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ABSTRACT

This paper gives a short summary of the properties of amipitimedia with elliptical symmetry. It
was motivated by the need for analytic expressions for tatuation and verification of related comt
puter algorithms. After a brief introduction and derivatiof the phase and ray (group) velocities and
the polarisation vectors | give expressions for the plameewaflection and transmission coefficien
at a boundary between two elliptically anisotropic halésps. These are followed by expressions
for the traveltimes and the geometrical spreading for hanegus media with elliptical anisotropy.
Please note, that the resulting expressions are equaity fealisotropic media if the elastic coeffi-
cients are chosen accordingly. A final short description pfammputer codes for the calculation of
these quantities concludes the paper.

n

INTRODUCTION

A medium with elliptical anisotropy and a vertical symmedrys is characterised by the density-normalised
elasticity tensord;;, = Cix/p)

A A Ags

A Ais

Ass
A= 1
= Aga @

Ay
Ass
with the additional constraints
A = A1 —2Aes

(A1s + A44)2 = (A11 — Aga)(Ass — Aga) . (2)

Let the slowness vector be denotedpySinceA displays rotational symmetry with respect to the vertical
(z- or 3-) axis | choose in a way thap, = p, = 0 and

_ (sing cos ¢
p= (05 @

where ¢ is the phase angle made lpyand the vertical 4- or 3-) axis, andV is the phase velocity. |
introduce the abbreviationg, anddss with

dii = A — Ay and dsz = Ass — Aax . (4)
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This leads to the following non-vanishing elements of theigtbffel matrixI';; = aijrp;pi:

.9 2
sin cos
Iy = Anpi+Aups = An V2¢ + Ag ngj ,
.2 2
sin cos
Iy = Agepi + Awp; = Ags V2¢ Aus V2¢ g
.9 2
sin® ¢ cos® ¢
Tg3 = Awpi+ Assp; = Au V2 + Az vz
sin ¢ cos ¢

'z = (A3 + Aga)pips = Vdirdas )

V2
PHASE VELOCITIES
The solution of the Christoffel equation for the displacaiesctoru,
(Dix — dix)ur, =0, (6)
whered;;, is Kronecker’s delta, requires that
Do — Gy =0 . @)

This determinant leads to the characteristic polynomeiaf trder, whose three solutions are the eigenval-
uesG™ = 1, withn = 1,2, 3. | define the index to be agSV wave 2 an SH wave, and agP wave. The
physical meaning of these definitions will become apparettié next section on the polarisation vectors.
For simplicity, the indices are abbreviated by SV, SH, anahfifting theq.

Insertion ofT';;, for the elliptic case yields three phase velocifiés):

VSV =V A44 )

VSH — \/AGG sin® ¢SH + Ayy cos? pSH

VP = \/All sin2 ¢P + Agg cos? QZ/)P . (8)

POLARISATION

The three eigenvectogs™ that obey

(Tik — S )gy” = 0 ©)
are the polarisation vectors of the three waves with thegkialcitiesi’ (). The polarisations are given
by

gSV _ (mSV CoS (bSV7 0, _ZSV sin ¢SV) ,
gSH = (07 ]" 0) )
gl = (ZP sing?, 0, m¥ cos ng) , (10)

where the abbreviatiori§” andm(™ are introduced:

IO di
di1 sin? ¢(") + ds3 cos2 (M)

d
(n) — 33 ) 11
mn \/d11 sin2 ¢(n) + d33 cos? ¢(n) ( )

The signs of the polarisation vectors are chosen in a waythieas() form an orthonormal system, see
Figure 1. The wave associated with index 3 gPawave, which | have abbreviated withfor shortness.
The index 1 corresponds to a quasi shear wave, abbreviatie$Wi The SH wave has index 2.
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SH wavey © X
gSV wave
z gP wave

Figure 1: Polarisation vectors in a medium with elliptical anisotyophegP andgSV waves propagate in
thex-z plane, the SH wave polarisation vector is oriented alongytheis, pointing to the reader.

