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ABSTRACT

In this work we present the extension of the piezosensitivity approach to anisotropic media. The
theoretical considerations show that the stress dependence of the seismic velocities and of all elastic
parameters depends mainly on one parameter. This parameteris equal for all velocities and elastic
parameters of a rock in all directions and independent from the differential stress.
We present first results from the application of the piezosensitivity approach for anisotropic media to
a set of ten metamorphic rock samples from the pilot hole of the German Continental Deep Drilling
Project. The laboratory data, three P- and six corresponding S-wave velocity measurements per sam-
ple, cover a differential pressure range up to 600 MPa. All velocities can be fitted well with our model.
As derived from our theoretical considerations the parameter D is constant for all observed velocities
of a sample in any direction. Its magnitude ranges from approx. 0.01 to 0.05 per MPa. A comparison
with data from the literature shows that D ranges in sandstones in general from 0.1 to 0.3 per MPa.
Furthermore, we suggest a strategy for the non-linear leastsquares fitting process.

INTRODUCTION

Stress dependences of seismic velocities are important forinterpretation of very different seismic data,
ranging from AVO and velocity analysis to overpressure prediction and 4D seismic monitoring of reser-
voirs. Some times, rather complex forms of these dependences based on specific models of porous space
geometry are used. For example, spherical contact models (Duffy and Mindlin, 1957 and Merkel et al,
2001) or crack contacts models (Gangi and Carlson, 1996) have been used in different studies. However,
usually, the pore pressure velocity dependence along with the velocity dependence on the differential stress
is phenomenologically described by the following simple relationship (Zimmerman et al, 1986; Eberhart-
Phillips et al., 1989; Freund, 1992; Jones, 1992; Prasad andManghnani, 1997; Kirstetter and MacBeth,
2001):

V (P ) = A + KP − B exp (−PD), (1)

whereP = Pc − Pp is the differential stress,Pc = −σii/3 is a confining pressure,σij is a component of
the total stress tensor (here, the compression stress is negative and the summation over repeating indices is
assumed) andPp is a pore pressure. The coefficientsA, K, B andD of equation (1) are fitting parameters
for a given set of measurements.

It is often observed that equation (1) or similar equations describing an exponential saturation to a linear
trend provide very good approximations for velocities and elastic moduli of dry as well as saturated rocks.
Moreover, it is also observed that this equation provides a very good approximation for elastic properties
of anisotropic rocks.

In our previous publication we considered this equation forisotropic rocks. In this paper we show
how equation (1) can be derived from a rather general consideration even in the case of anisotropic rocks.
Under several, quite natural assumptions the stress dependences of the stiff and compliant porosities can be
found from the theory of poroelasticity. These results can then be used to derive the seismic velocities as
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functions of the differential stress. Our derivation will clarify the physical meaning of quantitiesA, K, B
andD which is quite similar in the isotropic and anisotropic cases.

DIFFERENTIAL STRESS AS A CONTROLLING FACTOR

For simplicity we consider a hydrostatic change of a stress state in a porous anisotropic rock. This means
that the pore pressure as well as the confining stress acting on the outer boundaries of the rock can be
changed. However, changes of the confining stress can be hydrostatic only. In a reservoir, such a hydrostatic
change of the state of stress could be induced by a pumping test or an injection test.

Let us introduce compressibilities of an anisotropic porous body. Following the classical paper of
Brown and Korringa (1975), there are 3 independent compressibilities characterizing changes of the com-
plete body volume and of the volume of the pore space in this body:

Cdr = − 1

V
(
∂V

∂P
)Pp

, (2)

Cmt = − 1

V
(
∂V

∂Pp
)P , (3)

Cp = − 1

Vp
(
∂Vp

∂Pp
)P , (4)

whereV is the volume of the porous body andVp is the volume of all its connected pores.
One more but not-independent compressibility can be introduced:

C′ = − 1

V
(
∂Vp

∂P
)Pp

. (5)

Using the reciprocity theorem Brown and Korringa (1975) showed that

C′ = Cdr − Cmt. (6)

