY

Formulating the stress dependence of electrical resistivity in terms of stress sensitivity as presented above
for elastic moduli requires the limitation to rocks where only electrolytic charge transport is assumed to
take place, i.e., surface conductivity should be neglectable and highly conducting mineral phases should
not be present. In other words, we restrict our considerations to rocks where electrical resitivity can be
described by the well known Archie law (Archie, 1942):

1

Ω
=

1

FΩfl
=

1

Ωfl
φm. (25)

Here, Ωfl is the resistivity of the pore fluid, F is the formation factor, φ is the porosity, and m is Archie’s
cementation exponent. In general, m is in the range 1 ≤ m ≤ 2 but occasionally reaches 2.3 (Berryman,
1992). Archie’s law shows that electrical resistivity is in general not a linear function of porosity. In fact,
only in the special case m = 1 electrical resistivity linearly depends on porosity. However, equation (25)
shows that the logarithm of resistivity depends linearly on porosity.

Rearranging equation (25), using equation (18) and taking the logarithm gives:

log
Ω

Ωfl
= −m · logφ = −m · log(φs0 + φs + φc). (26)

Obviously, the logarithm of the F = Ω/Ωfl is a linear function of porosity.
Using a Taylor expansion gives:

log
Ω

Ωfl
= −m logφs0 −

m
φs0

φs −
m
φs0

φc. (27)

If we now use the stress dependent formulations for φs and φc as given by equation (21) and (22), we
finally obtain:

log
Ω

Ωfl
= −m logφs0 −

m
φs0

(
1

KdryS
− 1

K0

)
P − m

φs0
φc0 exp

(
− θc

KdryS
P

)
(28)

Comparing equation (28) with (24) illustrates the physical meaning of the fit parameters A, K, B, and D in
the case of stress dependence of logarithmic formation factor:

A = −m logφs0 (29)

K = − m
φs0

(
1

KdryS
− 1

K0

)
(30)

B =
m
φs0

φc0 (31)

D =
θc

KdryS
. (32)

Fit parameter A corresponds exactly to Archie’s Law if φ in equation (25) is equal to the stress independent
part φs0 of the bulk porosity. In the case of fit parameter D we obtain the same expression as for elastic
moduli and seismic velocities.

Here, however, the fit parameters K and B are significantly different in comparison to their correspond-
ing formulation in the case of elastic moduli and velocities. The magnitudes of K and B are proportional to
1/φs and φc/φs0, respectively, while they are proportional to θcφs and θcφc in the case of the other elastic
moduli and velocities. This has an important consequence. In most reservoir rocks stiff porosity and even
the stress induced change in stiff porosity is much larger than compliant porosity (see eq. (19)). Despite
this fact the closure of the crack porosity is dominant for the stress dependence of the elastic moduli and
velocities. These properties are rather sensitive to the relative change of the different porosity domains,
expressed in the θ terms (|θs| � |θc|), than to the absolute change (Shapiro, 2003).

In contrast, equation (28) states that the stress dependence of electrical resistivity is controlled by the
absolute change of the porosities. Consequently, the change in stiff porosity controls electrical resistivity
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Figure 3: This figure illustrates parameter D for P- and S- wave data, indicated respectively, by subscribts
P and S, as obtained from observations on sandstones (blue) published by Eberhart-Phillips et al. (1989),
Jones (1995), and Freund (1992). Red symbols illustrate Ds vs. Dp as obtained from ten data sets from
metamorphic core samples of the German Continental Deep Drilling site (Kern et al., 1991; Kern et al.,
1994). The green line denotes Dp = Ds.

as a function of effective pressure in reservoir rocks and not the change in compliant porosity. In turn,
the stress dependence of stiff porosity can be neglected over the effective stress range of interest (up to
200 MPa). This might be the reason that electrical resistivity is usually assumed to be independent from
stress.

EXAMPLES

In order to check our theoretical considerations we collected data from literature (these are Eberhart-
Phillips et al., 1989; Jones, 1995; Freund, 1992) where a four parametric exponential equation as given
by equation (24) was used to fit successfully observed velocity vs. stress data from sandstone samples.
In the mentioned publications the best fit parameters A, K, B, and D are given for both P- and S-wave
observations. Figure 3 shows a one-to-one catch line where the D values for S-wave velocities (Ds) were
plotted as blue crosses against the corresponding D values of P-wave velocities (Dp). Although the D val-
ues scatter around this line the data follow the expected trend at least statistically. On the one hand side
the scatter could be caused by possible measurement errors, on the other side, it can be understood as a
measure for the (an)isotropy of the stress sensitivity tensor.

