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ABSTRACT

The 3D common-reflection-surface stack can be used to extract traveltime information for inversion
applications from seismic prestack data. A tomographic inversion method is presented that makes use
of this information, in the form of first and second spatial derivatives of traveltime—also called CRS
attributes—to determine smooth, laterally inhomogeneous 3D subsurface velocity models for depth
imaging.
The method is an extension of a recently presented 2D tomographic inversion based on CRS at-
tributes. The input for the 3D inversion consists of picked CRS attributes at a number of locations in
the simulated zero-offset volume obtained with the CRS stack. Compared to conventional reflection
tomography, picking is considerably simplified, as only very few picks are required and these do not
need to follow continuous horizons in the seismic data.
During the iterative inversion process, the required forward-modeled quantities are obtained by dy-
namic ray tracing along normal rays pertaining to the input data points. Fréchet derivatives for the
tomographic matrix are calculated with ray perturbation theory. The inversion algorithm is demon-
strated on a first synthetic data example, where the input data have directly been obtained by forward
modeling.

INTRODUCTION

The construction of velocity models is an important task for seismic depth imaging in laterally inhomoge-
neous media. A number of different approaches for velocity model estimation have been proposed in the
past, which differ in the criterion used to evaluate the model quality, in the determination of model updates,
and in the parametrization of the model.

Migration velocity analysis methods are usually based on residual moveout analysis in common-image
gathers (e.g., Al-Yahya, 1989; Deregowski, 1990). They require the repeated application of prestack mi-
gration and are, therefore, computationally very expensive.

Another frequently used technique for the determination of velocity models is reflection tomography
(e.g., Farra and Madariaga, 1988; Stork and Clayton, 1991), in which the misfit between picked and mod-
eled traveltimes is minimized by iteratively computing global model updates. Reflection tomography is
often also combined with prestack migration (e. g., Stork, 1992). The drawback of tomographic methods,
however, is the large amount of picking that is necessary to obtain traveltimes from the prestack data, usu-
ally along continuous reflectors across the entire seismic section. This picking becomes especially difficult,
if not impossible, if the signal-to-noise (S/N) ratio in the data is low.

In a method introduced by Billette and Lambaré (1998) and Billette et al. (2003), called stereotomog-
raphy, slope information of locally coherent events is used together with traveltimes to obtain a smooth
velocity model. With that approach, no interfaces have to be introduced in the model, and only locally
coherent events need to be considered during picking.

Recently, a tomographic method for the construction of smooth velocity models based on the results of
the common-reflection-surface (CRS) stack has been presented by Duveneck and Hubral (2002) and Du-
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veneck (2004). This approach, which combines aspects of stacking-velocity based inversion methods with
concepts related to stereotomography, makes use of kinematic information in the form of wavefront curva-
tures and emergence angles extracted from the prestack data by means of the CRS stack. The method is
especially well suited for an application to data, in which reflection events cannot be identified continuously
in the prestack data. Picking is considerably simplified by the fact that it is performed in a stacked section
of high S/N ratio. Compared to conventional reflection tomography, only very few picks are required and
these do not need to follow events continuously across the section.

In this paper, I will present a reformulation and extension of this CRS-stack-based method to the 3D
case. Instead of wavefront curvatures and emergence angles, the 3D version of the method is formulated
in terms of first and second spatial traveltime derivatives, which are equivalent to emergence angle and
wavefront curvature information, but do not require the specification of a constant near-surface velocity
value.

In the following, the 3D CRS operator and the associated kinematic wavefield attributes will be briefly
explained. These attributes will then be used to formulate the tomographic inversion method. It is based on
the criterion that in the correct model, so-called normal-incidence-point (NIP) waves that can be associated
with the kinematic wavefield attributes should focus at zero traveltime in the subsurface. Finally, a first test
of the algorithm on synthetic data will be presented and aspects related to the application to real seismic
data will be discussed.