A hydrostatic load introduces changes of the confining and pore pressures,δPc andδPp respectively.
Also the differential pressure will be changed:δP = δPc − δPp. The volume change of a porous body
will result from a volume change due toδPd by keeping a constant pore pressure plus an effect of applying
δPp from inside and outside (i.e.,P = const.):

δV = (
∂V

∂P
)Pp

δP + (
∂V

∂Pp
)P δPp. (7)

An analogous equation is valid for the volume of the connected porosity:

δVp = (
∂Vp

∂P
)Pp

δP + (
∂Vp

∂Pp
)P δPp. (8)

The porosity changes correspond to the following rules:

δφ ≡ δ(
Vp

V
) =

δVp

V
− φ

δV

V
. (9)

Taking into account these three equations and the above definitions of the compressibilities we obtain
the following differential equation for porosity changes:

dφ = (Cmt + (φ − 1)Cdr)dP + φ(Cmt − Cp)dPp. (10)

We see that ifCmt = Cp (this assumption is consistent with the Gassman’s equation) and/or the con-
nected porosity is very small then the porosity depends on the differential pressure only (see Zimmerman,
et al., 1986; Detournay and Cheng, 1993; Goulty, 1998; and Gurevich 2002).
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The differential equation for the porosity is then reduced to those one derived by Zimmerman, et al.,
(1986); and Detournay and Cheng, (1993):

dφ

dP
= Cmt − (1 − φ)Cdr . (11)

The compressibilitiesCmt andCp are practically independent ofP . Thus, in the equations (10) and
(11) two quantities are significantly stress dependent only: φ andCdr. Therefore, in order to obtain stress
dependencies of these two quantities at least one more equation relating them to the stress or just an
equation mutually relatingφ andCdr is required.

COMPRESSIBILITIES OF AN ANISOTROPIC MEDIUM

The compressibilityCdr characterizes the drained skeleton of the rock. Let us assume that the skeleton
under a reference stress state is a generally anisotropic medium characterized by the compliances tensor
with componentsSijkl . Taking into account the Hook’s law,

eij = Sijklσkl, (12)

and applying it to the dilatation
δV

V
= eii (13)

occurring due to the confining stressPcδij we arrive at the following equation for the skeleton’s compress-
ibility:

Cdr = S1111 + S2222 + S3333 + 2(S1122 + S1133 + S2233) ≡ Siikk . (14)

COMPLIANCES VERSUS STIFF AND COMPLIANT POROSITIES

We separate the total porosityφ into two parts

φ = φc + [φs0 + φs] , (15)

where the first part,φc, is a compliant porosity supported by thin cracks and grain contacts vicinities.
According to laboratory observations we expect that the compliant porosity will close up by a differential
stress of a few hundred megapascals. This corresponds to voids with an aspect ratioγ (a relationship
between the minimal and maximal dimensions of a pore) less than0, 01 (see Zimmerman et al., 1986). The
second part,[φs0 + φs] is a stiff porosity supported by more or less isometric pores(i.e., equidimensional
or equant pores, see also Hudson et al. (2001); Thomsen (1995)). The aspect ratio of such pores is typically
larger than0.1. Such a subdivision of the porosity to a compliant and stiff parts is very similar to the
definitions of stiff and soft porosity by Mavko and Jizba (1991).

In turn, we separate the stiff porosity into a partφs0, which is equal to the stiff porosity in the case of
P = 0, and to a partφs which is a change of the stiff porosity due to a deviation of the differential stress
from zero. We assume that the relative changes of the stiff porosity, φs/φs0, are small. In contrast, the
relative changes of the compliant porosity(φc − φc0)/φc0 can be very large, i.e., of the order of 1 (φc0

denotes the compliant porosity in the case ofP = 0). Note, however, thatφc andφc0 are usually very
small quantities. As a rule, (e.g., in porous sandstones) they are much smaller thanφs0 and even than the
absolute value ofφs. Thus, the following inequality is usually valid:

φs0 � |φs| � φc. (16)

For example, in porous sandstones typical orders of magnitude of these quantities areφs0 = 0.1, |φs| =
0.01 andφc = 0.001.

