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ABSTRACT

Geometrical spreading plays an important role for ampéitpdeserving migration, which is a very
time-consuming process. In order to achieve efficiencyimgeof computational time and, particul
larly, storage space, we propose a method to determine gecahspreading for any wave type in
anisotropic media from coarsely-gridded traveltime tablBhe method is based on a hyperbolic tr,
veltime expansion and provides also a fast and accuratethlgdfor the interpolation of traveltimes,
including the interpolation of complete shots. Examplesnidestrate the applicability of the method
to arbitrary 3D anisotropic media.

D
O

INTRODUCTION

Geometrical spreading, together with traveltimes, playisrgportant role in many applications of reflection
seismology, such as migration, inversion, and modellirtge ffaditional method of computing geometrical
spreading in anisotropic media is to perform dynamic ragitiga(Gajewski and PSéfk, 1990). Other fast
methods based on finite-difference eikonal solvers (e.geyPand Vidale, 1991) or a direct solution of the
transport equation with finite differences (Buske, 2000)eygroposed for isotropic media only. Methods
to determine the spreading directly from traveltimes warsented by Vidale and Houston (1990) and

Vanelle and Gajewski (1999), but again, only for isotropiedia.

In this paper we introduce a technigue for the determinaifayeometrical spreading from traveltimes
in media with arbitrary anisotropy. Like the method presérit Vanelle and Gajewski (1999) it is based
on the coefficients of a hyperbolic traveltime expansiorgdding application to amplitude preserving mi-
gration the new technique has a strong advantage compadgdamic ray tracing: whereas with dynamic
ray tracing the spreading has to be stored for the computafithe weight functions (in addition to the
traveltimes required for the diffraction time surfaces aederal other quantities like, e.g, the ray angles),
this is not necessary if the spreading, angles, etc. canteendi@ed directly from traveltimes. At the same
time, our method allows the reduction of storage space Isecthe hyperbolic traveltime equation also
provides a technique for the fast and accurate traveltitegpnlation from coarse grids onto the required
fine migration grids, including the possibility to interpte between sources.

The method is particularly useful in combination with a prdare for the computation of coarsely-
gridded traveltimes (Gajewski et al., 2002), as, e.g., thearfront construction techniques introduced by
Vinje et al. (1993). In contrast to methods based on finifeedince eikonal solvers these techniques also
yield later arrival traveltimes, that are required for irmgof complex structures (Geoltrain and Brac,
1993).

After a brief introduction to the hyperbolic traveltime foula, we establish the relationship between
the coefficients of the hyperbolic formula and the geomaltrépreading in arbitrary anisotropic media,


mailto:vanelle@dkrz.de

Annual WIT report 2002 243

including a description of our implementation. This is éolled by several examples, first on the interpola-
tion of anisotropic traveltimes, and then for the deterrtigmaof spreading from traveltimes in anisotropic
media. To estimate the accuracy of the method, it is alsoiegppd a model where an analytic solution
exists. Finally, we will conclude our results.

METHOD
The General Move-out Relation

The method is based on the hyperbolic traveltime equativadaced in Vanelle and Gajewski (2002a). It
follows from a Taylor expansion of the squared traveltiite The expansion is carried out in the three
components of the source position vec§os (s1, s2, s3) and those of the receiver positid= (g1, g2, g3)-
The expansion point is denoted (g, &,). The hyperbolic equation reads

T2(8,8) = (To — Doad + @ag)” + Tp (~2878as +ag"Gag — 225"Nag) (1)
whereTj is the traveltime in the expansion point. The vectags= 8§ — §, andag = g — g, are the

deviations of the source and receiver positichar{dg) from the location of the expansion poird(and
80). The first-order derivatives

oT
= and = 2
Po, o5, W0 = B (2
are the slowness vectors at the source and the receivehamnadbtrices
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(4,7 = 1,2, 3) are the second-order derivatives of the traveltimes, whie closely related to the curvature
of the wavefront.

The hyperbolic traveltime approximation given by Equatfdhis a universal expression. During the
last years the authors have shown its usefulness for a yariedpplications: In Vanelle and Gajewski
(2002a) it is applied to the interpolation of traveltimesibitrary 3-D isotropic media including the inter-
polation of the source position. The coefficients from Eturafl) were further used for the computation
of geometrical spreading from traveltimes in isotropic img¥anelle and Gajewski, 1999). In Vanelle and
Gajewski (2002b), the hyperbolic formula is applied to deiee weight functions for amplitude preserv-
ing Kirchhoff migration in isotropic media, and for the apisation of the migration aperture (Vanelle and
Gajewski, 2001). Equation (1) is also valid for reflectedrageand poses an extension of the well-known
T? — X2 method to arbitrary 3-D media (Gajewski and Vanelle, 200 herefore it can be considered to
be a move-out relation of second order in the most genernal {Gajewski and Vanelle, 2002).