3D CRS STACK AND ATTRIBUTES

The CRS stack (e. g., Jäger et al., 2001) has originally been developed to obtain simulated zero-offset (ZO)
sections or volumes from seismic multicoverage data. The method is based on stacking operators that are
of second order in the half-offset h and midpoint ξξξ coordinates defined in the general 3D case by

h = (xg − xs) /2 and ξξξ = (xg + xs) /2 , (1)

where xs and xg are two-component vectors containing the source and receiver coordinates, respectively.
The shape of the CRS stacking operator at a given zero-offset location (ξξξ0, t0) is determined by a

number of parameters related to the coefficients of the traveltime expansion. For each zero-offset sample
to be simulated, the optimum stacking operator is found by varying the parameter values, i.e., the shape
of the operator, and performing a coherence analysis directly in the prestack data. The parameters, which
yield the highest coherence value and, thus, describe the optimum stacking operator, are called kinematic
wavefield attributes.

If a locally constant near-surface velocity v0 is assumed to be known, the CRS operator may be writ-
ten in a form that allows the interpretation of the kinematic wavefield attributes as parameters describ-
ing two hypothetical emerging wavefronts at the considered surface location ξξξ0: These are the so-called
normal-incidence point (NIP) wave and the normal (N) wave (e. g., Hubral, 1983). The NIP wave would
be observed at ξξξ0 if a point-source were placed at the NIP of the zero-offset ray on a reflector in the sub-
surface, while an N wave would be obtained if an exploding reflector element were placed at the NIP in the
subsurface.

In the 3D case, the emerging wavefronts are locally characterized by their curvatures and their emer-
gence direction at ξξξ0, which is the same for the NIP and the N wave. If the NIP wave and N wave curvatures
are given by 2× 2 curvature matrices KNIP and KN, respectively (each matrix contains three independent
elements), and the emergence direction is described by two angles α andψ (emergence angle and azimuth),
the 3D CRS operator reads (e. g., Höcht, 2002)

t2 (∆ξξξ,h) = (t0 + 2 pξ ·∆ξξξ)2
+ 2t0

(
∆ξξξTMξ ∆ξξξ + hTMh h

)
(2)

with

pξ =
1

2
∂t/∂ξξξ =

1

v0
(sinα cosψ, sinα sinψ)T

Mh =
1

2
∂2t/∂h2 =

1

v0
H KNIP HT

Mξ =
1

2
∂2t/∂ξξξ2 =

1

v0
H KN HT

(3)
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Here, the matrix H is the 2 × 2 upper left sub-matrix of the transformation matrix from the local ray-
centered Cartesian coordinate system to the Cartesian coordinate system associated with the measurement
surface (e. g., Červený, 2001), t0 is the two-way traveltime along the zero-offset ray, and ∆ξξξ = ξξξ − ξξξ0.
The matrix H also depends on the angles α and ψ. A similar expression has been derived by Ursin (1982).

Alternatively to the wavefront curvatures and emergence angles given above, the vector pξ and the
matrices Mh and Mξ themselves or, more precisely, their components may be regarded as kinematic
wavefield attributes. As indicated in equation (3), these describe the first and second derivatives of the
reflection traveltime surface with respect to the offset and midpoint coordinates and are, thus, directly
related to the Taylor coefficients of the second order expansion of t around h = 0 and ξξξ = ξξξ0 (e. g.,
Schleicher et al., 1993). Due to reciprocity, i.e., the invariance of traveltimes with respect to interchanging
source and receiver locations, the traveltime surface is symmetrical around h = 0. Therefore, the first
derivative of t with respect to the offset is zero.

The reflection traveltimes measured in a common-midpoint (CMP) gather do not, in general, strictly
correspond to a common-reflection point in the subsurface. It has, however, been shown, e.g., by Hubral
and Krey (1980), that these traveltimes coincide up to second order in h with those that would be obtained
if all involved rays passed through the NIP of the zero-offset ray (NIP wave theorem). The corresponding
ray branches would then be the same as those associated with the NIP wave. This justifies the relation of
the matrix Mh, obtained from observations in the CMP gather, to the NIP wave curvature KNIP , equation
(3). In fact, Mh is the matrix of second derivatives of traveltime with respect to the receiver location that
would be obtained at the location ξξξ0 due to an emerging NIP wave. It is related to the azimuth-dependent
NMO velocity vNMO by

1

v2
NMO(φ)

= 2 t0êφMhê
T
φ , (4)

where the unit vector êφ = (cosφ, sinφ) defines the azimuth direction (e. g. Hubral and Krey, 1980;
Gjøystdal et al., 1984).