RAY (GROUP) VELOCITIES

The components of the ray or group velocity vectors for theetwave typesy(™ (denoted by lower case
letters to distinguish the group velocities from the phasleditiesV (™)) are given by

vE”) = Qijkl 9§n) g](cn) pl(n) ) (12)

leading to

vV = (\/A44sin¢7sv,0, A44COS¢SV) ,

Ass . Ay
v — (VSH sing®H 0, VST cos ¢ ,

Ao A
vl = (V—lli sin ¢, 0, V—BIS’ cosgbp) . (13)

Introducing the ray anglé™ with tan 6 = v{™ /v{" yields

tan 05V = tan ¢SV

)

tan 05H = @ tan®H
A44
A
tan0F = X tang? | (14)
Ass
and
’USV A44 — VSV ,

2 «in2 pSH 2 2 pSH . -3
SH \/AGG sin” ¢>H + Aj, cos® ¢ [st 95" cos? HSH} ?

VSH Age Ayg ’
P _ \/A% sin® ¢F + A3; cos? ¢F _ [sin®0” N cos? P12 (15)
YT Ve | An Ass
REFLECTION AND TRANSMISSION COEFFICIENTS
The displacement vector for a plane wave of typis expressed by
u™ =y g e tw(t—") (16)

whereU (") is the scalar amplitude associated with the wavetyp€he eikonal or phase functiait™ is

7)) — ) e = p(n) 3 a7



270 Annual WIT report 2002

Consider now a plane boundary between two homogeneouscallip anisotropic half spaces at the
depthz = 0 (see Figure 2). Depending on the type of the incident wafieated and transmitted waves of
different types are generated. An incident SH wave leadsfteated and transmitted SH waves, whereas in
the cases of incidemSV orgP waves conversion frogsV togP and vice versa can also occur. Therefore,
an incidentgSV wave will generate not only reflected and transmiti&¥ waves, but also reflected and
transmittedyP waves. The same applies to an incidghitvave which will lead to reflected and transmitted
gSV andgP waves. Each of these waves can be written in terms of Equidt&). In addition to the upper
indexn for the wavetype, the individual displacement vectors iéldenoted with the lower indéxfor
the incident waveR for the reflected wave, arifl for the transmitted wave.

To determine the reflection and transmission coefficiente@displacement, the following boundary
conditions must be fulfilled:

Continuity of displacement:  ug, u,,u,

Ouy  Ou,

0z + 8J:> ’
ou

Oyz = pA448—zy )

ou

T4+ A
8:c+ 33

Continuity of shear stress :  o0,, = pAs4(

Oou,
0z )

Continuity of normal stress: o.. = p(Ai3

The spatial derivatives of the displacement components are

(’)ui

GUi _ o o—iw(t—per)
8xj

The slowness vectors of the incident, reflected, and tratesinivaves are given by

. n 1 . (n n
incidentwave  : p{"” = —oy (sin #5", 0, cos i)
VO"
n 1 n n
reflected wave  : p§?> = —w (sin ¢§2>, 0, — cos ¢§?>) ,
, e ,
. n 1 . (n n
transmitted wave : p(T) = o (sin qb(T ), 0, cos gb(T )) . (29)
VT"

Snell’s law requires that the horizontal slowness sin ¢/V remains constant. This can lead to imaginary
anglesy. In that case the displacement given by Equation (16) wdlskexponential behaviour along

To avoid an increase in amplitude, the cosine of the angteust be either a real or a positive imaginary
number.

Application of the boundary conditions and phase matchéagl$ to equations for the reflection and
transmission coefficients. Since the SH wave is decoupted thegP andgSV waves, the SH angP/qSV
cases can be treated separately.

