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ABSTRACT

Geometrical spreading plays an important role for amplitude preserving migration, which is a very
time-consuming process. In order to achieve efficiency in terms of computational time and, particu-
larly, storage space, we propose a method to determine geometrical spreading for any wave type in
anisotropic media from coarsely-gridded traveltime tables. The method is based on a hyperbolic tra-
veltime expansion and provides also a fast and accurate algorithm for the interpolation of traveltimes,
including the interpolation of complete shots. Examples demonstrate the applicability of the method
to arbitrary 3D anisotropic media.

INTRODUCTION

Geometrical spreading, together with traveltimes, plays an important role in many applications of reflection
seismology, such as migration, inversion, and modelling. The traditional method of computing geometrical
spreading in anisotropic media is to perform dynamic ray tracing (Gajewski and Pšenčík, 1990). Other fast
methods based on finite-difference eikonal solvers (e.g. Pusey and Vidale, 1991) or a direct solution of the
transport equation with finite differences (Buske, 2000) were proposed for isotropic media only. Methods
to determine the spreading directly from traveltimes were presented by Vidale and Houston (1990) and
Vanelle and Gajewski (1999), but again, only for isotropic media.

In this paper we introduce a technique for the determinationof geometrical spreading from traveltimes
in media with arbitrary anisotropy. Like the method presented in Vanelle and Gajewski (1999) it is based
on the coefficients of a hyperbolic traveltime expansion. Regarding application to amplitude preserving mi-
gration the new technique has a strong advantage compared todynamic ray tracing: whereas with dynamic
ray tracing the spreading has to be stored for the computation of the weight functions (in addition to the
traveltimes required for the diffraction time surfaces andseveral other quantities like, e.g, the ray angles),
this is not necessary if the spreading, angles, etc. can be determined directly from traveltimes. At the same
time, our method allows the reduction of storage space because the hyperbolic traveltime equation also
provides a technique for the fast and accurate traveltime interpolation from coarse grids onto the required
fine migration grids, including the possibility to interpolate between sources.

The method is particularly useful in combination with a procedure for the computation of coarsely-
gridded traveltimes (Gajewski et al., 2002), as, e.g., the wave front construction techniques introduced by
Vinje et al. (1993). In contrast to methods based on finite-difference eikonal solvers these techniques also
yield later arrival traveltimes, that are required for imaging of complex structures (Geoltrain and Brac,
1993).

After a brief introduction to the hyperbolic traveltime formula, we establish the relationship between
the coefficients of the hyperbolic formula and the geometrical spreading in arbitrary anisotropic media,

mailto:vanelle@dkrz.de


Annual WIT report 2002 243

including a description of our implementation. This is followed by several examples, first on the interpola-
tion of anisotropic traveltimes, and then for the determination of spreading from traveltimes in anisotropic
media. To estimate the accuracy of the method, it is also applied to a model where an analytic solution
exists. Finally, we will conclude our results.

METHOD

The General Move-out Relation

The method is based on the hyperbolic traveltime equation introduced in Vanelle and Gajewski (2002a). It
follows from a Taylor expansion of the squared traveltimeT 2. The expansion is carried out in the three
components of the source position vector,ŝ = (s1, s2, s3) and those of the receiver position,ĝ = (g1, g2, g3).
The expansion point is denoted by(̂s0, ĝ0). The hyperbolic equation reads

T 2(̂s, ĝ) = (T0 − p̂0∆ŝ + q̂0∆ĝ)
2

+ T0

(
−∆ŝ>Ŝ∆ŝ +∆ĝ>Ĝ∆ĝ − 2∆ŝ>N̂∆ĝ

)
, (1)

whereT0 is the traveltime in the expansion point. The vectors∆ŝ = ŝ− ŝ0 and ∆ĝ = ĝ − ĝ0 are the
deviations of the source and receiver positions (ŝ andĝ) from the location of the expansion point (ŝ0 and
ĝ0). The first-order derivatives

p0i
= − ∂T

∂si
and q0i

=
∂T

∂gi
(2)

are the slowness vectors at the source and the receiver, and the matrices

Sij = − ∂2T

∂si∂sj
, Gij =

∂2T

∂gi∂gj
, and Nij = − ∂2T

∂si∂gj
, (3)

(i, j = 1, 2, 3) are the second-order derivatives of the traveltimes, which are closely related to the curvature
of the wavefront.

