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ABSTRACT

Two analytical examples in elementary functions are presented, which demonstrate divergence of the
geometrical optics (GO) series when the conditions for its applicability are violated: (i) shear wave
propagation in 1D elastic media with exponentially changing parameters and (ii) 2D Gaussian beam
diffraction in free space. These examples evidence that accounting for higher terms in GO power
series leads to divergence and therefore becomes completely senseless beyond the boundaries of GO
applicability.

INTRODUCTION

Geometrical optics (or geometrical acoustics in the specific case of sound and/or elastic waves) is the most
efficient and universal method in the wave theory. It deals with a representation of the wave in the form of
series in inverse powers of the wave number ko = w /v :

ueo = Achov — <Ao + % + (i‘,jj)g + ) etto¥ (1)

Here, A denotes amplitude, ) an eikonal, w a frequency and v is a typical wave velocity for the
considered medium.

It is well known that convergence of the geometrical optics (GO) series (1) to the exact solution has an
asymptotic nature. Asymptotic convergence means that the difference between the exact solution wezqct
and the GO solution (1) tends to zero for kL. — oo, where L is a characteristic scale of the medium and
the wave field parameters, & = nko and n = vg /v is a refractive index.

However, in contrast to the limit L. — oo, for sufficiently low frequencies the series (1) can diverge. A
careful analysis of the asymptotic convergence requires significant efforts incorporating special functions or
complicated integrals. This paper illustrates the convergence behavior of GO series by two examples using
only elementary (i.e. algebraic and exponential) functions. The first example deals with a 1D shear wave
propagating in a medium with exponentially increasing medium parameters (shear modulus and density).
The second example describes the diffraction of a Gaussian beam in a free space. In both cases the wave
equation has exact solutions in elementary functions which can be compared with the GO solution (1).

The new aspect of our analysis is the observation that the GO series starts diverging just when the
conditions for its applicability are violated. The necessary condition for the validness of (1) is that the
wave length X is small compared to the characteristic scale L of the medium (Landau and Lifshits, 1977;
Born and Wolf, 1983; Kravtsov and Orlov, 1990):

A1 1
onl kL nkoL

where n = v /v stands for the refractive index of the medium.
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The sufficient condition for the validness of (1) is that the variations of the amplitude A and the refractive
index n are small within a Fresnel volume (Kravtsov and Orlov, 1990, 1994; Kravtsov, 1988)

af|lVA| << A ) asf|Vn| <<n. (3)

Here, a is a cross section of the Fresnel volume which incorporates all first Fresnel zones surrounding
the infinitely thin mathematical’ ray. The Fresnel volume itself forms a *physical’ ray of finite thickness.
The first example (1D shear wave, Sect. 2) demonstrates the divergence of the GO series at

kL~1, 4)

when the necessary condition (2) becomes violated. The second example (2D Gaussian beam diffrac-
tion, Sect. 3) shows that the condition (3) fails when the distance = exceeds the diffraction length z4; 75 =
koa?, where a is an initial Gaussian beam width.

Both examples evidence that accounting for higher order terms in the series (1) beyond the boundary
of GO validity is the reason for divergences instead of expected improvements of accuracy.

SHEAR WAVES IN 1D ELASTIC MEDIA
Geometrical optics expansion

Here, we treat the general case of a shear wave propagating in an elastic medium. The propagation of a
time harmonic (e ~%*) shear wave in a 1D medium with density p(z) and shear modulus z(z) is described
by the wave equation

0 ou 0%u
92 (M&) = Pw : ()
u denotes the displacement in the direction perpendicular to the z axis (so called SH case (Cerveny,
2001)).
A time harmonic high-frequency ansatz for the displacement u
u = Aetov (6)
leads to the equation
o\
2 A b 2 7
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where n = vg /v is the refractive index and v = +/ i/ p is the shear wave velocity. A similar formalism
can be applied also to longitudinal (acoustic) waves using only slightly changed notations for the material
parameters (for details see Buske (2000)).