Since no assumptions on the model were made for the dervatiBquation (1) it is equally valid in
isotropic as in anisotropic media for any wave type (i.e. sjjghear and quasi compressional waves). If
suitable traveltime tables (i.e. for different source asckiver combinations) are available, the coefficients
of Equation (1) can be directly determined from these ttawels, which need only be given on coarse
grids. In this case of coarsely-sampled input traveltinttes)ocations of the coarse grid-points correspond
to the expansion points. Although the method is equallydvali reflection traveltimes, we suggest here to
apply it to migration. In that case, diffraction traveltiadles must exist in any event for the determination
of the Huygens surface, along which the traces are stackbdrefore, we will from now on focus on
diffraction traveltimes. We give an example for the deteration of the coefficients: the coefficients
go, and Gy can be computed from the three traveltime vallies= T (S0, 80), 71 = T'(80, 80 —24g1),
and Ty = T'(80, 80 +4g1), Whereag; is the coarse grid-spacing in the direction of thecomponent.
The traveltimesl}; andT; are inserted into the hyperbolic equation (1), leading to éguations for two
unknowns, which can be solved fgy, andG;. The result is

_T-T¢
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The remaining coefficients can be determined in the same waging the appropriate traveltime combi-
nations. This is explained in more detail in Vanelle and @ajé (2002a).

For the determination of derivatives with respect to thedtii) component of the source coordinates
from traveltimes, however, additional traveltime tables @quired for source positions buried in the sub-
surface, below the registration surface. If such tableseadable, these coefficients can be determined in
the same fashion as by Equation (4). An alternative to thegeion of these traveltime tables is to assume
that the source is located in an isotropic layer. In that ctimeisotropic eikonal equation can be used to
express the derivatives of the traveltimes without further need for itiddal traveltime tables. Please
refer to Vanelle and Gajewski (2002a) for the resulting ¢igna for these coefficients.

If all coefficients are determined, Equation (1) can be diyempplied for the traveltime interpolation
onto fine grids. It is even possible to interpolate finelydded traveltime tables between sources, i.e.
a8 #0, because the derivatives with respect to the source positie also known. Since the curvature of
the wavefront is accounted for by the second-order traweltierivatives, the hyperbolic interpolation is
superior to the commonly-used trilinear interpolationrfgtie and Gajewski, 2002a). An example on the
hyperbolic traveltime interpolation in an anisotropic ried will be given below.

Geometrical Spreading

A wavefrontis described by a surface with= const.This means that the traveltime equation (1) translates
into an expression for the local wavefront in the vicinitytbe expansion point, where the wavefront
is approximated with a surface of second order. The curgatfithe wavefront determines the relative
geometrical spreadinfy. Since the curvature of a surface can be described by itmdemaler derivatives

it is possible to establish a relationship between the géiraéspreading and the mixed second-order
derivative matrixiN (cf. Equation (3)). Following standard ray theory (e(:@rveny, 2001), the geometrical
spreading for a point source is evaluated in terms of th thatrixQ, which describes the divergence of

the ray tube for point source initial conditions. For detailease refer téerveny (2001). The modulus of
the relative geometrical spreading is given Befveny, 2001)

-\ fideq] ©

The matrixQ,, and hence the geometrical spreadingre usually computed by dynamic ray tracing. In
this paper, however we do not apply dynamic ray tracingpisetthe relationship between the mati)x

and the matrixN, which is the upper left 22 sub-matrix ofN, (to distinguish between>22 and 3«3
matrices, the latter carry a hat symbol). This relationstag derived by Schleicher et al. (2001) and leads
o COS Qg COS Oty

deQQ, | = |defN| ! . (6)

COS X5 COS Xg

In Equation (6),«s (o) is the angle between the ray or group velocity vedtor(v,) and thess (g3)
direction. The angleg; (x,) is made by the ray velocity vector and the slowness vest(d). It is given
by the relationship