Under such circumstances it is logic to assume the first, linear approximations of the compliances as
functions of the porosities. The Taylor expansion gives:

Sijkl(φs0 + φs, φc) = S0ijkl + θsijklφs + θcijklφc, (17)
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whereS0ijkl is the drained compliancy of a hypothetical rock with a closed compliant porosity (i.e.,φc =
0) and the stiff porosity equal toφs0. Further,

θsijkl =
∂Sijkl

∂φs
, θcijkl =

∂Sijkl

∂φc
, (18)

where the derivatives are taken in pointsφs = 0 andφc = 0, respectively.
Approximation (17) implies that the both quantitiesθsijklφs/S0ijkl andθcijklφc/S0ijkl are smaller

than1. Numerous laboratory experiments and practical experience show that the drained compressibility
depends strongly on changes in the compliant porosity, and it depends much weaker on changes in the stiff
porosity. We will express this empirical observation by therestriction

|θsijklφs| � |θcijklφc|. (19)

In spite of a very small porosityφc the quantityθcijklφc/S0ijkl can be of the order of0.1 or even larger.
If so, approximation (17) is further simplified as follows:

Cdr(φs0 + φs, φc) = Cdrs [1 + θcφc] . (20)

Here, we introduced
Cdrs ≡ S0iikk (21)

and
θc ≡ θciikk/S0iikk (22)

Using approximation 20 and neglectingφ in comparison with1 we obtain the following relationship
instead of equation (11):

dφs + dφc = (Cmt − Cdrs − θcφcCdrs)dP + (φc + φs0 + φs)(Cmt − Cp)dPp. (23)

Again, if the porosity and/or pore pressure are small, the last term in this equation can be neglected.

STRESS DEPENDENCES OF THE STIFF AND COMPLIANT POROSITIES

We assume that stiff porosity changes with stress are independent of the changes of the compliant porosity.
This means also, that changes of the stiff porosity are independent of the fact if the compliant porosity is
closed or not. If the compliant porosity is closed thenφc = 0 and we obtain from (23)

dφs = (Cmt − Cdrs)dP + (φs0 + φs)(Cmt − Cp)dPp. (24)

However, if the assumption above is valid then this relationship will be valid also for an arbitrary (however,
because of other assumptions, small)φc. Therefore,

dφc = −θcφcCdrsdP + φc(Cmt − Cp)dPp. (25)

These two equations immediately provide us with the following approximations of the stress dependences
of the stiff and compliant porosities:

φs = (Cmt − Cdrs)P + φs0(Cmt − Cp)Pp (26)

(here we neglectedφs in comparison withφs0),

φc = φc0 exp (−θcPCdrs + (Cmt − Cp)dPp). (27)

Note that equation (26) is not valid for very largeP because in equation (20) we neglected the stiff-porosity
dependence of the compressibilityCdrs, which becomes equal toCmt if P −→ ∞. The validity of such
a simplification as well as the validity of equation (26) are restricted by the condition (19). For very high
stresses also the stiff porosity will obey an exponentiallysaturating decreasing behavior.



Annual WIT report 2002 157

STRESS DEPENDENCES OF ELASTIC PROPERTIES

Let us now consider an arbitrary elastic characteristicE (e.g., a seismic velocity, a stiffness or a compli-
ance) of a porous body. We will assume that the grain materialis isotropic and homogeneous. The first
consequence of this assumption is that in equation (23) the last term becomes zero due to the equivalence
Cmt = Cp. Correspondingly, equations (26) and (27) are simplified.

Another consequence of the isotropy and homogeneity of the matrix material is that the elastic anisotropy
of the porous body is only due to the geometry of the connectedporosity. This geometry does not change
under an isotropic homogeneous change of load. However, theelastic characteristicE will be a function of
the porosity. We assume that the characteristicE can be approximated by a Taylor series expansion at the
pointφ = φs0 relative to the stiff and the compliant porosity (this should be valid for all such characteristics
like seismic velocities and elastic moduli):

E(φs0 + φs, φc) = E0 + θsEφs + θcEφc, (28)

where we neglected higher order terms. Furthermore,

θsE =
∂E

∂φs
, θcE =

∂E

∂φc
, (29)

with the derivatives taken atφs = 0 andφc = 0, respectively. By substituting equation (26) and (27) into
equation (28) we obtain:

E(P ) = E(0) − θsE(Cdrs − Cgr)P + θcEφc0 exp (−θcPCdrs). (30)

In the case of the drained compressibility, substituting equations (26) and (27) into equation (17) gives:

Cdr(P ) = Cdrs [1 − θs(Cdrs − Cgr)P + θcφc0 exp (−θcPCdrs)] . (31)

In terms of the compliances this yields:

Sijkl(P ) = S0ijkl + θsijkl(Cdrs − Cgr)P − θcijklφc0 exp (−θcPCdrs). (32)

A comparison of these results with equation (1) shows that they all have the same form:A + KP −
B exp (−PD). Moreover, we should expect that for dry as well as for saturated rocks in the first approxi-
mation all coefficientsD are identic:

Dijkl = D. (33)

We call the non-dimensional quantityθc the piezosensitivity.

APPLICATION

We applied the piezosensitivity approach to a set of laboratory data measured at the Mineralogical-Geological
Institut of the University of Kiel, Germany. In a cubic pressure cell three P- and six corresponding S-wave
velocities were measured in three orthogonal directions atdifferent hydrostatic stress levels ranging from
25 MPa up to 600 MPa. All measurement were conducted on dry rock samples. These rocks were sampled
in the pilot hole of the German Continental Deep Drilling Project (KTB). Approximately 90 % of the rock
mass penetrated by the pilot hole consist of gneisses. Therefore, the cubic samples were cut from the cores
with respect to their macroscopically dominant texture in away that the bedding plane of the phyllosilli-
cates is oriented perpendicular to one of the measurement axes. Figure 1 illustrates the spatial orientation
of the samples and the symmetry plane with respect to the measured velocities. Here, for a velocityVij

index i denotes the direction of propagation and index j the direction of particle motion. Note, the used
notation here with axis 1 as the symmetry axis does not agree with the notation usually used when dealing
with VTI, where axes 3 denotes the symmetry axis.

In a first, quite natural assumption, one can treat the gneisses as intrinsically transversal isotropic (TI)
media due to the preferred orientation of the phyllosillicates. In such a TI medium, the velocities of waves
propagating within the symmetry plane are independent fromthe direction of propagation. Furthermore,
waves being polarized within the symmetry plane should alsoshow the same velocities. If the symmetry



158 Annual WIT report 2002

32V

11V

12V
V13 Plane of isotropy

V
V

V

V2

12

2

23

33
13

V

Figure 1: Illustration of the sample geometry and the orientation andnotation of the measured velocities.

axes corresponds to the 1 direction,V12 = V13 = V21 = V31, V23 = V32 andV22 = V33. To satisfy these
theoretical characteristics of a TI medium, we averaged themeasured velocities according to the mentioned
scheme.

As a consequence of the orthogonally aligned velocity measurements, we are limited to four indepen-
dent velocities. Therefore, we are not able to determine thecomplete compliance tensor of a TI medium
since such a tensor consists of five independent parameters.

We perform the fitting of equation 1 separately to every of thefour velocity vs. pressure relations
in terms of a least squares fit. The nonlinearity of equation 1requires the application of an iterative fit
procedure, like, e.g., the Levenberg-Marquardt algorithm.

The theoretical requirement of a constant parameter D imposes the necessity on the fitting process to
be conducted as a two step process. In a first step, the velocity-pressure data for all directions are fitted
separately using all four parameters A, K, B, and D. In other words, forn velocity stress relations one
obtains the fitting parametersAi, Ki, Bi, Di, with i = 1...n.

In the next step, we calculate the mean (Dmean) of the quantityDn. Then, the velocity-pressure
relations are fitted again, but only A, K, and B remain as fitting parameters andDmean is kept constant for
all velocities.