During the 3D CRS stack, along with the simulated ZO volume a number of volumes containing the
optimum kinematic wavefield attributes for each ZO sample are obtained. In addition, the CRS stack
yields a coherence (e. g., semblance) section, that carries information on how well the CRS operator could
be fitted to reflection events in the data. Where no reflection events have been detected, the coherence will
be low and the corresponding obtained kinematic wavefield attributes will not be reliable. If the acquisition
geometry is restricted to certain azimuth ranges, as, e. g., in marine acquisition, the second derivative of
traveltime in the CMP gather may only be determined in this azimuth direction. Instead of the matrix Mh,
only the component

Mφ = êφMhê
T
φ (5)

associated with the azimuth direction φ may then be extracted from the prestack data.

3D TOMOGRAPHY WITH KINEMATIC WAVEFIELD ATTRIBUTES

As shown in the previous section, the parameters describing the approximate traveltime field of an emerging
NIP wave at the location ξξξ0 can be extracted from the prestack data, e. g., with the CRS stack. Alternatively,
a conventional velocity analysis and an additional local dip search in the stacked volume may be used.

It has been recognized by a number of authors that these NIP wave parameters (either in terms of
traveltime derivatives or in terms of wavefront curvatures and emergence angles) contain information that
allows to deduce the laterally inhomogeneous subsurface distribution of seismic velocities (e. g., Chernyak
and Gritsenko, 1979; Hubral and Krey, 1980).

Inversion algorithms can be based on the criterion that in a correct velocity model all considered NIP
waves, when propagated back into the subsurface along the corresponding normal ray, should focus at zero
traveltime at the NIP. Conventional algorithms based on this criterion proceed in a layer-stripping manner,
assuming a velocity model consisting of layers separated by curved interfaces (e. g., Hubral and Krey,
1980; Biloti et al., 2002). This model parametrization restricts the applicability of the inversion to regions
with a corresponding simple geology and to data, in which reflection events may be identified continuously
throughout the entire section (or volume, respectively).

Duveneck (2004) presents an alternative 2D tomographic velocity model estimation approach based
on NIP wave parameters, which overcomes the above-mentioned limitations. The method described there
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uses a smooth velocity model description based on 2D B-splines and allows to drop the assumption of
continuous curved reflectors, thus considerably broadening its applicability. In this paper, the tomographic
approach of Duveneck (2004) will be extended to the 3D case.

Input data

For the formulation of a 3D tomographic inversion based on the focusing of NIP waves, the time-domain
versions of the attributes, equation (3), will be used. An emerging NIP wave is, thus, characterized by the
one-way traveltime along the normal ray, τ = t0/2, the observed horizontal slowness pξ at ξ0, and the
observed second derivatives of (one-way) traveltime, given by the matrix Mh.

Apart from computational benefits discussed below, the time-domain versions of the kinematic wave-
field attributes have the advantage that they can be directly determined form the prestack data (e. g., with
the CRS operator (2)), without having to assume a value for the near-surface velocity v0. If the entire
matrix Mh can be determined from the data, it can in principle be used for a tomographic inversion. If
due to a limited acquisition geometry, only the component Mφ associated with a certain azimuth φ can be
obtained, this information will also be sufficient for a tomographic inversion. Data points used as input for
the tomography are, thus, given by

(
τ,Mφ, pξx , pξy , ξx, ξy

)
i

i = 1, . . . , ndata , (6)

where the notations τ = t0/2, pξ = (pξx , pξy )T , and ξξξ0 = (ξx, ξy)T have been used. These data are
extracted automatically from the CRS attribute volumes at pick locations (ξξξ0, t0) in the CRS stack volume.
As noted above, the picks do not need to follow reflection events continuously across the entire ZO volume.
Rather, each data point can be considered independently of the others and may lie on an event that is only
locally coherent. The reliability of each data pick is determined by the associated CRS coherence value. In
fact, picking may be automated based on the information contained in the CRS coherence volume.

