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ABSTRACT

The land seismic data suffers from effects due to the near surface irregularities and the existence of
topography. For obtaining a high resolution seismic image, these effects should be corrected by using
seismic processing techniques, e.g. field and residual static corrections. The Common-Reflection-
Surface (CRS) stack method is a new processing technique to simulate zero-offset (ZO) seismic sec-
tions from multi-coverage seismic data. It is based on a second-order hyperbolic paraxial traveltime
approximation referred to a central normal ray. By considering a planar measurement surface, the
CRS stacking operator is defined by means of three parameters, namely the emergence angle of the
normal ray, the curvature of the normal incidence point (NIP) wave, and the curvature of the normal
(N) wave. In this paper the 2-D ZO CRS stack method is modified in order to consider effects due
to the smooth topography. By means of this new CRS formalism, we obtain a high resolution ZO
seismic section, without applying static corrections. As by-products the 2-D ZO CRS stack method
we estimate at each point of the ZO seismic section the three relevant parameters associated to the
CRS stack process.

INTRODUCTION

In order to obtain a high-resolution image of the earth sub-surface the geophysicists use the multi-coverage
seismic data acquisition, that yields to overlap registers of geological targets. In time domain, the ZO sec-
tion is the seismic image obtained by considering coincident sources and receivers. This is simulated by
stacking the amplitudes using a traveltime operator, which is defined by means of stack parameters.

By the conventional seismic processing, the ZO section is simulated using the well-known normal
moveout/dip moveout (NMO/DMO) stack method. Mann et al. (1999) presented a new stack method,
so-called Common-Reflection-Surface (CRS), based on a hyperbolic second-order paraxial approach. By
considering a planar measurement surface, it depends on three parameters, namely, the emergence angle
βo of the normal ray, the curvatures KNIP and KN of the two hypothetic wavefront, so-called NIP and N
waves, respectively (Hubral, 1983).

Land seismic data are in general affected by the existence of surface topography and irregularities in the
near-surface (e.g. weathering base and weathering velocity). In the conventional seismic processing, these
effects are interpreted by deviations from hyperbolic NMO correction in the common-midpoint (CMP)
gather. The topography effects are corrected by using field and residual static corrections. By applying
specifically the field static correction, based on refraction seismic data, we remove the most part of these
traveltime anomalies. Nevertheless, this correction usually does not account for rapid changes of the topog-
raphy, in the weathering base, and of the weathering velocity. It is very sensitive to the choice of parameters
involved in the picking phase.
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According to Guo and Fagin (2002), land surveys should always be processed considering a floating
datum that represents the topography. They showed that velocity analysis from a flat seismic reference
datum creates errors to estimate the depth and interval velocities, even in the case of a flat topography, due
to deviations of the take-off angles of the seismic ray paths.

Chira-Oliva and Hubral (2003) studied the sensibility of the interval velocity and reflector depth by
considering a hypothetical circle measurement surface. They showed the NMO velocity by considering
the curvature of the earth surface is more accurate to recover the interval velocities and the depths of
the reflectors than the NMO velocities obtained by using a planar measurement surface approach. Chira-
Oliva and Hubral (2003) and Zhang et al. (2002), respectively, presented the 2-D ZO CRS formalism for
measurement surface with smooth and rugged topography. Chira-Oliva et al. (2001) modified the 2-D ZO
CRS operator for including effects of near-surface inhomogeneity. In this paper, the 2-D ZO CRS stack
performance is tested by considering a multi-layer model with smooth topography.

THEORY

The 2-D ZO CRS stacking operator depends on three parameters of two hypothetical waves, namely the
normal-incidence-point (NIP) and Normal (N) waves (Hubral, 1983). These parameters are the emergence
angle of the normal ray, and the radii of curvatures of the NIP and N waves. The emergence point, X0, of
the normal ray is called central point. The NIP wave propagates upwards from a point source located at the
normal ray incidence point; and the N wave propagates upwards starting at the reflector, like an exploding
reflector source.

Based on the hyperbolic second-order paraxial traveltime approach, the 2-D ZO CRS stacking operator
with smooth topography is given by (Chira-Oliva et al. (2001))
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Equation (1) describes the reflection time t of the paraxial ray SPG in the vicinity of a normal (ZO) ray
X0 NIP X0 (Figure 1a). The ZO travel-time and the central point coordinate are t0 and x0, and v1 is the
near-surface velocity of the P-P wave at the central point X0. The coordinates xm and h are, respectively,
the midpoint and half-offset referred to the x1-axis, that is tangent to the topography surface with origin at
the central point X0 (see Figures 1a,b). The emergence angle of the normal ray at the central point is β∗0 .
The parameterK0 is the local curvature of the earth surface at a point of the acquisition line, that is positive
(or negative) if this line falls below (or above) its tangent at X0. The radii of curvatures of the emergence
hypothetical NIP and N wavefronts at X0 are RNIP and RN respectively.