SH waves

Continuity of they component of the displacement,, and the shear stresg, leads to

R USH  pM ANV, cosgy — p® AP V; cos ¢y
SH-SH = =

US™  p0 ADV, cosdy + p@ AP V; cos o
Ugt 2 AG) Vs cos

Tsp-su = = ) (20)
US™  p0 ADV, coséy + p@ AP V; cos o
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Incident wave Reflected wave

} gSV wave
© © Medium 1 ©® SH wave

z=0
. Medium 2 % apP wave
, Transmitted wavi

Figure 2: Boundary between two homogeneous elliptical media andi@i®n of the polarisation vectors
of the incident, reflected, and transmitted waves.

where index 1 describes the properties of medium 1 (withribielent/reflected wave) and index 2 those of
medium 2 with the transmitted wave. The reflection angfé? is equal to the incidence angig = ¢,
and the transmission angl§’” = ¢, can be computed from Snell’'s law, leading to

(21)

)

wherep can be computed from the quantities of the incident wavepize sin ¢57 / Vo H .

gP-qSV waves

Continuity of thex andz components of the displacement vectors, the shear strgsand the normal
stresso .. leads to two linear system of equations with four unknowmse system for an incident SV
wave,

X X2 Xig Xua Rsv_p YV
Xo1 Xoo Xoz Xo4 Tsv_p _ YV 22)
X311 X3z2 X33 X34 Rsv_sv YV ’
Xy Xao Xuz Xy Tsv_sv |7
and a second for an incident P wave:
X X2 Xiz Xug Rp_p \ 6
Xo1 Xoz Xog Xoy Te-p | _ [ ¥ (23)
X371 X3z2 X33 X34 Rp_sv \ & :
Xy Xao Xuz Xy Tp_sv \ 7

As for the SH case, the reflection coefficiefts,, and transmission coefficients,,, of the displacement
are given by the amplitude ratio between the reflected/tnittesd wave (of type:) and the incident wave
(of typen):

Ug
uy

Ur
vy

Rnn/ = and Tnn/ = (24)
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The 4x4 matrixX is the same in both Equations, (22) and (23). Its elements are

The right hand sides

and

X1 =
X2 =
X3 =
X4 =

Xo1 =
Xo2 =
Xoz =
Xog =

X3z2 =
X33 =

X34 =

Xy =
Xz =
Xy =
vSv =

SV _
Y'Q =

sV _
Y3 =

— Iszv mlszv cos (bIS%V

UII; lﬁ sin qbg

PP . P
— Uz lp sinor

)

)

3

= UV mz" cosep¥

P P p
— Ur mp cosop

P
—Urm

P
T

cos pr

?

?

= UR" IR sing”

UV 13V sin g3V

)

P
% CE()? sin ¢k cos ¢k (15 +mb) |
R

Ur o)

Vi
Ug¥
VEY

A%
0

usv
SV
Vo

0

TSV
Vo

55

P
B (o)

P
L

sin o7 cos ¢p (I +m7)

g

1) 1SV =2 SV SV 2 SV
CE()S) (I%" sin® ¢p" —mp" cos” ¢ )

sin? g5V — m§Y cos® 65Y) |

P 2P H_ P 2,P
R sin ¢R+C§3) mp cos® ¢p)

P 2P 2) P 2P
P sin? of + O mf cos? ¢f)

singf” cos o3 (Cfy miY - O 177)

sin ¢>§V cos gb?:v (Cg) m?y - C’é? l%v)

A%
mg

of Equations (22) and (23) are given by
cos ¢V

SV SV s SV
U’ I5" singyg

)

)

1) 1SV .. 2 SV SV 2 SV
Cé5) (lg " sin® ¢y~ —mg’ cos“¢g’ )

singsY cosps” (Cg) mg" — Céé) 5V

— Uy lg singg

_ UOP
_ U
14
_ U
Vi

P

mg

e

Hp
130

cos gbg ,

P
1) .
7 CE(>5) smgbéj cosqbéj (léj +m5) ,

sin? ¢f + Céé) my cos® ¢p)

(25)

(26)

(27)
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The reflection and transmission angles are again deterrfriodSnell’s law:

1
2

A(l)
P _ 33
d)R = arctan [TN y
P2 11
@ 1%
o = arctan[ 33 5 ,
o
Vo = aresin(pVgY)
2V = aresin(pVyV) (28)

where againp = sin ¢§)")/VO<") is computed from the incident wave withequal to P or SV.