The hyperbolic traveltime approximation given by Equation(1) is a universal expression. During the
last years the authors have shown its usefulness for a variety of applications: In Vanelle and Gajewski
(2002a) it is applied to the interpolation of traveltimes inarbitrary 3-D isotropic media including the inter-
polation of the source position. The coefficients from Equation (1) were further used for the computation
of geometrical spreading from traveltimes in isotropic media (Vanelle and Gajewski, 1999). In Vanelle and
Gajewski (2002b), the hyperbolic formula is applied to determine weight functions for amplitude preserv-
ing Kirchhoff migration in isotropic media, and for the optimisation of the migration aperture (Vanelle and
Gajewski, 2001). Equation (1) is also valid for reflected events and poses an extension of the well-known
T 2 − X2 method to arbitrary 3-D media (Gajewski and Vanelle, 2001).Therefore it can be considered to
be a move-out relation of second order in the most general form (Gajewski and Vanelle, 2002).

Since no assumptions on the model were made for the derivation of Equation (1) it is equally valid in
isotropic as in anisotropic media for any wave type (i.e. quasi shear and quasi compressional waves). If
suitable traveltime tables (i.e. for different source and receiver combinations) are available, the coefficients
of Equation (1) can be directly determined from these traveltimes, which need only be given on coarse
grids. In this case of coarsely-sampled input traveltimes,the locations of the coarse grid-points correspond
to the expansion points. Although the method is equally valid for reflection traveltimes, we suggest here to
apply it to migration. In that case, diffraction traveltimetables must exist in any event for the determination
of the Huygens surface, along which the traces are stacked. Therefore, we will from now on focus on
diffraction traveltimes. We give an example for the determination of the coefficients: the coefficients
q01 andG11 can be computed from the three traveltime valuesT0 = T (̂s0, ĝ0), T1 = T (̂s0, ĝ0 −∆g1),
andT2 = T (̂s0, ĝ0 +∆g1), where∆g1 is the coarse grid-spacing in the direction of theg1 component.
The traveltimesT1 andT2 are inserted into the hyperbolic equation (1), leading to two equations for two
unknowns, which can be solved forq01 andG11. The result is

q01 =
T 2

2 − T 2
1

4T0∆g1
and G11 =

T 2
2 + T 2

1 − 2T 2
0

2T0∆g2
1

− q2
01

T0
. (4)
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The remaining coefficients can be determined in the same way by using the appropriate traveltime combi-
nations. This is explained in more detail in Vanelle and Gajewski (2002a).

For the determination of derivatives with respect to the third (z) component of the source coordinates
from traveltimes, however, additional traveltime tables are required for source positions buried in the sub-
surface, below the registration surface. If such tables areavailable, these coefficients can be determined in
the same fashion as by Equation (4). An alternative to the generation of these traveltime tables is to assume
that the source is located in an isotropic layer. In that case, the isotropic eikonal equation can be used to
express thez derivatives of the traveltimes without further need for additional traveltime tables. Please
refer to Vanelle and Gajewski (2002a) for the resulting equations for these coefficients.

If all coefficients are determined, Equation (1) can be directly applied for the traveltime interpolation
onto fine grids. It is even possible to interpolate finely-gridded traveltime tables between sources, i.e.
∆ŝ 6= 0, because the derivatives with respect to the source position are also known. Since the curvature of
the wavefront is accounted for by the second-order traveltime derivatives, the hyperbolic interpolation is
superior to the commonly-used trilinear interpolation (Vanelle and Gajewski, 2002a). An example on the
hyperbolic traveltime interpolation in an anisotropic medium will be given below.