In order to normalize the processing coordinates, we apply a transformation from the local (x1, x3)
into the global cartesian system (x, z) in Figure 1b. The midpoint and half-offset coordinates, (xm, h) and
(x′m, h

′), in the local and global coordinate cartesian systems, respectively, are related by the expressions

h =
h′

cosα∗0
, xm =

x′m
cosα∗0

, (2)

where α∗0 is the dip angle of the tangent x1-axis at point X0. Introducing the relationships (2) into equa-
tion (1), we find (Chira-Oliva and Hubral, 2003; Chira, 2003)
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We now consider a pure diffraction, i.e., the situation in which the reflector reduces to a single diffraction
point. In this case, the NIP and N waves are coincident, i.e. both propagate from a point source at NIP and
have identical radii of curvatures at X0, RN ≡ RNIP . As a consequence, equation (3) becomes
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Equation (4) depends on two CRS parameters (RNIP , β
∗
0) associated to the NIP wave. This equation

will be used at the first step of the CRS strategy. The CRS stacking operator defined by equation (4) is
interpreted as an approach of the pre-stack Kirchhoff migration operator with smooth topography.

Setting the condition h′ = 0 to the general hyperbolic travel-time equation (3), the CRS stacking
operator for reflected events in the ZO configuration becomes
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Following Garabito et al. (2001) the three optimal CRS parameters (β∗0 , RNIP , RN ) are searched by three
steps. At the first step we use formula (4) to determine β∗0 andRNIP . At the second step we use formula (5)
to determine RN ; and at the third step we use formula (3) to refine the three parameters.

2-D ZO CRS STACK

In the 2-D situation, for each point P0(x0, t0) at the ZO section to be simulated, the amplitudes in the
seismic data will be summed (stacked) along the CRS surface defined by equation (3). The resulting
(stacked) amplitude is assigned to the point P0.

The three CRS stacking parameters are estimated by means of an optimization process, having the sem-
blance as objective function. The CRS stacking optimization problem consists of estimating the parame-
ters that maximize the semblance. In general, the problem requires a combination of multi-dimensional
global and local optimization algorithms. The mathematical intervals defined for the parameters are
−π/2 < β∗0 < π/2, −∞ < RNIP , RN < ∞. Optimization strategies to estimate these parameters
are found in the literature (e.g. Müller (1999); Birgin et al. (1999); Garabito et al. (2001)).

In this paper, we apply the strategy given by Garabito et al. (2001) to estimate the CRS parameters
triplet, but using the new equations (3), (4) and (5).

CRS STACK PROCESSING STRATEGY

The proposed strategy to carry out the CRS method involves a combination of global and local search
processes and is divided into three steps. The curvature, K0, of the seismic line at each central point is
supposed to be a priori known or calculated by means of some interpolation method by using elevation
values. At the first and second steps we used the Simulated Annealing (SA) algorithm (Sen and Stoffa,
1995), and at the third step the Quasi-Newton (QN) algorithm (Bard (1974); Gill et al. (1981)). Each step
is performed on each sample point P0(x0, t0) that pertains to the ZO section to be simulated. The objective
function is the semblance calculated for each point in the ZO section.

Step I : Pre-Stack Global Optimization The multi-coverage pre-stack seismic data is the input. The
inverse problem consists of simultaneously estimating the two parameters β∗0 and RNIP that provide the
maximum semblance value, according equation (4). The results of this step are: 1) maximum coherence
section, 2) emergence angle, β∗0 - section, 3)NIP-wave radius of curvature, RNIP -section, and 4)simulated
(stacked) ZO section.

Step II : Post-Stack Global Optimization The post-stack seismic data is the input. The inverse prob-
lem consists of estimating the single parameter, RN , that provides the maximum semblance according to
equation (5), in which the previously obtained parameter, β∗0 , is kept fixed. In this step the results are: 1)
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maximum coherence section, 2)N-wave radius of curvature, RN -section, and 3)re-stacked simulated ZO
(stacked) section.

Step III : Pre-Stack Local Optimization The multi-coverage pre-stack seismic data from step I is the
input. The inverse problem consists of estimating the best parameter triplet (β∗0 , RNIP , RN ) that provides
the maximum semblance. In this case the CRS stacking operator is equation (3), applied to the full multi-
coverage data set with suitable apertures. In this step the results are: 1) maximum coherence section, 2)
optimized β∗0 -section, 3)optimizedRNIP -section, 4)optimizedRN -section, and 5)optimized ZO (stacked)
section.