V.
COSXs = = (7

and forcos x4 accordingly, wherd/; (V) is the phase velocity at the source (receiver), which can be
determined from the slowness componentdby = p - p (V;Q = - Q). Thus, the relative geometrical

spreading becomes
COS kg COS Oy Vs VU
I = s g s g 8
Vo ©

In isotropic media)/ = v, and Equation (8) reduces to the result derived by Hubrdl €1892), and ap-
plied in Vanelle and Gajewski (1999) and Vanelle (2002).
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The components;, (:=1,2,3) of the ray velocity vector for an arbitrary anisgicomedium can be
computed from the slowness vectrand the values of density normalised elasticity tensgy; at the
source positionGerveny, 2001):

Dy,

Vs; = 4kl Pl ? . 9

In Equation (9) they, are the components of the slowness vector. The matrix efsnigp are given by
(Cerveny, 2001)

1
Djk = 5 6jl7n6kno(rln - 6ln)(rmo - 6mo) ) (10)

where
Uik = aijripjm (11)
is the Christoffel matrix. Furthermore,
D=D, . (12)

In Equations (9) to (12) summation convention is appliede $iimbole;;,,, denotes the Levi-Civitta ten-
sor, andy;;, is Kronecker's delta. Application of Equation (9) using #lewness vector and the elasticity
tensor at the source and the receiver, respectively, ledoisth ray velocitiesys andv,, as well as to the
ray anglese, andoy.

Equation (9) is following from the solution of the eigenvaljoroblem for the Christoffel matrik ;. If
the Christoffel matrix is degenerate, Equation (9) caneaplied since the®=0. This happens globally
in isotropic media (where, however, the velocity is knowndl @an also occur locally in anisotropic media
for quasi shear waves. The problems with the resulting $migies are inherent to standard anisotropic
high frequency methods and not a deficiency of our methodriticpéar.

Equation (5) gives thenodulusof the geometrical spreading. For the computation of proggration
weights, however, the phase shift due to caustics must @smwmbsidered. This is only possible, if later
arrival traveltimes are available. These are importantfigration in complex media (Geoltrain and Brac,
1993). Our method can also be applied to later arrivals (iaratline, see Vanelle, 2002). It has the advan-
tage that it does not require continuous second-orderatemds of the elastic parameters, as, e.g., dynamic
ray tracing doesGerveny, 2001).

Using the coefficients from Equation (1) and the elastiofigsbr we can now compute geometrical
spreading for any wave type from coarsely-gridded trawvedi. This is a key ingredient for the computa-
tion of true-amplitude migration weight functions. Forglgipplication the determination of the spreading
from traveltimes has a large advantage in storage spaceazethfo computing geometrical spreading via
dynamic ray tracing: Additional quantities like the ray &wgare also required for the weight functions.
These can also be computed with ray tracing, but need additgiorage space, which can, for a large
survey, by far exceed the existing storage capabilitiess iBmot necessary with the traveltime-based ap-
proach, where the complete Greens function can be detedroiméne fly from the traveltime coefficients.
Therefore this approach is particularly suited for the aagion to amplitude preserving migration. An-
other major improvement for any type of Kirchhoff migratigrthe application of the hyperbolic traveltime
interpolation for computing the stacking surface. Thisgpegially valid for anisotropic media, where the
computation of the Greens functions is even more time-amirsyithan in isotropic media. To demonstrate
the capability of the method, we will now give an example oa tfaveltime interpolation, followed by
examples on the determination of geometrical spreadingiso&ropic media.

APPLICATIONS

Traveltime Interpolation

Since the hyperbolic equation does not depend on the typeodehunder consideration, the traveltime
interpolation using Equation (1) is expected to yield ressaf the same order of accuracy for anisotropic
media as for isotropic media. A thorough investigation efélescuracy was already carried out for isotropic
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Figure 1: Traveltime errors from the hyperbolic interpolation foetkelocity lens model. Values are
given in milliseconds. Left: traveltime errors for the adnigl source position at (0 m, 0 m, Om). Right:
traveltime errors for an interpolated source at (50 m, 50mm), sochrones illustrate the un-interpolated
wavefronts. The cross-shaped error distribution centrélokedistances of 0 km is caused by errors in the
finely-gridded reference traveltimes due to the Vidale soeThe pattern near the edges of both cubes at
higher depths are caused by ripples in the reference tiraesit

media in Vanelle and Gajewski (2002a). Therefore we restricselves to one example for the interpola-
tion of traveltimes in anisotropic media here. Our model faciorised medium consisting of a velocity
lens. Itis embedded in a medium with triclinic symmetry tbatresponds to Vosges sandstone (Mensch
and Rasolofosaon, 1997). The elasticity tensor of that umeds (values are given in kifg?):