Model parameters

The obvious way of implementing the inversion would be to propagate the NIP waves associated with the
data points (6) into the subsurface in an initial velocity model and iteratively update the model until all
considered NIP waves focus at zero traveltime.

As discussed in Duveneck (2004), the inversion process becomes more stable if the modeling direction
is reversed, i. e., the NIP wave propagation is started in the subsurface at the respective NIP location. In
the optimum model sought during the inversion, the misfit between the forward-modeled NIP parameters
and those given by the corresponding data points (6) is minimized. That way, possible errors and noise in
all considered data components may be accounted for.

The true subsurface locations of the NIPs and the corresponding local reflector dips associated with
the picked data points are initially unknown. Therefore, they have to be considered as additional model
parameters to be determined during the inversion. In the 3D case, the NIPs corresponding to the data points
given in (6) are characterized by the parameters

(
x, y, z, ex, ey

)
i

i = 1, . . . , ndata , (7)

where ex and ey are the horizontal components of a three-component unit vector ê that defines the normal
ray directioni. e., the local reflector normal at the NIP.

The velocity model itself is, as in the 2D case described by Duveneck (2004), defined in terms of B-
spline functions of degree four (e. g., de Boor, 1978). In three dimensions, the velocity model as a function
of coordinates (x, y, z) is given by

v(x, y, z) =

nx∑

j=1

ny∑

k=1

nz∑

l=1

vjklβj(x)βk(y)βl(z) , (8)

where nx, ny, and nz are the chosen numbers of B-spline knots, and βj(x), βk(y), and βl(z) are B-spline
basis functions. The model parameters determining the distribution of seismic velocities in the model are,
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Figure 1: Definition of model and data components for the tomographic inversion. See text for details.

thus,
vjkl , j = 1, . . . , nx , k = 1, . . . , ny , l = 1, . . . , nz . (9)

The parameters (7) characterizing the NIP, together with the B-spline coefficients given in (9) constitute
the model parameters to be determined during the tomographic inversion.

Forward modeling

In the course of the inversion process, forward modeling of the quantities (6) for given model parameters
needs to be performed. This can be done in an efficient way by dynamic ray tracing. If a reduced ray-tracing
system in Cartesian coordinates is used, where the z-coordinate is the independent parameter along the
ray (see Appendix), the associated ray propagator matrix coincides with the surface-to-surface propagator
matrix

T =

(
A B
C D

)
(10)

introduced by Bortfeld (1989) specialized to the case of horizontal anterior and posterior surfaces. (This
in no way implies a limitation to horizontal reflectors, as only a point source response—the NIP wave—is
modeled.) The matrix Mh of second derivatives of NIP wave traveltime can then be calculated directly
from the 2× 2 submatrices of T (e. g., Červený, 2001):

Mh = D B−1 . (11)

The use of z as the independent parameter during ray tracing limits the applicability to rays which have no
turning point with respect to z (which is no problem in practice), but has clear advantages in that the number
of equations to be solved is reduced and complicated transformations to and from ray-centered coordinates
are avoided. The traveltime along the normal ray and the horizontal components of the slowness vector at
the location ξξξ0 are directly obtained from kinematic ray tracing.

Solution of the inverse problem

The inverse problem to be solved can be formally stated as follows: we try to find a model vector m,
consisting of the elements given in (7) and (9), that minimizes the misfit between a data vector d, containing
the picked values given in (6), and the corresponding modeled values dmod = f(m). The operator f
symbolizes the dynamic ray tracing in the given model. As a measure of misfit the least-squares norm
(e. g., Tarantola, 1987) is used. The modeling operator f is nonlinear, therefore a solution to the inverse
problem is found in an iterative way by locally linearizing f and applying linear least-squares minimization
during each iteration. In addition, a regularization term needs to be introduced to stabilize the inversion.
This is realized by requiring the velocity model to be as smooth as possible, i. e., to have minimum second
derivatives. A model update ∆m is found by computing the least-squares solution of a matrix equation of
the form