Example

In order to test the CRS stacking algorithm we applied it to a synthetic data set computed for 2-D homo-
geneous layered model shown in Figure 2. The model is constituted of four layers above a half-space. The
acquisition system is lying on a smooth topography line. Based on this model, we generated a synthetic
data set of multi-coverage primary reflections, using the ray-tracing algorithm, SEIS88 (Červený and Psen-
sik, 1988). In order to test the accuracy of the CRS method, it was added random noise with signal-to-noise
ratio of S/N = 10. The data set consisted of 201 common-shots (CS) with 72 receivers with interval of
50 meters. The minimum offset was 50 meters. The source signal was a Gabor wavelet with 40 Hz domi-
nant frequency and the time sampling was 4 ms. An example of part of these data is presented in Figure 3,
represented by a CS section.

Figure 4 shows the ray-theoretical modelled ZO section with random noise added. Figure 5 shows the
simulated ZO section that results from the application of the CRS stack method for a curved measurement
surface. Due to the fact that the CRS method involves a larger number of traces during the stacking process,
the simulated ZO section presents enhanced primary reflection events, with larger signal-to-noise ratio than
the corresponding ones in the modelled ZO section (Figure 4). Figure 6 shows the maximum coherence
(semblance) section that corresponds to the best parameters. We note that the coherence values become
smaller for larger traveltimes (deeper events). Figures 7, 8 and 9 show the sections of emergence angle
and radii of curvature of the NIP and N waves, respectively. These sections correspond to global maxima
determined at the third step.

A comparison between the emergence angles, β∗0 , estimated by the CRS algorithm (curves of red points)
and by modelling (curves of blue points), respectively, is shown in Figure 10. We can see the emergence
angle has been well estimated along all reflectors. Figures 11 and 12 show the analogous comparison
for the other parameters, RNIP e RN , respectively. These parameters are also well estimated, with the
exception of the locations where abrupt changes of the curvatureK0 are present (Figure 13).

CONCLUSIONS

A new formula for the CRS stack method that considers the smooth topography of the acquisition line
has been tested in synthetic data sets with successful results. The parameters were correctly estimated,
excepting the regions where there are abrupt changes of the curvature of the topography line. In these
regions, the errors of the estimated parameters increase with depth. Besides the simulated ZO sections, we
have obtained the coherence section and the sections referred to the attributes of the NIP and N waves.
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Figure 1: a)Ray diagram for a paraxial ray in the vicinity of a normal ray in a 2-D laterally inhomoge-
neous medium. Local coordinates system (x1, x3) for a curved measurement surface referred to point X0.
b)Transformation of the local coordinates, xm and h, to its global coordinates xm′ and h′. The local dip
angle of the tangent at X0 (x1-axis) is defined by α∗0. The angle between the normal ray and the vertical
line throughX0 (z-axis) is β0, and β∗0 is the angle between the normal ray and the normal to the tangent at
X0.
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Figure 2: 2-D model constituted of four isovelocity layers about a half-space with curved interfaces and
curved measurement surface. Interval velocities are 1.75 km/s, 2.4 km/s, 3.5 km/s, 4.65 km/s and 5.5 km/s,
respectively.
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Figure 3: Example of a CS section of multi-coverage pre-stack seismic data of the model of Figure 2. The
ratio signal/noise is 10.
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Figure 4: ZO section with random noise (ratio S/N = 10) obtained by forward modelling.
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Figure 5: Simulated ZO section with the ZO CRS stack by using the multi-coverage seismic data with
random noise (ratio S/N = 10).
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Figure 6: CRS optimized coherence section of the model of Figure 2.
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Figure 7: CRS optimized β∗0 -section of the model of Figure 2.
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Figure 8: CRS optimized RNIP -section of the model of Figure 2.
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Figure 9: CRS optimized RN -section of the model of Figure 2.
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Figure 10: Comparison between CRS (curve of red points) and model-derived (curve of blue points)
emergence angles β∗0 . The parameter for each interface are plotted separately: a) first, b) second, c) third
and d) fourth interface of the model of Figure 2.
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Figure 11: Comparison between CRS (curve of red points) and model-derived (curve of blue points) radius
of curvature, RNIP . The parameter for each interface are plotted separately: a) first, b) second, c) third
and d) fourth interface of the model of Figure 2.
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Figure 12: Comparison between CRS (curve of red points) and model-derived (curve of blue points) radius
of curvature, RN . The parameter for each interface are plotted separately: a) first, b) second, c) third and
d) fourth interface of the model of Figure 2.
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Figure 13: Curvature of measurement surface along the acquisition line. It presents the points of abrupt
changes of the curvature of the model of Figure 2.