6.77 0.62 1.00 —0.48 0.00 -0.24
4.95 043 0.38 0.67  0.52
5.09 —-0.28 0.09 -0.09

A= 2.35 0.09 0.00 ' (13)
2.45  0.00
2.88

P-wave transmission traveltime tables were computed onra fie grid using a finite-difference
eikonal solver in the implementation of Soukina et al. (200heir technique combines a Vidale scheme
(Vidale, 1990) with perturbation method. Traveltimes wgemerated for sources in the top surface (see
also Figure 1). The original traveltimes were resampledpui traveltime tables on a 100 m coarse grid.
The distances between the source positions for the individlaveltime tables were also 100 m in either
direction. The coefficients in Equation (1) were computemhfrthese coarsely-gridded traveltimes and
used for the interpolation onto a 10 m fine grid. The interfralavalues were then compared to the original
finely-gridded traveltimes and an error analysis was paréat. We have considered two cases. In the
first experiment, traveltimes from a source fixed at the aggsource positions(= §,) were interpolated
using the coefficient§, andG. In a second experiment, we have interpolated traveltimea source at
the positiors = §5+ (50 m, 50 m, 0 m). This second experiment required the complett of coefficients
from Equation (1) except for the derivatives with respedhi®z-component of the source position since
the depth location of the source remained unchanged. Théingstraveltime errors for these two cases
are displayed in Figure 1.

The median of the relative error for the interpolation toeigers only is 0.015 %, corresponding to
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Figure 2: Traveltime errors from hyperbolic interpolation for a sentthrough the lens model, on the left
for the original source position, on the right the sourcetimswas also interpolated. The sections were
extracted at the distanae= 0 km. The isochrones indicate the positions of triplicasiof the wavefront,
leading to errors in the traveltime interpolation if onlystiarrival traveltimes are considered. The shape of
the triplicated wavefront at higher depth in the right figisreaused by artifacts in the reference traveltimes.

0.044 ms. Ifthe position of the source is also interpolateeimedian of the relative error becomes 0.041 %
(0.119 ms). Owing to numerical artifacts in the referenegettime tables (e.g. grid-points with zero tra-
veltime), we do not give maximum errors here since these dvoat correctly reflect the accuracy of the
method. Also, we have chosen the median instead of the averagy because it is more stable concerning
outliers. As we show in the next figure, Figure 2, the highssrstin some regions are not due to the method
itself. Figure 2 displays the traveltime errors for both esiments in a section through the centre of the
model. Itillustrates that high errors occur only in the mity of “kinks” in the isochrones. In these regions,
the assumption of continuous first- and second-order derdgm(the condition for a Taylor expansion) is
not fulfilled. The “kinks” are manifestations of triplicatis of the wavefront. If later-arrival traveltimes
are available, it is possible to interpolate the left andhtrigranches of the traveltime curve individually
(Vanelle, 2002). Then the errors in these regions redudeeteame magnitude as in the rest of the model.
Since a finite-difference scheme was used for the generatite input traveltimes, later arrivals were not
available. Apart from these regions high accuracy is agiev

If the ratio of the coarse grid spacing to fine grid spacingdsds in our example, the size of each
traveltime table can be reduced by a factor of {€ompared to no interpolation at all) if only receiver
interpolation is considered. If we also take the interpofabf sources into account, the savings rise to a
factor of 10 (assuming that the sources lie in the,-surface only), because less traveltime tables need
to be stored. At the same time, the method has high potemtitngs in CPU time. In isotropic media,
the interpolation of one shot in a 3D model required less thafbo of the time needed by a fast finite-
difference eikonal solver (Vanelle and Gajewski, 2002ajanisotropic media we cannot quantify the time
savings because the algorithm of Soukina et al. (2001) wed msa version which needs a large amount
of time for the preparation of the model, that will be done iseparate stage in the future (Soukina,
personal communication). Since traveltime generatiomisaropic media is, however, generally more
time-consuming than in isotropic media, we are confideritttiemefficiency of our technique will be even
better for anisotropic media.
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Geometrical spreading Geometrical spreading errors
for the elliptical model for the elliptical model
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Figure 3: Geometrical spreading determined from traveltimes for mdgeneous model with elliptical
symmetry (left) and errors of the geometrical spreadingHite model. Relative errors are higher in the
near-source vicinity because of the stronger local cureatnd the trilinear interpolation onto the fine grid.
Please note that the major contributions to the errors coame the trilinear interpolation, whereas at the
coarse grid-points the errors are of a smaller magnitude.

