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Pore pressure dependency of elastic anisotropy in rocks.
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ABSTRACT

In this work we present the extension of the piezosensit&fiproach to anisotropic media. The
theoretical considerations show that the stress depepddribe seismic velocities and of all elastic
parameters depends mainly on one parameter. This paraisi@gual for all velocities and elastig
parameters of a rock in all directions and independent fierdifferential stress.

We present first results from the application of the piezeigity approach for anisotropic media tq
a set of ten metamorphic rock samples from the pilot hole @fGlerman Continental Deep Dirilling
Project. The laboratory data, three P- and six correspgrgiwave velocity measurements per sam-
ple, cover a differential pressure range up to 600 MPa. Adiciées can be fitted well with our model,
As derived from our theoretical considerations the parani@tis constant for all observed velocitie
of a sample in any direction. Its magnitude ranges from ap@®1 to 0.05 per MPa. A comparison
with data from the literature shows that D ranges in san@stém general from 0.1 to 0.3 per MPa.
Furthermore, we suggest a strategy for the non-linear epsgtres fitting process.

2]

INTRODUCTION

Stress dependences of seismic velocities are importanhtiempretation of very different seismic data,
ranging from AVO and velocity analysis to overpressure fmtémh and 4D seismic monitoring of reser-
voirs. Some times, rather complex forms of these dependdrased on specific models of porous space
geometry are used. For example, spherical contact modeify(Bnd Mindlin, 1957 and Merkel et al,
2001) or crack contacts models (Gangi and Carlson, 199@) baen used in different studies. However,
usually, the pore pressure velocity dependence along hétkielocity dependence on the differential stress
is phenomenologically described by the following simplatienship (Zimmerman et al, 1986; Eberhart-
Phillips et al., 1989; Freund, 1992; Jones, 1992; Prasadvamtyhnani, 1997; Kirstetter and MacBeth,
2001):

V(P)= A+ KP — Bexp(—PD), (1)

whereP = P, — P, is the differential stress’. = —o;;/3 is a confining pressure;; is a component of
the total stress tensor (here, the compression stressasiveegnd the summation over repeating indices is
assumed) and, is a pore pressure. The coefficiedtsk, B and D of equation (1) are fitting parameters
for a given set of measurements.

Itis often observed that equation (1) or similar equaticescdibing an exponential saturation to a linear
trend provide very good approximations for velocities alagtic moduli of dry as well as saturated rocks.
Moreover, it is also observed that this equation providesrg good approximation for elastic properties
of anisotropic rocks.

In our previous publication we considered this equationigotropic rocks. In this paper we show
how equation (1) can be derived from a rather general coratida even in the case of anisotropic rocks.
Under several, quite natural assumptions the stress depeeslof the stiff and compliant porosities can be
found from the theory of poroelasticity. These results ¢emntbe used to derive the seismic velocities as
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functions of the differential stress. Our derivation withify the physical meaning of quantities K, B
and D which is quite similar in the isotropic and anisotropic Gase

DIFFERENTIAL STRESS AS A CONTROLLING FACTOR

For simplicity we consider a hydrostatic change of a streste $n a porous anisotropic rock. This means
that the pore pressure as well as the confining stress aatirigeoouter boundaries of the rock can be
changed. However, changes of the confining stress can begdtgtic only. In a reservoir, such a hydrostatic
change of the state of stress could be induced by a pumpinhgrtas injection test.

Let us introduce compressibilities of an anisotropic psrbody. Following the classical paper of
Brown and Korringa (1975), there are 3 independent comimi#ss characterizing changes of the com-
plete body volume and of the volume of the pore space in thigybo

1,0V
Car = =3 (55)P 2)
1 0V
Cmt*7V(a—Pp>Pa (3)
1,0V,
=——(== 4
CP V;) (aPp)P7 ( )
whereV is the volume of the porous body aih is the volume of all its connected pores.
One more but not-independent compressibility can be intred:
L %%
C' =~ (gp)r, (5)
Using the reciprocity theorem Brown and Korringa (1975)vséd that
C/ = Cdr - Cmt- (6)

A hydrostatic load introduces changes of the confining arrd peessuresjP. andd P, respectively.
Also the differential pressure will be change® = 6P. — §P,. The volume change of a porous body
will result from a volume change due &@, by keeping a constant pore pressure plus an effect of aggplyin
0P, from inside and outside (i.e} = const.):

ov ov
(SV: (a—P)Ppép‘f'(a?)P(SPp (7)
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An analogous equation is valid for the volume of the conreptarosity:

vV, oV,
oV, = (a—;)PP(SP + (a—P”)péPp. (8)
p

The porosity changes correspond to the following rules:

) 1
5= 6(52) = 2 — 6o ©

Taking into account these three equations and the abovetaefgof the compressibilities we obtain
the following differential equation for porosity changes:

d6 = (Cont + (& — 1)Car)AP + §(Crns — Cy)dP. (10)