The three terms in equations (7)-(9) are sorted according to the powers of ky. The largest term (7),
which is proportional to k2, yields the eikonal equation

(‘3—15)2 =n (10)

The subsequent terms (8) and (9) lead to transport equations for the amplitudes A,,, of the GO expansion

(D):

AT

e — = 11
022 99z 0z 0 m=0, (11)
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In a special case when density p and shear modulus . grow exponentially with depth z

p = poexp (72) = o exp (7z) (13)

the refractive index n becomes unity and the eikonal v = z. Under these conditions the transport
equation (11) for the amplitude of the zeroth approximation has the solution

Ao(z) = A exp (_g) , (14)

where A = Ay(z = 0) is an initial value of Ay at z=0. Thus, in the zeroth approximation of GO the
solution of the wave equation becomes

. z
ugo = A8 exp (zkzoz - %) . (15)

The modified transport equation

Simply combining the second term (8) and the third term (9) into a single equation one obtains the so called
modified transport equation (MTE):

9?A aua_jxﬂ_k ~Op O = 0% A 0y
0z 0z 022 Naz 0z

From the solution A of the MTE and with ¢ from the eikonal equation (10) one can obtain the solution
of the wave equation (5) in the form of (6). In the case of the exponentially changing parameters (13) the
MTE takes the form

24 C0A -
and has the exact solution
A =ayexp(qi2) + azexp (q22) . (18)

The two solutions ¢; and g- of the corresponding characteristic equation are

_ 7y o2+ (1) =) ke — Sz + (1)
a1 = 5 — ik + 1/ (iko) +(2) 42 = —2 — ik =\ (iko) +(2) . (19)
The amplitude coefficients in equation (18) are
R0 _ A0 _nRo A0
a; = 73 A e y ag = 73 * A 4 (20)
q1 — q2 q1 — Q2
where
~ A(z = 0)

A= A(z=0) , B°= (21)

are the initial values (at z = 0) of the amplitude A(z) and its derivative B(z) = dA(z)/dz, respectively.
For a given problem the necessary condition (2) for GO applicability can be written as inequality
k>>7, (22)

which means that the characteristic length L ~ 1/~ of the variation in medium parameter is much
larger than the wavelength:
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1 1
L - = — 23
>> - e (23)

Under the condition k& >> ~, when GO is applicable, the two solutions become

7y

In this case
2
q1 — q2 = 2 (’Lko)2 + (%) ~~ 2’“{30, (25)
—B° + A2k, —-B°— A%
~N—_—— N ——2 26
“ 2iko 2 2iko (26)
so that the solution of (17) takes (at B° = 0) the form:
A~ 40 _YEY o Y Y
A= A exp( 5 ) A Tikg exp (—2ikoz) . 27)

The first term in (27) corresponds to the zeroth approximation of the GO solution (15) with natural
interchange A3 < A°, whereas the second term in (27) describes the reflected wave

Upefl R /Lefl exp (—ikoz) (28)

with the amplitude /Leﬂ being proportional to the small factor v/ko << 1.
Thus, the GO solution (15) in fact is the leading term of the exact solution (18), expanded into series in
inverse powers of the wave number kq. According to the theory of complex variables (Cartan, 1995) the

power series for ¢; — go takes the form
1/ v\ v\
1+=(=—) - — 29
3 <2ik0) <2¢k0> + ] (29)

g < ko, (30)

that is exactly within the area of GO applicability. At the same time the GO series (1) diverges beyond
the area of GO applicability. This means, from a practical point of view, that accounting for higher order
terms in the GO series (1) makes sense only until inequality (30) holds, otherwise higher order terms will
be the reason for the divergence of the GO series.

It is worth to notice that the reflected wave (the second term in equation (27)) principally cannot be
expanded into a series in inverse powers of kq. Therefore, the reflected wave can in no way be extracted
from the GO expansion (1).

oo | =

2
. Y .

— g9 = 2ikoy/ 1 — | = 2k

q1 —Qq2 () +<2ik0) 1Ko

and converges if only

2D GAUSSIAN BEAM DIFFRACTION IN FREE SPACE
Exact solution of the wave equation in paraxial approximation

Let us consider 2D Gaussian beam diffraction in free space on the basis of paraxial approximation. If the
initial wave field in the z = 0 plane is given by

2
0 0 x
u (z) = A% exp (Tcﬂ) , o a>> . (31)
Then, the wave field at an arbitrary point (x, z) can be determined from the parabolic equation
2
Qikoa—U + U =0 , u=U(z,z2)e**? (32)

0z  Ox2
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or from the Kirchhoff integral written in paraxial approximation

u(z,z) = \/g/ u®(€) exp <ikoz + W) d¢ . (33)

For an initial Gaussian wave field (31) one obtains from equations (32) and (33)

A° _ z?
Uezact (T, 2) = \/T—ZQ exp ( ithoz — m ) (34)
where
z
Q= koa? (39)

denotes the ratio of the distance z to the diffraction length zg; ¢ 5 = koa?.