In general, a widely used measure for the quality of the fitting process is the deviationδi of the fitted
valueyf from the observationym at every pointxi, i.e.,

δi = yf(xi) − ym(xi) , (34)

and the sum of the squared deviationsχ, according to

χ =

n∑

i=1

δ2
i . (35)

The following example should illustrate the fitting processand gives results for this gneiss from the
KTB pilot hole. Four velocities were fitted:V11, V12, V22, andV23. As indicated aboveV12 represents the
mean of the measured velocitiesV12m

, V13m
, V21m

, andV31m
, andV22 the mean ofV22m

andV33m
.

From the first fitting we obtained for A, K, B, and D the values listed in tabular 1. Obviously, the
variation of the parameter D in the different directions is very small. Furthermore, the parameter K is much
smaller than the other parameters, as shown by Shapiro (2002).

As mentioned above we calculate the mean of the different D values gives (Dmean = 0.0262), repeat
the fitting and obtain the values listed in tab. 2.

The results of the second fit do not vary significantly from thefirst fit. This could be expected since
the deviations of the D values from the mean are very small. Figure 2 shows a comparison between the
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Figure 2: Comparison between measured (crosses and circles) and best-fit velocities (dashed and solid
lines) (fig. 2(a) and fig. 2(a)) and the corresponding deviations (fig. 2(c) and 2(d)) as obtained from the
second fit. The velocities are grouped as P- and S-wave pairs according to their direction of propagation.
Fitted velocities match well the observed with a mean deviation less than 0.01 (2(c)).
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Table 1: Resulting values of A, K, B, and D for the first fit.χ is the sum of the squared deviations.
Dir. A [km/s] K [km/s/MPa] B [km/s] D [1/MPa] χ[(km/s)2]
V11 5.425333 0.000526 0.377304 0.026736 2.27e-04
V12 3.233694 0.000162 0.267389 0.027460 1.68e-04
V22 6.426458 0.000294 0.229628 0.026842 1.86e-04
V23 3.899291 0.000079 0.266897 0.023923 2.60e-03

Table 2: Second fit results with D kept fixed.
D = Dmean = 0.0262[1/MPa]

Dir. A [km/s] K [km/s/MPa] B [km/s] χ[(km/s)2]
V11 5.423855 0.000530 0.369313 2.25e-04
V12 3.233357 0.000164 0.257072 1.81e-04
V22 6.428483 0.000290 0.230645 1.72e-04
V23 3.896205 0.000085 0.281312 2.60e-03

observed and best-fit velocities and the corresponding deviations at the observations points according to
equation 34.

The same procedure was applied to nine additional data sets from the KTB pilot hole. For all data
sets the best-fit velocities match the observations in a similar good manner as in the shown example.
Furthermore, a similar constance of the fitting parameter D was found for all data sets. Our fitting results
agree well with the theoretical prediction that the pressure dependence of elastic properties of porous and
fractured rocks is, indeed, mainly controlled by one singleparameter, D, for both, isotropic and anisotropic
media.

In order to investigate weather the parameter D shows a characteristic magnitude for different rock
types we plot Dp vs. Ds (the index denotes if a P- or a S-wave wasfitted) as obtained from the first fitting
step for the crystalline samples (circles) together with 80results from sandstones (Eberhart-Phillips et al.,
1989; Jones, 1995), indicated by crosses 3.
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Figure 3: Dp versus Ds for crystalline rocks (circles) and sandstones(crosses). The solid line indicates
Dp = Ds.

The distribution of the crystalline and sedimentary samples indicates a separation of both rock types
at approx. 0.1 per MPa. Obviously, the theoretical requirement that Dp is equal to Ds seems to be more
accomplished in crystalline rocks than in sedimentary. Thestrong difference between Dp and Ds for the
sandstones can be caused by such factors like pore shape, grain size distribution, the degree of cementa-
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Table 3: Resulting values of A, K, B, and D for the first fit. All nine measured velocities were fitted.
Again,χ is the sum of the squared deviations.