Geometrical Spreading

In this section we give examples for two models, a homogesiemdel with elliptical anisotropy where
an analytic solution exists, and the triclinic velocity $emodel already used to demonstrate the traveltime
interpolation.

Our first example is a homogeneous model with elliptical @inipy. We considered P-waves with
the relevant density-normalised elastic coefficieAls = A,; =15.96 kn#/s?> and As; = 11.4 kn?/s?.
Coarsely-gridded traveltime tables were computed arallyyi on a 100 m coarse grid. The geometri-
cal spreading was computed on the coarse grid using Equ@j@nd the coefficients from Equation (1).
Subsequent trilinear interpolation was then carried owhitain the spreading on a 10 m fine grid. The
results were compared to the analytical solution (e.gr &¥ertik and Teles, 1996). Figure 3 shows both
the spreading itself and its relative errors. The mediamefréelative errors is 0.23 % and its maximum is
9.2 %. Please note in Figure 3, that the main contributiontisecerrors come from the trilinear interpola-
tion. This is especially true in the region near the sourceretthe wavefront curvature is strongest. This
region is, however, of minor interest for migration.

In the next example we show the geometrical spreading regudfom the coarsely-gridded traveltimes
for the triclinic lens model already used for the traveltimirpolation in the previous section. Again, the
spreading was computed from the traveltime coefficientsthacelasticity tensor at the coarse grid points
with the 100 m spacing and tri-linearly interpolated onte f® m fine grid. Since no analytical solution
exists for this model, and a suitable tool for the computatibgeometrical spreading on a densely sampled
3-D grid is not available to us, the errors can not be quadtifies for the traveltimes we expect errors near
the triplications of the wavefront in the centre of the mod&gure 4 shows the geometrical spreading for
the whole model as well as a section through the triplicatedefront region. Again, to obtain the correct
coefficients in these regions, later-arrival traveltimesraquired.

Numerous examples of the determination of geometricaksling from traveltimes in isotropic media
ranging from simple constant velocity gradient media tohigdly complex Marmousi model are shown in
Vanelle (2002) and illustrate the high accuracy of our tégh@ in isotropic media. Since the coefficients
that enter the spreading computation are formally the samisdtropic media as for anisotropic media,
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Geometrical spreading Geometrical spreading
for the lens model for the lens model
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Figure 4: Geometrical spreading determined from traveltimes forlacity lens model with a triclinic
symmetry. The section on the right side cuts through a tédpdid wavefront. In the blue centre region near
the triplication the spreading values are wrong. To colyat#termine the traveltime coefficients in these
regions, later-arrivals are required. The shape of thehimmes in the centre of the model is caused by
artifacts in the reference traveltimes.

the good performance of the method in isotropic models amsfits potential for anisotropic media.

CONCLUSIONS

We have presented a method for the determination of gearakspreading for any wave type from
coarsely-gridded traveltimes in 3D media with arbitrarysatropy. The method is based on a second-
order hyperbolic traveltime expression, the general NM@agign. The coefficients in this equation are
directly linked to the geometrical spreading. The methogiadicularly suited for applications regarding
amplitude preserving migration because the geometricabsiing is a key feature for this task. Since all
required quantities can be computed on the fly from traveltiables on coarse grids, the requirements in
computer storage can be significantly reduced in compatsamplitude preserving migration based on
dynamic ray tracing. At the same time, the general NMO equas a tool for the accurate and efficient
interpolation of the stacking surface, including the iptdation between source positions.

A numerical example on the traveltime interpolation shdved the storage requirements can be reduced
by a factor of 16 without significant loss in accuracy. Also, the interpadatis faster than traveltime
generation using finite-difference eikonal solvers. Thierination of geometrical spreading alone from
coarsely-gridded traveltime tables was also demonstigtedamples. The reliability of the technique was
proved with an example where an analytical solution ex&sitsadditional example verifies the applicability
of the method to more complex models.

PUBLICATIONS

Detailed results on the interpolation of traveltimes irtigpic media were published in Vanelle and Gajew-
ski (2002a). The determination of geometrical spreadinmftraveltimes was introduced for isotropic
media in Vanelle and Gajewski (1999). Gajewski et al. (205cribe the traveltime-based strategy for
amplitude preserving migration in isotropic media. Mortadle are given in Vanelle and Gajewski (2001),
Vanelle and Gajewski (2002b), and Vanelle (2002). Vanellg0Q) also discusses the extension of the
method to anisotropy. Finally, Gajewski and Vanelle (20819 Gajewski and Vanelle (2002) analyse the
hyperbolic traveltime equation in terms of a generalisedeonat formula.
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