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ABSTRACT

This paper gives a short summary of the properties of anisotropic media with elliptical symmetry. It
was motivated by the need for analytic expressions for the evaluation and verification of related com-
puter algorithms. After a brief introduction and derivation of the phase and ray (group) velocities and
the polarisation vectors I give expressions for the plane wave reflection and transmission coefficients
at a boundary between two elliptically anisotropic half-spaces. These are followed by expressions
for the traveltimes and the geometrical spreading for homogeneous media with elliptical anisotropy.
Please note, that the resulting expressions are equally valid for isotropic media if the elastic coeffi-
cients are chosen accordingly. A final short description of my computer codes for the calculation of
these quantities concludes the paper.

INTRODUCTION

A medium with elliptical anisotropy and a vertical symmetryaxis is characterised by the density-normalised
elasticity tensor (Aik = Cik/ρ)

A =




A11 A12 A13

A11 A13

A33

A44

A44

A66




(1)

with the additional constraints

A12 = A11 − 2 A66

(A13 + A44)
2 = (A11 − A44)(A33 − A44) . (2)

Let the slowness vector be denoted byp. SinceA displays rotational symmetry with respect to the vertical
(z- or 3-) axis I choosep in a way thatpy = p2 = 0 and

p =

(
sin φ

V
, 0,

cosφ

V

)
, (3)

whereφ is the phase angle made byp and the vertical (z- or 3-) axis, andV is the phase velocity. I
introduce the abbreviationsd11 andd33 with

d11 = A11 − A44 and d33 = A33 − A44 . (4)
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This leads to the following non-vanishing elements of the Christoffel matrixΓik = aijklpjpl:

Γ11 = A11 p2
1 + A44 p2

3 = A11
sin2 φ

V 2
+ A44

cos2 φ

V 2
,

Γ22 = A66 p2
1 + A44 p2

3 = A66
sin2 φ

V 2
+ A44

cos2 φ

V 2
,

Γ33 = A44 p2
1 + A33 p2

3 = A44
sin2 φ

V 2
+ A33

cos2 φ

V 2
,

Γ13 = (A13 + A44) p1 p3 =
√

d11d33
sin φ cosφ

V 2
. (5)

PHASE VELOCITIES

The solution of the Christoffel equation for the displacement vectoru,

(Γik − δik)uk = 0 , (6)

whereδik is Kronecker’s delta, requires that
∣∣∣Γik − G(n)δik

∣∣∣ = 0 . (7)

This determinant leads to the characteristic polynome of third order, whose three solutions are the eigenval-
uesG(n) = 1, with n = 1, 2, 3. I define the index1 to be aqSV wave,2 an SH wave, and3 aqP wave. The
physical meaning of these definitions will become apparent in the next section on the polarisation vectors.
For simplicity, the indices are abbreviated by SV, SH, and P,omitting theq.

Insertion ofΓik for the elliptic case yields three phase velocitiesV (n):

V SV =
√

A44 ,

V SH =

√
A66 sin2 φSH + A44 cos2 φSH ,

V P =

√
A11 sin2 φP + A33 cos2 φP . (8)

POLARISATION

The three eigenvectorsg(n) that obey
(Γik − δik)g

(n)
k = 0 (9)

are the polarisation vectors of the three waves with the phase velocitiesV (n). The polarisations are given
by

gSV =
(
mSV cosφSV , 0, −lSV sin φSV

)
,

gSH = (0, 1, 0) ,

gP =
(
lP sinφP , 0, mP cosφP

)
, (10)

where the abbreviationsl(n) andm(n) are introduced:

l(n) =

√
d11

d11 sin2 φ(n) + d33 cos2 φ(n)
,

m(n) =

√
d33

d11 sin2 φ(n) + d33 cos2 φ(n)
. (11)

The signs of the polarisation vectors are chosen in a way thattheg(n) form an orthonormal system, see
Figure 1. The wave associated with index 3 is aqP wave, which I have abbreviated withP for shortness.
The index 1 corresponds to a quasi shear wave, abbreviated with SV . The SH wave has index 2.
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Figure 1: Polarisation vectors in a medium with elliptical anisotropy. TheqP andqSV waves propagate in
thex-z plane, the SH wave polarisation vector is oriented along they axis, pointing to the reader.