Geometrical optics solution for a 2D Gaussian beam

The geometrical optics solution for a 2D Gaussian beam has the form

1mO<AO+%§+G%F+")amA (36)

Here, the amplitude of the zeroth approximation Ay describes undiffracted Gaussian beam propagation
$2

Ag(z,2) = A%exp <T¢2) . (37)

The higher order amplitude terms are responsible for diffraction and are given by the recursive formula

Apy1 = f%/ 862;12” dz. (38)

For a central ray = = 0 each differentiation with respect to z gives an additional factor —1/a? so that
the amplitude terms read

Al o ZAO o ’LQ
e ka2 39
A 3
o @
Ay 5,
(’L'k/’o)3 - 71_6(ZQ)3 . (41)

Relation between GO solution and exact solution

One can compare the paraxial solution (34) with the GO series (36) by expanding the amplitude factor

(1-iQ)~2 (42)
in equation (34) into power series in Q:
(1 + g + g(iQ)Q — 1—56(2'62)3 + ) . (43)

One can see that the first three terms in (43) and in the GO series (39)-(41) are identical. However, it
is a bit more troublesome to show the total identity of both series. According to the theory of functions of
complex arguments (e.g. Cartan (1995)) the series (43) converges only if Q < 1. That means for @ > 1
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the sum (43) will become infinite although the left hand side of (43) is bounded. The divergence of the GO
series for Q > 1 can be illustrated by considering the squared normalized amplitude

CTA(0,2)1 1
S(Q){ 10 ] =150 (44)
with its power series

S(Q) = (1+1iQ + (iQ)* + (1Q)* + ...) - (45)

The sum of the first n terms of this series can be written in a more compact form

(iQ! ~1
= 4

Snl(@) =5 (46)

For @ < 1 this series converges for n — oo to the initial value (44), but for ¢ > 1 it diverges.
The difference between the exact solution (34) and the GO series (36) can be characterized by the
normalized ratio

51() = Lezent 02 2 1002 (@)

which is shown in Figure 1. This difference is zero for Q < 1 but it turns out to be infinite for Q > 1.
A completely different plot is obtained for the difference between the exact solution wezqc: (0, z) and
the zeroth order GO approximation

g6 (0,2) = Ag(0, 2) exp (ikoz) . (48)

The difference, presented in the normalized form

(Oa Z) _ U%O(Oa Z)’

Uegact
52(Q) = | 10

(49)

is shown in Figure (2). The value d2(Q) is close to zero at small distances, where Q) << 1. At the
boundary of GO applicability (@ = 1) the error takes the value

1
— -1 50
e <>
and finally it tends to unity for Q — co.
The divergence of the series (45) starts at
z

=" -1 51
Q=7m=1 (51)

which is the convergence radius for the function 1/,/T —i@Q. The equality (51) corresponds to the
sufficient criterion of GO inapplicability (see inequalities (3)): at @ = 1 the radius of the first Fresnel zone
as = v/\z becomes comparable with the width « of the primary Gaussian beam (31).

It is not surprising that the GO expansion (36) fails to describe diffraction phenomena for @ > 1.
However, it looks surprising that taking into account higher terms in the GO expansion (36), which actually
make the difference between the GO approximation and the exact solution and which are negligible for
Q@ < 1, lead to unlimited growth of the GO field for Q > 1. The comparison of Fig. 1 and Fig. 2 prompts
to conclude that accounting for higher order terms in the GO series (36) makes sense only if @ < 1,
whereas for ¢Q > 1 higher terms can only worsen the difference between the exact solution ... and the
zeroth order GO approximation u%.
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Figure 1: Normalized difference 61 (Q), eq. (47), between the exact solution u¢,q.(0, z) and the total GO
solution uco (0, 2).

$3,(Q)

- Q

Figure 2: Normalized difference d2(Q), eq. (49), between the exact solution w..q.+(0, z) and the zeroth
order GO approximation uZ., (0, z).
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CONCLUSIONS

Two analytical examples have shown explicitly that crossing the boundary of GO applicability might result
not only in worsening the accuracy but also in catastrophical divergence of the GO series. Such a divergence
reflects the asymptotic nature of the GO series in powers of the inverse wave number kq. From a practical
point of view this phenomenon restricts the possibilities to improve the accuracy of wave field calculations
by accounting for higher order terms of the GO series beyond the area of GO applicability.
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