Dir. A [km/s] K [km/s/MPa] B [km/s] D [1/MPa] χ[(km/s)2]
V11 5.425333 0.000526 0.377304 0.026736 2.27e-4
V12 3.194678 0.000229 0.281762 0.043923 3.11e-4
V13 3.351793 0.000155 0.279077 0.025465 8.60e-5
V22 6.301271 0.000287 0.199504 0.020222 3.82e-4
V21 3.890744 0.000091 0.117543 0.025575 1.20e-5
V23 3.197202 0.000176 0.565104 0.044941 1.08e-4
V33 6.562397 0.000278 0.240769 0.027534 6.20e-5
V31 3.901571 0.000081 0.419581 0.024625 9.96e-3
V32 3.200580 0.000075 0.181381 0.011990 1.59e-4

Table 4: Second fit results with D kept fixed.
D = Dmean = 0.027890[1/MPa]

Dir. A [km/s] K [km/s/MPa] B [km/s] χ
V11 5.420879 0.000536 0.381853 2.00e-4
V12 3.202880 0.000211 0.189312 5.10e-4
V13 3.348246 0.000163 0.293835 1.02e-4
V22 6.291994 0.000306 0.236985 5.33e-4
V21 3.889407 0.000094 0.123500 1.80e-5
V23 3.213761 0.000140 0.368053 9.21e-4
V33 6.562336 0.000278 0.243958 6.10e-5
V31 3.898130 0.000088 0.458373 1.02e-2
V32 3.160713 0.000158 0.216346 7.80e-4

tion and the loading/unloading history, which are less important for the low porosity metamorphic rocks.
However, these interpretations have to be understood rather as a hint than a result since the amount of 10
crystalline samples does not represent a statistically representative base.

Since the piezosensitivity approach is valid for all isotropy classes we applied it also to the same data
set shown before but without averaging the velocities aheadof the fit.

Tabular 3 shows the resulting parameters as obtained from the first fit step. In general, the numerical
quality of both, the first and the second fit is as good as with averaged velocities. The first fit yields a mean
χ of 1.30e-3 (its median is 1.5917e-04), the second fit a meanχ of 1.50e-3 and a median of 5.10e-04. The
slight increase inχ is mainly caused by the relatively poor best-fit ofV31 (tab. 3 and 4). In comparison to the
fitting of the averaged velocities (tab. 1 and 2), the parameter D shows more distinct variations. However,
in comparison to the sandstone fits (fig. 3) the variations of Dare still very small and all observed velocities
can be fitted successfully, as shown in figure 4. The mean valueof D changes only slightly from 0.026 in
the TI case to 0.028 when fitting all nine velocities. This clearly indicates that the piezosensitivity approach
can deal with arbitrary symmetry classes.

CONCLUSIONS

In the first approximation elastic moduli, seismic velocities as well as the porosity depend on the differential
stress, i.e., the difference between the confining pressureand the pore pressure only. The stress dependence
of the porosity controls the elastic moduli and velocity changes with stress. Here, the most important
property is the compliant porosity which is usually a very small part of the total porosity. The closure of the
compliant porosity with increasing differential stress explains the experimentally observed exponentially
saturating increase of seismic velocities. Coefficients ofthis relationship are defined by the compliant
porosity dependence of the drained bulk modulus.

The dimensionless quantityθc defines the sensitivity of the elastic characteristics to the differential
stress. We propose to call it the elastic piezosensitivity.The piezosensitivity is an important property of
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Figure 4: Comparison between measured (crosses and circles) and best-fit velocities (dashed and solid
lines) (fig. 4(a), fig. 4(c), and fig. 4(e)) and the corresponding deviations (fig. 4(b), fig. 4(d) and 4(f) ) as
obtained from the second fit. All curves were fitted withD = Dmean = 0.027890/MPa.
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rocks. From the derivation above it is clear that it is definedby the compliant porosity of rocks. Moreover,
it is approximately proportional to an effective reciprocal aspect ratio of the compliant porosity.

The velocities of all 10 rock samples have been fitted successfully with a four parametric exponential
equation. The four parameters A, K, B, and D represent combinations of different rock physical parameters.
As derived from our theoretical considerations the parameter D is approx. constant for all observed veloci-
ties of a sample in any direction. Its magnitude ranges from approx. 0.01 to 0.05 per MPa. A comparison
with data from the literature shows that D ranges in sandstones in general from 0.1 to 0.3 per MPa.
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