Geometrical Spreading

A wavefront is described by a surface withT = const.This means that the traveltime equation (1) translates
into an expression for the local wavefront in the vicinity ofthe expansion point, where the wavefront
is approximated with a surface of second order. The curvature of the wavefront determines the relative
geometrical spreadingL. Since the curvature of a surface can be described by its second-order derivatives
it is possible to establish a relationship between the geometrical spreading and the mixed second-order
derivative matrixN̂ (cf. Equation (3)). Following standard ray theory (e.g.Červený, 2001), the geometrical
spreading for a point source is evaluated in terms of the 2×2 matrixQ

2
which describes the divergence of

the ray tube for point source initial conditions. For details, please refer tǒCervený (2001). The modulus of
the relative geometrical spreading is given by (Červený, 2001)

L =
√
|detQ

2
| (5)

The matrixQ
2
, and hence the geometrical spreadingL, are usually computed by dynamic ray tracing. In

this paper, however, we do not apply dynamic ray tracing, butuse the relationship between the matrixQ
2

and the matrixN, which is the upper left 2×2 sub-matrix ofN̂, (to distinguish between 2×2 and 3×3
matrices, the latter carry a hat symbol). This relationshipwas derived by Schleicher et al. (2001) and leads
to

|detQ
2
| =

cosαs cosαg

cos χs cosχg
|detN|−1 . (6)

In Equation (6),αs (αg) is the angle between the ray or group velocity vectorv̂s (v̂g) and thes3 (g3)
direction. The angleχs (χg) is made by the ray velocity vector and the slowness vectorp̂ (q̂). It is given
by the relationship

cosχs =
Vs

vs
, (7)

and forcosχg accordingly, whereVs (Vg) is the phase velocity at the source (receiver), which can be
determined from the slowness components byV −2

s = p̂ · p̂ (V −2
g = q̂ · q̂). Thus, the relative geometrical

spreading becomes

L =

√
cosαs cosαg

|detN|
vs

Vs

vg

Vg
. (8)

In isotropic media,V = v, and Equation (8) reduces to the result derived by Hubral et al. (1992), and ap-
plied in Vanelle and Gajewski (1999) and Vanelle (2002).
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The componentsvsi
(i=1,2,3) of the ray velocity vector for an arbitrary anisotropic medium can be

computed from the slowness vectorp̂ and the values of density normalised elasticity tensoraijkl at the
source position (̌Cervený, 2001):

vsi
= aijkl pl

Djk

D
. (9)

In Equation (9) thepl are the components of the slowness vector. The matrix elements Djk are given by
(Červený, 2001)

Djk =
1

2
εjlmεkno(Γln − δln)(Γmo − δmo) , (10)

where
Γjk = aijkl pj pl (11)

is the Christoffel matrix. Furthermore,
D = Dii . (12)

In Equations (9) to (12) summation convention is applied. The symbolεjlm denotes the Levi-Civitta ten-
sor, andδjk is Kronecker’s delta. Application of Equation (9) using theslowness vector and the elasticity
tensor at the source and the receiver, respectively, leads to both ray velocities,vs andvg, as well as to the
ray angles,αs andαg.

Equation (9) is following from the solution of the eigenvalue problem for the Christoffel matrixΓjk. If
the Christoffel matrix is degenerate, Equation (9) cannot be applied since thenD=0. This happens globally
in isotropic media (where, however, the velocity is known) and can also occur locally in anisotropic media
for quasi shear waves. The problems with the resulting singularities are inherent to standard anisotropic
high frequency methods and not a deficiency of our method in particular.