RAY (GROUP) VELOCITIES

The components of the ray or group velocity vectors for the three wave types,v(n) (denoted by lower case
letters to distinguish the group velocities from the phase velocitiesV (n)) are given by

v
(n)
i = aijkl g

(n)
j g

(n)
k p

(n)
l , (12)

leading to

vSV =
(√

A44 sin φSV , 0,
√

A44 cosφSV
)

,

vSH =

(
A66

V SH
sin φSH , 0,

A44

V SH
cosφSH

)
,

vP =

(
A11

V P
sin φP , 0,

A33

V P
cosφP

)
. (13)

Introducing the ray angleθ(n) with tan θ(n) = v
(n)
x /v

(n)
z yields

tan θSV = tanφSV ,

tan θSH =
A66

A44
tan φSH ,

tan θP =
A11

A33
tan φP , (14)

and

vSV =
√

A44 = V SV ,

vSH =

√
A2

66 sin2 φSH + A2
44 cos2 φSH

V SH
=

[
sin2 θSH

A66
+

cos2 θSH

A44

]− 1
2

,

vP =

√
A2

11 sin2 φP + A2
33 cos2 φP

V P
=

[
sin2 θP

A11
+

cos2 θP

A33

]− 1
2

. (15)

REFLECTION AND TRANSMISSION COEFFICIENTS

The displacement vector for a plane wave of typen is expressed by

u(n) = U (n) g(n) e−iω(t−τ (n)) . (16)

whereU (n) is the scalar amplitude associated with the wavetypen. The eikonal or phase functionτ (n) is

τ (n) = ∇τ (n) · r = p(n) · r . (17)
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Consider now a plane boundary between two homogeneous elliptically anisotropic half spaces at the
depthz = 0 (see Figure 2). Depending on the type of the incident wave, reflected and transmitted waves of
different types are generated. An incident SH wave leads to reflected and transmitted SH waves, whereas in
the cases of incidentqSV orqP waves conversion fromqSV toqP and vice versa can also occur. Therefore,
an incidentqSV wave will generate not only reflected and transmittedqSV waves, but also reflected and
transmittedqP waves. The same applies to an incidentqP wave which will lead to reflected and transmitted
qSV andqP waves. Each of these waves can be written in terms of Equation (16). In addition to the upper
indexn for the wavetype, the individual displacement vectors willbe denoted with the lower index0 for
the incident wave,R for the reflected wave, andT for the transmitted wave.

To determine the reflection and transmission coefficients ofthe displacement, the following boundary
conditions must be fulfilled:

Continuity of displacement : ux, uy, uz ,

Continuity of shear stress : σxz = ρA44(
∂ux

∂z
+

∂uz

∂x
) ,

σyz = ρA44
∂uy

∂z
,

Continuity of normal stress : σzz = ρ(A13
∂ux

∂x
+ A33

∂uz

∂z
) .

The spatial derivatives of the displacement components are

∂ui

∂xj
= iω e−iω(t−p·r) ui pj . (18)

The slowness vectors of the incident, reflected, and transmitted waves are given by

incident wave : p
(n)
0 =

1

V
(n)
0

(sin φ
(n)
0 , 0, cosφ

(n)
0 ) ,

reflected wave : p
(n)
R =

1

V
(n)
R

(sin φ
(n)
R , 0, − cosφ

(n)
R ) ,

transmitted wave : p
(n)
T =

1

V
(n)
T

(sin φ
(n)
T , 0, cosφ

(n)
T ) . (19)

Snell’s law requires that the horizontal slownessp = sinφ/V remains constant. This can lead to imaginary
anglesφ. In that case the displacement given by Equation (16) will show exponential behaviour alongz.
To avoid an increase in amplitude, the cosine of the angleφ must be either a real or a positive imaginary
number.

Application of the boundary conditions and phase matching leads to equations for the reflection and
transmission coefficients. Since the SH wave is decoupled from theqP andqSV waves, the SH andqP/qSV
cases can be treated separately.