F̂∆m = ∆d̂ , (12)
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Figure 2: Smooth velocity model and normal ray trajectories. The velocity model is described by B-splines
with nx × ny × nz = 9 × 9 × 9 = 729 knot locations spaced 500 m horizontally and 400 m vertically.
Data were modeled along 1008 normal rays.

where

F̂ =

(
C
− 1

2

D F
[0 ,B]

)
, ∆d̂ =

(
C
− 1

2

D ∆d(mn)
− [0 ,B] mn

)
. (13)

Here, ∆d(mn) = d−f(mn) is the data error after the nth iteration and F is a matrix containing the Fréchet
derivatives of f at mn. These can be obtained during forward modeling by application of ray perturbation
theory (Farra and Madariaga, 1987) along each considered ray. The corresponding expressions are given
in Appendix A. The matrix CD in (13) is a diagonal matrix containing weights for the different data
components, while the matrix B is related to the matrix D in the regularization term of the cost function:
BTB = εD. The cost function to be minimized by the solution of (12) is, thus, given by

S(m) =
1

2
∆dT (m)C−1

D ∆d(m) +
1

2
εmT

(v)Dm(v) , (14)

where m(v) represents that part of the model vector, which contains the B-spline coefficients, and the
factor ε weights the relative contribution of the regularization to the cost function. The matrix D defines
a measure of roughness of the velocity model in terms of the corresponding model parameters. Equation
(12) is solved with the LSQR algorithm (Paige and Saunders, 1982a,b). Details of the solution strategy and
regularization are discussed in Duveneck (2004).

SYNTHETIC DATA EXAMPLE

In order to test the inversion algorithm described in the previous section, it is applied to synthetic data that
have directly been obtained by dynamic ray-tracing modeling in a smooth inhomogeneous velocity model
defined by B-splines. In the presented example, see Figure 2, a total of nx × ny × nz = 9× 9× 9 = 729
B-spline knot locations with a knot spacing of 500 m in the horizontal and 400 m in the vertical direction
have been used. Three vertical cuts through the model are displayed in the left column of Figure 3.

The ray starting locations of the normal rays (i. e., the NIP locations) used to model the input data are,
for the purposes of this synthetic test, distributed on iso-velocity surfaces in the model (every 400 m/s) and
have a horizontal separation of 500 m in the x- and y-direction, see Figure 5, left. The initial slowness
vector for each ray is oriented perpendicularly to the iso-velocity surfaces. Thus, the reflection points used
for modeling follow the velocity structure, which is reasonable.

Selected components (i. e., the values for τ , Mφ, pξx , and ξx) of the obtained 1008 modeled data points
are shown in the left column of Figure 4. They simulate the input data (6) that would be picked and
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Figure 3: Crossline slices at x=0 m, x=2000 m, and x=4000 m through the original model (left), the
reconstructed model (center), and the difference between original and reconstructed models (right).

extracted from the CRS stack results in a real data application. The values ofMφ correspond to an azimuth
of φ = 0◦ (i. e., the x-direction). These sparse data are used as input for the tomographic inversion in order
to reconstruct the 3D smooth velocity model, Figure 2.

Vertical cuts through the inversion result obtained after 12 iterations are displayed in the central column
of Figure 3. The right column of Figure 3 shows difference sections obtained by subtracting the recon-
structed model from the true model. Differences are mainly visible in the lower part of the model, where
ray-coverage is insufficient. Apart from these regions, the velocity model is well reconstructed, which is a
notable result, considering the sparsity of the input data. As in the 2D case (Duveneck, 2004), the trajecto-
ries of the normal rays (not shown) are obtained as an inversion result along with the velocity model itself.
Residual data errors of the data components τ , Mφ, pξx , and ξx are plotted in the right column of Figure 4,
while the absolute residual depth error of the NIPs is displayed in Figure 5, right.