Equation (5) gives themodulusof the geometrical spreading. For the computation of propermigration
weights, however, the phase shift due to caustics must also be considered. This is only possible, if later
arrival traveltimes are available. These are important formigration in complex media (Geoltrain and Brac,
1993). Our method can also be applied to later arrivals (for an outline, see Vanelle, 2002). It has the advan-
tage that it does not require continuous second-order derivatives of the elastic parameters, as, e.g., dynamic
ray tracing does (̌Cervený, 2001).

Using the coefficients from Equation (1) and the elasticity tensor we can now compute geometrical
spreading for any wave type from coarsely-gridded traveltimes. This is a key ingredient for the computa-
tion of true-amplitude migration weight functions. For this application the determination of the spreading
from traveltimes has a large advantage in storage space compared to computing geometrical spreading via
dynamic ray tracing: Additional quantities like the ray angles are also required for the weight functions.
These can also be computed with ray tracing, but need additional storage space, which can, for a large
survey, by far exceed the existing storage capabilities. This is not necessary with the traveltime-based ap-
proach, where the complete Greens function can be determined on the fly from the traveltime coefficients.
Therefore this approach is particularly suited for the application to amplitude preserving migration. An-
other major improvement for any type of Kirchhoff migrationis the application of the hyperbolic traveltime
interpolation for computing the stacking surface. This is especially valid for anisotropic media, where the
computation of the Greens functions is even more time-consuming than in isotropic media. To demonstrate
the capability of the method, we will now give an example on the traveltime interpolation, followed by
examples on the determination of geometrical spreading in anisotropic media.

APPLICATIONS

Traveltime Interpolation

Since the hyperbolic equation does not depend on the type of model under consideration, the traveltime
interpolation using Equation (1) is expected to yield results of the same order of accuracy for anisotropic
media as for isotropic media. A thorough investigation of the accuracy was already carried out for isotropic
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Figure 1: Traveltime errors from the hyperbolic interpolation for the velocity lens model. Values are
given in milliseconds. Left: traveltime errors for the original source position at (0 m, 0 m, 0m). Right:
traveltime errors for an interpolated source at (50 m, 50 m, 0m). Isochrones illustrate the un-interpolated
wavefronts. The cross-shaped error distribution centred at the distances of 0 km is caused by errors in the
finely-gridded reference traveltimes due to the Vidale scheme. The pattern near the edges of both cubes at
higher depths are caused by ripples in the reference traveltimes.

media in Vanelle and Gajewski (2002a). Therefore we restrict ourselves to one example for the interpola-
tion of traveltimes in anisotropic media here. Our model is afactorised medium consisting of a velocity
lens. It is embedded in a medium with triclinic symmetry thatcorresponds to Vosges sandstone (Mensch
and Rasolofosaon, 1997). The elasticity tensor of that medium is (values are given in km2/s2):

A =




6.77 0.62 1.00 −0.48 0.00 −0.24
4.95 0.43 0.38 0.67 0.52

5.09 −0.28 0.09 −0.09
2.35 0.09 0.00

2.45 0.00
2.88




. (13)

P-wave transmission traveltime tables were computed on a 10m fine grid using a finite-difference
eikonal solver in the implementation of Soukina et al. (2001). Their technique combines a Vidale scheme
(Vidale, 1990) with perturbation method. Traveltimes weregenerated for sources in the top surface (see
also Figure 1). The original traveltimes were resampled to input traveltime tables on a 100 m coarse grid.
The distances between the source positions for the individual traveltime tables were also 100 m in either
direction. The coefficients in Equation (1) were computed from these coarsely-gridded traveltimes and
used for the interpolation onto a 10 m fine grid. The interpolated values were then compared to the original
finely-gridded traveltimes and an error analysis was performed. We have considered two cases. In the
first experiment, traveltimes from a source fixed at the original source position (̂s = ŝ0) were interpolated
using the coefficientŝq0 andĜ. In a second experiment, we have interpolated traveltimes for a source at
the position̂s = ŝ0+ (50 m, 50 m, 0 m). This second experiment required the complete set of coefficients
from Equation (1) except for the derivatives with respect tothez-component of the source position since
the depth location of the source remained unchanged. The resulting traveltime errors for these two cases
are displayed in Figure 1.