We have enlarged the used data base by applying the stress sensitivity approach to velocity vs. stress
observations from 10 core samples from the pilot hole of the German Continental Deep Drilling Project.
On every anisotropic dry low-porosity metamorphic rock sample three P- and six corresponding S-wave
velocities were measured in a orthogonal coordinate system over an hydrostatic effective stress range up
to 600 MPa (for details, Kern and Schmidt, 1990; Kern et al., 1991, 1994). Independent from the elastic
anisotropy, a fit of equation (24) to all velocities of every single sample should deliver the same parameter
D if the stress sensitivity of the rock under consideration is isotropic. In figure 1 the successful fit of
the observations is shown as an example, representative for all investigated samples with respect to the fit
quality. A successful fit with a universe D = 0.031 1/MPa indicates an isotropic stress sensitivity tensor for
the sample.

We have added the obtained D values for all investigated metamorphic samples as opened red circles
to figure 3. They scatter remarkably less than the sandstone data. We understand the successful fit of the
velocity versus stress observations and figure 3 in such a way that there are, in fact, rocks, that show an
isotropic stress sensitivity tensor. However, in the following we want to investigate if parameter D is a
universe property even for electrical resistivity.
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Figure 4: Resistivity of rock samples saturated with tap water (a), NaCl solution (b), and bulk volume
deformation (c) of rock samples (data from Brace et al., 1965).

Cape Cod Casco
Parameter ΩT ΩS K ΩT ΩS K

A 2.924 4.525 44.6 3.126 4.184 49.5
K 0.001 0.001 0.029 0.002 0.002 -0.01
B 0.472 0.861 37.8 0.928 1.070 49.2
D 0.028 0.048 0.059 0.024 0.027 0.017

χ2 0.002 0.004 0.273 0.010 0.002 8.90

Table 1: Best fit parameter as obtained from fitting resistivity and dilatancy data obtained from Cape Cod
granodiorite and Casco granite. In the case of resistivity Ω units are [ohm m] for parameter A and B,
[(ohm m) / MPa] for K, and [1/MPa] for D. Subscribes T and S denote saturation with tape water and salt
solution, respectively. In the case of the bulk modulus K units are similar with [GPa] instead of [ohm m].
χ2 is the sum of the squared deviations between the best fit model and the observations.

Brace et al. (1965) have published data from stress dependent deformation and electrical resistivity
measurements simultaneously conducted on low porosity crystalline rocks. The samples were isostatically
loaded up to 1 GPa (10 kbar), whereby a constant pore fluid pressure of approx. Pfl= 0 was maintained
during the experiments. Although all measurements were conducted on saturated samples the pore pressure
during compression was maintained approx. zero. Tap water, with a resistivity Ωt = 45 − 50ohmm and
a NaCl solution (Ωs = 0.3ohmm) were used as saturating fluids. The suite of samples generally shows
bulk porosities below 1%. In this study, we used five rocks, namely Casco, Stone Mountain, and Westerly
Granite as well as Rutland Quartzite, and Cape Cod Granodiorite.

Pressure dependent resistivity for the mentioned rocks saturated with tap water and salt solution are
shown in fig. II and II, respectively, as well as strain data (fig. II).

Equation (24) was fitted to both, logarithmic formation factor as well as bulk moduli data for every
sample in a two step process, using a Levenberg-Marquardt algorithm. In the first step resistivity and
bulk modulus data were fitted separately with all four fit parameters A, K, B, and D. The necessity of a
second fit arises from the theoretical result that parameter D should be the same for the resistivity as well
as bulk modulus data of a certain sample (compare the argument of the exponential terms in equation (23)
and (28/32). Therefore, we calculate the average of both D values obtained from the first fit and fit the
data again, now with a fixed D and A, K, and B as remaining fit parameters. Hereby, an averaged D
is separately calculated for any of both bulk modulus vs. formation factor pairs of a given sample. This
means we calculated a mean D from bulk modulus vs. formation factor of tap water saturated rock and vs.
formation factor of salt solution saturated rock.

Figure 5 and 6 show a comparison between the observations and the fit results for Cape Cod granodiorite
and Casco granite (fig. 7 and 8). It was possible to fit the bulk modulus (fig. 5(a) and 7(a)) as well as the
resistivity data - sample saturated with tap water (fig. 5(b), 7(b)) and salt solution (fig. 5(c), 7(c)) - quite
well. The best fit parameters for the initial fits are listed in tab. 1.

As representative examples the best fit parameters for Cape Cod granodiorite and Casco granite are
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Figure 5: Best fit of Cape Cod granodiorite data. Bulk modulus (fig. 5(a)), logarithmic bulk resistivity of
rock saturated with tap water (fig. 5(b)) and salt solution (fig. 5(c)) were fitted separately with A, K, B, and
D as fit parameters. Circles denote observations, lines the best fit.
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Figure 6: Second best fit of Cape Cod granodiorite data. Circles denote observations, lines best fit. Fig-
ure (6(a)) and (6(b)) show the repeated fit (see text for details) of bulk modulus and formation factor (salt
solution saturated), respectively, with an averaged and fixed parameter D=0.054MPa−1. Figure (6(c)) and
(6(d)) illustrate the result of the repeated fit with a fixed D=0.043MPa−1 for bulk modulus and formation
factor, respectively, where rock was saturated with tap water.
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Figure 7: Casco granite data. Bulk modulus (fig. 7(a)), logarithmic bulk resistivity of rock saturated with
tap water (fig. 7(b)) and salt solution (fig. 7(c)) were fitted separately with A, K, B, and D as fit parameters.
Circles denote observations, lines the best fit.
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Figure 8: Second best fit of Casco granite data. Circles denote observations, lines best fit. Figure (8(a)) and
(8(b)) show the repeated fit (see text for details) of bulk modulus and resistivity (salt solution saturated),
respectively, with an averaged and fixed parameter D=0.022 MPa−1. Figure (8(c)) and (8(d)) illustrate
the result of the second fit for bulk modulus and resistivity (rock saturated with tap water), respectively,
with D=0.021 MPa−1