DISCUSSION

In the synthetic data example presented in the previous section, perfect input data without noise have been
used. Results obtained with noisy input data derived from synthetic and real seismic data in the 2D case
(Duveneck, 2004; Heilmann et al., 2004) suggest that noisy input data should be handled as well with the
3D algorithm presented here.

During the inversion, additional constraints on the velocity model may be introduced. If a priori velocity
information at certain points in the subsurface is available (e. g., from boreholes or from near-surface
measurements), this information may be included in the inversion. It is treated as additional data, with
a corresponding data error that is minimized during the inversion. Another constraint on the velocity
model may be that of requiring the velocity distribution to locally follow the reflector structure (at the NIP
locations associated with the input data). This is implemented by adding an extra term to the cost function
(14) to minimize first derivatives of the velocity distribution in the plane perpendicular to the normal ray
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Figure 4: Data components τ , Mφ, pξx , ξx (left) and their residual errors after 12 iterations (right).

at all NIP locations during each iteration of the inversion. Such a constraint has proven to be useful in the
application of the 2D tomographic inversion with kinematic wavefield attributes.

Another important point to be addressed is the picking of the input data. One of the advantages of the
inversion method presented here is that, compared to conventional reflection tomography, very few picks
are required. Each pick already represents the approximate multi-offset reflection traveltimes, represented
by the kinematic wavefield attributes. Pick locations may be considered independently of each other and
picking is performed in a stacked section (the CRS stack section). Still, picking in 3D data volumes can
be tedious. However, as noted above, the CRS stack process provides information useful for automated
picking in the form of the coherence volume. For 2D tomography with kinematic wavefield attributes, a
simple automatic picking tool based on the CRS coherence section has been implemented and successfully
applied to real data. Applied to seismic data with a reasonable S/N ratio, this approach should also work
with 3D data. Multiple reflections should, however, be removed before an automated picking procedure is
applied, as these are difficult to distinguish from primary reflection events. Alternatively, in simple situa-
tions, picks corresponding to multiples can be identified by abnormal values of Mφ and may be removed
prior to the inversion. Due to the use of traveltime approximations to describe the kinematics of reflection
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Figure 5: The 1008 subsurface points (NIPs) used to model the input data (left) and residual absolute depth
errors after 12 iterations (right).

events, the subsurface velocity structure may be laterally inhomogeneous, but not arbitrarily complex.

CONCLUSIONS

In this paper, a 3D tomographic method for the determination of velocity models for depth imaging has
been presented. The method uses kinematic wavefield attributes extracted from the prestack data with the
3D CRS stack. The required attributes consist of first and second spatial derivatives of traveltime associated
with hypothetical emerging NIP waves. The inversion is based on the well-known concept that in a correct
model, all NIP waves should focus at zero traveltime.

The 3D method presented here is an extension and modification of a previously published 2D tomo-
graphic inversion with kinematic wavefield attributes. The method should be particularly suitable for the
application to seismic data with a relatively low S/N ratio, where identifying and picking of reflection
events in the prestack data, as required for conventional reflection tomography, is difficult. Picking of the
input data for the CRS-attribute-based tomography is performed in the stacked section, and only very few
picks are required. Picking can, in principle be automated based on the coherence section obtained with
the CRS stack. An initial test of the 3D tomographic inversion algorithm on a synthetic example shows the
potential of the method. Further tests on 3D synthetic and real seismic data are, however, required.
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Červený, V. (2001). Seismic Ray Theory. Cambridge University Press.



Annual WIT report 2003 125

Chernyak, V. S. and Gritsenko, S. A. (1979). Interpretation of the effective common-depth-point param-
eters for a three-dimensional system of homogeneous layers with curvilinear boundaries. Geologiya i
Geofizika, 20(12):112–120.

de Boor, C. (1978). A practical guide to splines. Springer-Verlag.

Deregowski, S. M. (1990). Common-offset migrations and velocity analysis. First Break, 8(6):224–234.

Duveneck, E. (2004). Velocity model estimation with data-derived wavefront attributes. Geophysics, 69.
In print.

Duveneck, E. and Hubral, P. (2002). Tomographic velocity model inversion using kinematic wavefield
attributes. In 72nd Ann. Internat. Mtg., Expanded Abstracts, pages 862–865. Soc. Expl. Geophys.