The median of the relative error for the interpolation to receivers only is 0.015 %, corresponding to
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Figure 2: Traveltime errors from hyperbolic interpolation for a section through the lens model, on the left
for the original source position, on the right the source position was also interpolated. The sections were
extracted at the distancex = 0 km. The isochrones indicate the positions of triplications of the wavefront,
leading to errors in the traveltime interpolation if only first-arrival traveltimes are considered. The shape of
the triplicated wavefront at higher depth in the right figureis caused by artifacts in the reference traveltimes.

0.044 ms. If the position of the source is also interpolated,the median of the relative error becomes 0.041 %
(0.119 ms). Owing to numerical artifacts in the reference traveltime tables (e.g. grid-points with zero tra-
veltime), we do not give maximum errors here since these would not correctly reflect the accuracy of the
method. Also, we have chosen the median instead of the average error because it is more stable concerning
outliers. As we show in the next figure, Figure 2, the higher errors in some regions are not due to the method
itself. Figure 2 displays the traveltime errors for both experiments in a section through the centre of the
model. It illustrates that high errors occur only in the vicinity of “kinks” in the isochrones. In these regions,
the assumption of continuous first- and second-order derivatives (the condition for a Taylor expansion) is
not fulfilled. The “kinks” are manifestations of triplications of the wavefront. If later-arrival traveltimes
are available, it is possible to interpolate the left and right branches of the traveltime curve individually
(Vanelle, 2002). Then the errors in these regions reduce to the same magnitude as in the rest of the model.
Since a finite-difference scheme was used for the generationof the input traveltimes, later arrivals were not
available. Apart from these regions high accuracy is achieved.

If the ratio of the coarse grid spacing to fine grid spacing is 10, as in our example, the size of each
traveltime table can be reduced by a factor of 103 (compared to no interpolation at all) if only receiver
interpolation is considered. If we also take the interpolation of sources into account, the savings rise to a
factor of 105 (assuming that the sources lie in thex-y-surface only), because less traveltime tables need
to be stored. At the same time, the method has high potential savings in CPU time. In isotropic media,
the interpolation of one shot in a 3D model required less than15 % of the time needed by a fast finite-
difference eikonal solver (Vanelle and Gajewski, 2002a). In anisotropic media we cannot quantify the time
savings because the algorithm of Soukina et al. (2001) was used in a version which needs a large amount
of time for the preparation of the model, that will be done in aseparate stage in the future (Soukina,
personal communication). Since traveltime generation in anisotropic media is, however, generally more
time-consuming than in isotropic media, we are confident that the efficiency of our technique will be even
better for anisotropic media.
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Figure 3: Geometrical spreading determined from traveltimes for a homogeneous model with elliptical
symmetry (left) and errors of the geometrical spreading forthis model. Relative errors are higher in the
near-source vicinity because of the stronger local curvature and the trilinear interpolation onto the fine grid.
Please note that the major contributions to the errors come from the trilinear interpolation, whereas at the
coarse grid-points the errors are of a smaller magnitude.

Geometrical Spreading

In this section we give examples for two models, a homogeneous model with elliptical anisotropy where
an analytic solution exists, and the triclinic velocity lens model already used to demonstrate the traveltime
interpolation.