SH waves

Continuity of they component of the displacement,uy, and the shear stressσyz leads to

RSH−SH =
USH

R

USH
0

=
ρ(1) A

(1)
44 V2 cosφ1 − ρ(2) A

(2)
44 V1 cosφ2

ρ(1) A
(1)
44 V2 cosφ1 + ρ(2) A

(2)
44 V1 cosφ2

,

TSH−SH =
USH

T

USH
0

=
2 ρ(1) A

(1)
44 V2 cosφ1

ρ(1) A
(1)
44 V2 cosφ1 + ρ(2) A

(2)
44 V1 cosφ2

, (20)
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Figure 2: Boundary between two homogeneous elliptical media and orientation of the polarisation vectors
of the incident, reflected, and transmitted waves.

where index 1 describes the properties of medium 1 (with the incident/reflected wave) and index 2 those of
medium 2 with the transmitted wave. The reflection angle,φSH

R is equal to the incidence angleφSH
0 = φ1,

and the transmission angleφSH
T = φ2 can be computed from Snell’s law, leading to

φSH
T = arctan

[
A

(2)
44

1
p2 − A

(2)
66

] 1
2

, (21)

wherep can be computed from the quantities of the incident wave, i.e. p = sin φSH
0 /V SH

0 .

qP-qSV waves

Continuity of thex andz components of the displacement vectors, the shear stressσxz and the normal
stressσzz leads to two linear system of equations with four unknowns, one system for an incident SV
wave,




X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44







RSV −P

TSV −P

RSV −SV

TSV −SV


 =




Y SV
1

Y SV
2

Y SV
3

Y SV
4


 , (22)

and a second for an incident P wave:




X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44







RP−P

TP−P

RP−SV

TP−SV


 =




Y P
1

Y P
2

Y P
3

Y P
4


 . (23)

As for the SH case, the reflection coefficientsRnn′ and transmission coefficientsTnn′ of the displacement
are given by the amplitude ratio between the reflected/transmitted wave (of typen) and the incident wave
(of typen′):

Rnn′ =
Un

R

Un′
0

and Tnn′ =
Un

T

Un′
0

. (24)



272 Annual WIT report 2002

The 4×4 matrixX is the same in both Equations, (22) and (23). Its elements are

X11 = UP
R lPR sin φP

R ,

X12 = − UP
T lPT sin φP

T ,

X13 = − USV
R mSV

R cosφSV
R ,

X14 = − USV
T mSV

T cosφSV
T ,

X21 = − UP
R mP

R cosφP
R ,

X22 = − UP
T mP

T cosφP
T ,

X23 = − USV
R lSV

R sinφSV
R ,

X24 = USV
T lSV

T sinφSV
T ,

X31 = − UP
R

V P
R

C
(1)
55 sin φP

R cosφP
R (lPR + mP

R) ,

X32 = − UP
T

V P
T

C
(2)
55 sin φP

T cosφP
T (lPT + mP

T ) ,

X33 = − USV
R

V SV
R

C
(1)
55 (lSV

R sin2 φSV
R − mSV

R cos2 φSV
R ) ,

X34 =
USV

T

V SV
T

C
(2)
55 (lSV

T sin2 φSV
T − mSV

T cos2 φSV
T ) ,

X41 =
UP

R

V P
R

(C
(1)
13

P
R sin2 φP

R + C
(1)
33 mP

R cos2 φP
R) ,

X42 = − UP
T

V P
T

(C
(2)
13

P
T sin2 φP

T + C
(2)
33 mP

T cos2 φP
T ) ,

X43 = − USV
R

V SV
R

sin φSV
R cosφSV

R (C
(1)
13 mSV

R − C
(1)
33 lSV

R ) ,

X44 = − USV
T

V SV
T

sin φSV
T cosφSV

T (C
(2)
13 mSV

T − C
(2)
33 lSV

T ) . (25)

The right hand sides of Equations (22) and (23) are given by

Y SV
1 = − USV

0 mSV
0 cosφSV

0 ,

Y SV
2 = USV

0 lSV
0 sin φSV

0 ,

Y SV
3 =

USV
0

V SV
0

C
(1)
55 (lSV

0 sin2 φSV
0 − mSV

0 cos2 φSV
0 ) ,

Y SV
4 = − USV

0

V SV
0

sinφSV
0 cosφSV

0 (C
(1)
13 mSV

0 − C
(1)
33 lSV

0 ) . (26)

and

Y P
1 = − UP

0 lP0 sin φP
0 ,

Y P
2 = − UP

0 mP
0 cosφP

0 ,

Y P
3 = − UP

0

V P
0

C
(1)
55 sin φP

0 cosφP
0 (lP0 + mP

0 ) ,

Y P
4 = − UP

0

V P
0

(C
(1)
13

P
0 sin2 φP

0 + C
(1)
33 mP

0 cos2 φP
0 ) . (27)
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The reflection and transmission angles are again determinedfrom Snell’s law:

φP
R = arctan

[
A

(1)
33

1
p2 − A

(1)
11

] 1
2

,

φP
T = arctan

[
A

(2)
33

1
p2 − A

(2)
11

] 1
2

,

φSV
R = arcsin(p V SV

R ) ,

φSV
T = arcsin(p V SV

T ) , (28)

where again,p = sin φ
(n)
0 /V

(n)
0 is computed from the incident wave withn equal to P or SV.