Farra, V. and Madariaga, R. (1987). Seismic waveform modeling in heterogeneous media by ray perturba-
tion theory. J. Geophys. Res., 92(B3):2697–2712.

Farra, V. and Madariaga, R. (1988). Non-linear reflection tomography. Geophys. J., 95:135–147.

Gjøystdal, H., Reinhardsen, J. E., and Ursin, B. (1984). Traveltime and wavefront curvature calculations in
three-dimensional inhomogeneous layered media with curved interfaces. Geophysics, 49(9):1466–1494.

Heilmann, Z., Mann, J., Duveneck, E., and Hertweck, T. (2004). CRS-stack-based seismic imaging
workflow—a real data example. Wave-Inversion-Technology (WIT) Report 2003.

Höcht, G. (2002). Traveltime approximations for 2D and 3D media and kinematic wavefield attributes.
PhD thesis, University of Karlsruhe.

Hubral, P. (1983). Computing true amplitude reflections in a laterally inhomogeneous earth. Geophysics,
48(8):1051–1062.

Hubral, P. and Krey, T. (1980). Interval velocities from seismic reflection traveltime measurements. Soc.
Expl. Geophys.

Jäger, R., Mann, J., Höcht, G., and Hubral, P. (2001). Common-reflection-surface stack: Image and at-
tributes. Geophysics, 66(1):97–109.

Paige, C. C. and Saunders, M. A. (1982a). Algorithm 583 – LSQR: Sparse linear equations and least
squares problems. ACM Trans. Math. Softw., 8(2):195–209.

Paige, C. C. and Saunders, M. A. (1982b). LSQR: An algorithm for sparse linear equations and sparse
least squares. ACM Trans. Math. Softw., 8(1):43–71.

Schleicher, J., Tygel, M., and Hubral, P. (1993). Parabolic and hyperbolic paraxial two-point traveltimes in
3D media. Geophys. Prosp., 41:495–513.

Stork, C. (1992). Reflection tomography in the postmigrated domain. Geophysics, 57(5):680–692.

Stork, C. and Clayton, R. W. (1991). Linear aspects of tomographic velocity analysis. Geophysics,
56(4):483–495.

Tarantola, A. (1987). Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation.
Elsevier, Amsterdam.

Ursin, B. (1982). Quadratic wavefront and traveltime approximations in inhomogeneous layered media
with curved interfaces. Geophysics, 47:1012–1021.



126 Annual WIT report 2003

APPENDIX A

Ray tracing and Fréchet derivatives

The Fréchet derivatives ∂(τ,Mφ, pξx , pξy , ξx, ξy)/∂(x, y, z, ex, ey, v) required for the tomographic matrix
F (12) can be calculated during ray tracing along the normal rays with ray perturbation theory (Farra and
Madariaga, 1987). The relevant results of ray perturbation theory are summarized in this appendix.

The reduced ray-tracing system in 3D Cartesian coordinates can be obtained from the reduced Hamil-
tonian (e. g., Farra and Madariaga, 1987)

H = −
√
v−2 − p2

x − p2
y = −pz , (B1)

where px, py, and pz are the components of the slowness vector, and the z-coordinate acts as the free
parameter along the ray. The ray-tracing system reads

dx

dz
=
∂H

∂px
=
px
pz

dpx
dz

= −∂H
∂x

= − 1

v3pz

∂v

∂x

dy

dz
=
∂H

∂py
=
py
pz

dpy
dz

= −∂H
∂y

= − 1

v3pz

∂v

∂y

(B2)

If the notations ηηη =
(
x, y, px, py

)T
and ∆ηηη =

(
∆x,∆y,∆px,∆py

)T
are introduced, the paraxial ray-

tracing system can be written as
d

dz
∆ηηη = S∆ηηη (B3)

where the matrix S is given by

S =




∂2H
∂px∂x

∂2H
∂px∂y

∂2H
∂px∂px

∂2H
∂px∂py

∂2H
∂py∂x

∂2H
∂py∂y

∂2H
∂py∂px

∂2H
∂py∂py

− ∂2H
∂x∂x − ∂2H

∂x∂y − ∂2H
∂x∂px

− ∂2H
∂x∂py

− ∂2H
∂y∂x − ∂2H

∂y∂y − ∂2H
∂y∂px

− ∂2H
∂y∂py



. (B4)