Our first example is a homogeneous model with elliptical anisotropy. We considered P-waves with
the relevant density-normalised elastic coefficientsA11 = A22 = 15.96 km2/s2 and A33 = 11.4 km2/s2.
Coarsely-gridded traveltime tables were computed analytically on a 100 m coarse grid. The geometri-
cal spreading was computed on the coarse grid using Equation(8) and the coefficients from Equation (1).
Subsequent trilinear interpolation was then carried out toobtain the spreading on a 10 m fine grid. The
results were compared to the analytical solution (e.g. after Pšeňcík and Teles, 1996). Figure 3 shows both
the spreading itself and its relative errors. The median of the relative errors is 0.23 % and its maximum is
9.2 %. Please note in Figure 3, that the main contributions tothe errors come from the trilinear interpola-
tion. This is especially true in the region near the source where the wavefront curvature is strongest. This
region is, however, of minor interest for migration.

In the next example we show the geometrical spreading resulting from the coarsely-gridded traveltimes
for the triclinic lens model already used for the traveltimeinterpolation in the previous section. Again, the
spreading was computed from the traveltime coefficients andthe elasticity tensor at the coarse grid points
with the 100 m spacing and tri-linearly interpolated onto the 10 m fine grid. Since no analytical solution
exists for this model, and a suitable tool for the computation of geometrical spreading on a densely sampled
3-D grid is not available to us, the errors can not be quantified. As for the traveltimes we expect errors near
the triplications of the wavefront in the centre of the model. Figure 4 shows the geometrical spreading for
the whole model as well as a section through the triplicated wavefront region. Again, to obtain the correct
coefficients in these regions, later-arrival traveltimes are required.

Numerous examples of the determination of geometrical spreading from traveltimes in isotropic media
ranging from simple constant velocity gradient media to thehighly complex Marmousi model are shown in
Vanelle (2002) and illustrate the high accuracy of our technique in isotropic media. Since the coefficients
that enter the spreading computation are formally the same for isotropic media as for anisotropic media,
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Figure 4: Geometrical spreading determined from traveltimes for a velocity lens model with a triclinic
symmetry. The section on the right side cuts through a triplicated wavefront. In the blue centre region near
the triplication the spreading values are wrong. To correctly determine the traveltime coefficients in these
regions, later-arrivals are required. The shape of the isochrones in the centre of the model is caused by
artifacts in the reference traveltimes.

the good performance of the method in isotropic models confirms its potential for anisotropic media.

CONCLUSIONS

We have presented a method for the determination of geometrical spreading for any wave type from
coarsely-gridded traveltimes in 3D media with arbitrary anisotropy. The method is based on a second-
order hyperbolic traveltime expression, the general NMO equation. The coefficients in this equation are
directly linked to the geometrical spreading. The method isparticularly suited for applications regarding
amplitude preserving migration because the geometrical spreading is a key feature for this task. Since all
required quantities can be computed on the fly from traveltime tables on coarse grids, the requirements in
computer storage can be significantly reduced in comparisonto amplitude preserving migration based on
dynamic ray tracing. At the same time, the general NMO equation is a tool for the accurate and efficient
interpolation of the stacking surface, including the interpolation between source positions.

A numerical example on the traveltime interpolation shows that the storage requirements can be reduced
by a factor of 105 without significant loss in accuracy. Also, the interpolation is faster than traveltime
generation using finite-difference eikonal solvers. The determination of geometrical spreading alone from
coarsely-gridded traveltime tables was also demonstratedby examples. The reliability of the technique was
proved with an example where an analytical solution exists.An additional example verifies the applicability
of the method to more complex models.

PUBLICATIONS

Detailed results on the interpolation of traveltimes in isotropic media were published in Vanelle and Gajew-
ski (2002a). The determination of geometrical spreading from traveltimes was introduced for isotropic
media in Vanelle and Gajewski (1999). Gajewski et al. (2002)describe the traveltime-based strategy for
amplitude preserving migration in isotropic media. More details are given in Vanelle and Gajewski (2001),
Vanelle and Gajewski (2002b), and Vanelle (2002). Vanelle (2002) also discusses the extension of the
method to anisotropy. Finally, Gajewski and Vanelle (2001)and Gajewski and Vanelle (2002) analyse the
hyperbolic traveltime equation in terms of a generalised moveout formula.
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