Equations (22) and (23) can be solved for the individualficiehts by the usual methods for systems
of linear equations.

Normalised R/T coefficients

Another possibility is to express the coefficients nornalisvith respect to the energy flux perpendicular
to the interface. The normalised reflection and transnissoefficientsk ..., and7Z,,,,» are obtained from
the standard coefficients,,,,, andT,,, by

’ 12

n ;3
R PRV COS Q% R
nn - n n nn b

Po v CoSs @)

1

n' n' |2
pT U} €OS O
Po vy cos g

The wavetype denoted hy is again that of the incident wave, indexcorresponds to the reflected or
transmitted wave.

TRAVELTIMES

Consider a homogeneous medium with the veeter (z, y, z) = (g2 — Sz, gy — Sy, 9= — S=) describing
the distance between the soursgdnd receiverg) positions, and its modulus,= /z2 + 32 + 22. The
traveltimer (™) of a wave of type: propagating from the source to the receiver is given®y = r /v(™).

This results in the following traveltimes:

TSV _ EEQ + y2 + 22
Ay ’
2 2 2
TSH = :C + Y + z— )
Agg 44
2 2 2
P Tt +y z
_ el 30
i An * Ass (30)

GEOMETRICAL SPREADING

The relative geometrical spreadidg™ that a wave of type: undergoes in a homogeneous medium can
be expressed by
cos ™ ()

(n) _
LY = RO

(31)

B

’deu
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where the &2 matrixm(") is the second-order mixed derivative matrix of the travedtsr (™) with respect
to the source and receiver positions:

927
 9s19gs
(IndicesI and.J take the values 1 and 2.) Differentiation of Equation (3@jketo the following expressions
for the relative geometrical spreading:

LSV = \/A447‘ N

[SH _ vV Aaa Ass -
vV
A1 vV As3

Lr == .
v (33)

N = (32)

COMPUTER PROGRAMS

This section gives a short description of the computer ctititsnake use of the results from the previous
sections. The programs are free software under the GNU @libdinse and can be obtained from the
author.

Reflection and Transmission Coefficients

The progranel | i _coef . f computes the elastic standard reflection and transmissiefficents as de-
scribed above. The linear systems (22) and (23) are solviads@mer’s method, where the determinants
are computed analytically. This program comes with the lgigh user interface (GUBI | i _coef . pl .
After entering the elastic parameters of the two media ardifpng the incident and outgoing wavetypes,
the program computes (t#@pl y button) or computes and displays (tRleot button) the desired reflec-
tion or transmission coefficient. The SU (seismic unix) noesf t nst ri p andxgr aph are required to
display the coefficients.

Traveltimes and Spreading

The programel | i _ttl. c computes traveltimes and geometrical spreading in threemions for a
homogeneous elliptical medium. The required elastic pataraA;,, As3, A4, andAgg are given in the
input coordinate system with rotational symmetry arouraértical axis. Three angles can be specified
to transform the elasticity tensor to a system with arbjt@ientation of the symmetry axis. To do so, the
input coordinate system is first rotated aroundtteis by the angle _x, then around thg axis byr _y,
and, finally, around the axis byr _z.

The program computes spreading and traveltimes from EapsaBO0) and (33) for arbitrary wave type,
grid sizes and spacings, and source positions (within tkeeipd volume). The user is prompted for all
of these informations after starting the program. Of colitse also possible to apply I/O-redirect with an
input file.
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