The associated propagator matrix will be denoted by T, equation (10). Thus, for the ray starting location
z0 and the ray end location z1,

∆ηηη(z1) = T(z1, z0)∆ηηη(z0) . (B5)

A perturbation ∆v of the velocity model results in a perturbed Hamiltonian:

H = H0 + ∆H with ∆H =
∂H

∂v
∆v . (B6)

It has been shown by Farra and Madariaga (1987) that this leads to a perturbation of the components of ηηη
given by

∆ηηη = T(z1, z0)

∫ z1

z0

T−1(z′, z0) ∆b(z′) dz′ (B7)

with
∆b =

(
∂∆H/∂px, ∂∆H/∂py,−∂∆H/∂x,−∂∆H/∂y

)T
. (B8)

The first-order effect of perturbations of the values of ηηη and of perturbations of the velocity on the ray
propagator matrix T itself can be written as

∆T = T(z1, z0)

∫ z1

z0

T−1(z′, z0) ∆S T(z′, z0) dz′ , (B9)

where ∆S = ∆S1(∆v) + ∆S(∆ηηη) with

∆S1 =




∂2∆H
∂px∂x

∂2∆H
∂px∂y

∂2∆H
∂px∂px

∂2∆H
∂px∂py

∂2∆H
∂py∂x

∂2∆H
∂py∂y

∂2∆H
∂py∂px

∂2∆H
∂py∂py

−∂2∆H
∂x∂x −∂2∆H

∂x∂y − ∂2∆H
∂x∂px

− ∂2∆H
∂x∂py

−∂2∆H
∂y∂x −∂2∆H

∂y∂y −∂2∆H
∂y∂px

−∂2∆H
∂y∂py




(B10)
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and

∆S2 =
[
∆x

∂

∂x
+ ∆y

∂

∂y
+ ∆px

∂

∂px
+ ∆py

∂

∂py

]




∂2H0

∂px∂x
∂2H0

∂px∂y
∂2H0

∂px∂px
∂2H0

∂px∂py
∂2H0

∂py∂x
∂2H0

∂py∂y
∂2H0

∂py∂px
∂2H0

∂py∂py

−∂2H0

∂x∂x −∂2H0

∂x∂y − ∂2H0

∂x∂px
− ∂2H0

∂x∂py

−∂2H0

∂y∂x −∂2H0

∂y∂y − ∂2H0

∂y∂px
− ∂2H0

∂y∂py



. (B11)

All partial derivatives are evaluated on the central ray. The perturbations ∆x, ∆y, ∆px, and ∆py in
equation (B11) are obtained from equation (B5). An additional relation linearly relates perturbations of the
propagator matrix to changes of the ray starting location along the z-axis:

∆T = −T(z1, z0) S |z=z0 ∆z0 . (B12)

Together with the expression
∆Mh =

(
∆D−D B−1∆B

)
B−1 , (B13)

equations (B9) - (B12) can be used to calculate the Fréchet derivatives involving Mh . The corresponding
component in a given azimuth direction φ is then directly calculated with an equation of the form of (5).

The Fréchet derivatives involving the data components pξx , pξy , ξx, and ξy can be obtained from equa-
tions (B5) - (B7) and the additional relations

(
∆x1

∆y1

)
= −A

(
px0

py0

)
∆z0

pz0

,

(
∆px1

∆py1

)
= −C

(
px0

py0

)
∆z0

pz0

. (B14)

Here, an index 0 denotes properties at the ray starting location, while an index 1 denotes properties at the
ray end location. Finally, the Fréchet derivatives involving the traveltime τ along the normal ray follow
from

∆τ = −px0∆x0 − py0∆y0 − pz0∆z0 −
∫ z1

z0

∆v

v3pz
dz . (B15)