260 Annual WIT report 2003

Cape Cod Casco
Parameter ΩT K ΩT K

D 0.043 0.021

A 2.862 49.80 3.178 42.3
K 0.001 -0.01 0.002 0.0218
B 0.453 41.00 0.957 42.3

χ2 0.003 4.481 0.011 10.70

Parameter ΩS K ΩS K

D 0.054 0.022

A 4.549 49.811 4.291 42.3
K 0.001 -0.008 0.002 0.022
B 0.856 40.996 1.134 42.31

χ2 0.004 4.550 0.004 10.7

Table 2: Best fit parameter from second fit of Cape Cod and Casco data. Units are as mentioned in tab. 1.

listed in tab. 2. Cape Cod stands for the worst agreement between theory and observation concerning a
common D and Casco for the best (compare the D values in tab. 1). For Cape Cod we obtain a mean D
of 0.043 1/MPa (bulk modulus vs. resistivity of tap water saturated rock) and of 0.054 1/MPa (bulk
modulus vs. resistivity of rock saturated with salt solution). For Casco granite we found corresponding D
values of 0.021 and 0.022.

The quality of best fits for the remaining three samples was as good as for the mentioned two examples.
In general, all logarithmic resistivity and dilatancy data could be fit well. The best agreement between the
different D values was obtained for Casco granite, as shown in tab. 2. Here, the first fit of the dilatancy
data delivered negative values for fit parameter K. However, a negative K does not seem to be a physically
meaningful result. Since the absolute magnitudes of all K values for all samples are very small in com-
parison to the other parameters we assume that negative K values result rather from numerics of the fitting
process than from any physical process occuring during compression. This might be interpreted in that
way, that the closure of stiff porosity does not effect the mentioned stress dependencies at all and K could
be eliminated from the fit equation when fitting bulk moduli data.

The good agreement between the parameter D for logarithmic formation factor and bulk modulus data
seem to support our assumption that it is a universal characteristic for a given rock sample, not only for
elastic moduli but also for transport properties like the electrical resistivity. This is, of course, limited to
rocks where only electrolytic charge transport occurs. If these results are valid then the stress dependence
of electrical resistivity on low porosity rocks is also mainly controlled by the elastic stress sensitivity and
thus proportional to the inverse of an effective crack aspect ratio. In sediments, where the amount of stiff
porosity is in general 2 orders of magnitudes higher than compliant porosity the pressure dependence of
resistivity is controlled by the pressure dependence of stiff porosity. However, the universality of parameter
D should also be valid in such rocks as long as the stress sensitivity tensor is isotropic.

CONCLUSIONS

We have shown for arbitrary anisotropic rocks that the deformation of the pore space due to an arbitrary
applied load is always a function of the difference between confining stress and pore pressure and the pore
pressure itself. In terms of the porosity this load dependence reduces to the difference between confining
stress and pore pressure alone, if the porosity is low and/or the rock is in the Gassmann limit.

Taking the mechanically different deformation behaviour of the stiff and compliant porosity into ac-
count the stress dependence of compliances of anisotropic rocks can be derived in a first order approxi-
mation as a function of the stress induced deformation of the pore space. In the same manner we have
derived the stress dependence of electrical resistivity for isotropic rocks where electrical resistivity can be
described in terms of Archie’s law. All obtained stress dependencies of compliances and elastic moduli as
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well as electrical resistivity have the same simple form of a four parametric exponential equation. In this
context the most important rock characteristics controlling these stress dependencies of a porous rock is
the rank-6 tensor of stress sensitivity.

We have shown that there are rocks where this tensor of stress sensitivity is isotropic and can be reduced
to one single scalar value. In this case and if the rocks are subjected to hydrostatic load the exponential
argument D of the stress dependence is a universal quantity for all elastic moduli and velocities, even in
the case of anisotropic rocks.

Moreover, the universality of parameter D is also valid for electrical resistivity, at least in rocks where
only electrolytic charge transport occurs. This might be understood as a link between elastic moduli and
transport properties. Since seismic velocities are sensitive to changes in compliant porosity and electrical
resistivity is sensitive to absolute changes in stiff porosity a simultaneous analyzis of resistivity and velocity
changes due to artificial pore pressure variations might help to understand how bulk porosity is changed by
reservoir depletion or fluid injection.
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