Equations (22) and (23) can be solved for the individual coefficients by the usual methods for systems
of linear equations.

Normalised R/T coefficients

Another possibility is to express the coefficients normalised with respect to the energy flux perpendicular
to the interface. The normalised reflection and transmission coefficientsRnn′ andTnn′ are obtained from
the standard coefficientsRnn′ andTnn′ by

Rnn′ =

∣∣∣∣∣
ρR vn′

R cosφn′

R

ρ0 vn
0 cosφn

0

∣∣∣∣∣

1
2

Rnn′ ,

Tnn′ =

∣∣∣∣∣
ρT vn′

T cosφn′

T

ρ0 vn
0 cosφn

0

∣∣∣∣∣

1
2

Tnn′ . (29)

The wavetype denoted byn′ is again that of the incident wave, indexn corresponds to the reflected or
transmitted wave.

TRAVELTIMES

Consider a homogeneous medium with the vectorr = (x, y, z) = (gx − sx, gy − sy, gz − sz) describing
the distance between the source (s) and receiver (g) positions, and its modulus,r =

√
x2 + y2 + z2. The

traveltimeτ (n) of a wave of typen propagating from the source to the receiver is given byτ (n) = r/v(n).
This results in the following traveltimes:

τSV =

√
x2 + y2 + z2

A44
,

τSH =

√
x2 + y2

A66
+

z2

A44
,

τP =

√
x2 + y2

A11
+

z2

A33
. (30)

GEOMETRICAL SPREADING

The relative geometrical spreadingL(n) that a wave of typen undergoes in a homogeneous medium can
be expressed by

L(n) =
cos θ(n)

√∣∣∣detN(n)
∣∣∣

v(n)

V (n)
, (31)
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where the 2×2 matrixN(n) is the second-order mixed derivative matrix of the traveltimesτ (n) with respect
to the source and receiver positions:

N
(n)
IJ = − ∂2τ (n)

∂sI ∂gJ
. (32)

(IndicesI andJ take the values 1 and 2.) Differentiation of Equation (30) leads to the following expressions
for the relative geometrical spreading:

LSV =
√

A44 r ,

LSH =

√
A44 A66

v V
r ,

LP =
A11

√
A33

v V
r . (33)

COMPUTER PROGRAMS

This section gives a short description of the computer codesthat make use of the results from the previous
sections. The programs are free software under the GNU public license and can be obtained from the
author.

Reflection and Transmission Coefficients

The programelli_coef.f computes the elastic standard reflection and transmission coefficients as de-
scribed above. The linear systems (22) and (23) are solved with Kramer’s method, where the determinants
are computed analytically. This program comes with the graphical user interface (GUI)elli_coef.pl.
After entering the elastic parameters of the two media and specifying the incident and outgoing wavetypes,
the program computes (theApply button) or computes and displays (thePlot button) the desired reflec-
tion or transmission coefficient. The SU (seismic unix) routinesftnstrip andxgraph are required to
display the coefficients.

Traveltimes and Spreading

The programelli_ttl.c computes traveltimes and geometrical spreading in three dimensions for a
homogeneous elliptical medium. The required elastic parametersA11, A33, A44, andA66 are given in the
input coordinate system with rotational symmetry around the vertical axis. Three angles can be specified
to transform the elasticity tensor to a system with arbitrary orientation of the symmetry axis. To do so, the
input coordinate system is first rotated around thex axis by the angler_x, then around they axis byr_y,
and, finally, around thez axis byr_z.

The program computes spreading and traveltimes from Equations (30) and (33) for arbitrary wave type,
grid sizes and spacings, and source positions (within the specified volume). The user is prompted for all
of these informations after starting the program. Of course, it is also possible to apply I/O-redirect with an
input file.
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