We see that it”,,,; = C, (this assumption is consistent with the Gassman’s equaiot/or the con-
nected porosity is very small then the porosity depends emlifferential pressure only (see Zimmerman,
et al., 1986; Detournay and Cheng, 1993; Goulty, 1998; arm@eh 2002).
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The differential equation for the porosity is then reducedhose one derived by Zimmerman, et al.,
(1986); and Detournay and Cheng, (1993):

L

P = Cmt - (1 - ¢)Cd7" (11)

The compressibilitieg’,,,; andC,, are practically independent @f. Thus, in the equations (10) and
(11) two quantities are significantly stress dependent.angndCy,.. Therefore, in order to obtain stress
dependencies of these two quantities at least one moreiequatating them to the stress or just an
equation mutually relating andCy,. is required.

COMPRESSIBILITIES OF AN ANISOTROPIC MEDIUM

The compressibilityCy,.- characterizes the drained skeleton of the rock. Let us asshat the skeleton
under a reference stress state is a generally anisotroglimecharacterized by the compliances tensor
with components;;;. Taking into account the Hook’s law,

€ij = SijkiOkl, (12)
and applying it to the dilatation
1
occurring due to the confining streBsd;; we arrive at the following equation for the skeleton’s coegs-
ibility:

Car = S1111 + S2222 + S3333 + 2(S1122 + S1133 + S2233) = Siik- (14)

COMPLIANCES VERSUS STIFF AND COMPLIANT POROSITIES

We separate the total porosibyinto two parts

¢ = ¢c + [¢SO + ¢s] ) (15)

where the first party., is a compliant porosity supported by thin cracks and graimtacts vicinities.
According to laboratory observations we expect that thept@mt porosity will close up by a differential
stress of a few hundred megapascals. This correspondsds wdih an aspect ratig (a relationship
between the minimal and maximal dimensions of a pore) less)f01 (see Zimmerman et al., 1986). The
second partjpso + ¢s] is a stiff porosity supported by more or less isometric pgres, equidimensional
or equant pores, see also Hudson et al. (2001); Thomsen)[19%% aspect ratio of such pores is typically
larger than0.1. Such a subdivision of the porosity to a compliant and stftp is very similar to the
definitions of stiff and soft porosity by Mavko and Jizba (199

In turn, we separate the stiff porosity into a parg, which is equal to the stiff porosity in the case of
P = 0, and to a part, which is a change of the stiff porosity due to a deviation & differential stress
from zero. We assume that the relative changes of the stifigiy, ¢./$s0, are small. In contrast, the
relative changes of the compliant porosity. — ¢.0)/¢.0 can be very large, i.e., of the order of @.§
denotes the compliant porosity in the casefot= 0). Note, however, thad. and¢.o are usually very
small quantities. As a rule, (e.g., in porous sandstones) &he much smaller thafy, and even than the
absolute value op;. Thus, the following inequality is usually valid:

bs0 > |Ps| > @e. (16)

For example, in porous sandstones typical orders of magmitfi these quantities atgy = 0.1, |¢s| =
0.01 and¢,. = 0.001.

Under such circumstances it is logic to assume the firstatiapproximations of the compliances as
functions of the porosities. The Taylor expansion gives:

Siji(Ps0 + @s, Pc) = Soijki + Osijui s + Ocijri e, (17)
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whereSy;;; is the drained compliancy of a hypothetical rock with a ctbsempliant porosity (i.e¢. =

0) and the stiff porosity equal t,. Further,

9Sijk 4 o 9Sijki
dps ~ Y O¢c

Osijrt = (18)
where the derivatives are taken in points= 0 and¢. = 0, respectively.

Approximation (17) implies that the both quantiti€s;x ¢s/Soijx and6eijride/Soijr are smaller
than1. Numerous laboratory experiments and practical expegishow that the drained compressibility
depends strongly on changes in the compliant porosity, tadepiends much weaker on changes in the stiff
porosity. We will express this empirical observation by téstriction

|95ijkl¢s| < |ecijkl¢c|- (19)

In spite of a very small porosity. the quantityd.; jx: ¢./Soi;r. can be of the order @f.1 or even larger.
If so, approximation (17) is further simplified as follows:

Cdr(¢50 + ¢sa ¢c) = Cdrs [1 + 9(:¢c] . (20)
Here, we introduced
Cars = Soiikk (21)
and
Oc = Ociikk / Soiikk (22)

Using approximation 20 and neglectiggn comparison withl we obtain the following relationship
instead of equation (11):

d¢s + d¢c = (Cmt - Cdrs - 9(:¢ccd7's)dp + (¢c + ¢SO + ¢5)(Cmt - Cp)de (23)
Again, if the porosity and/or pore pressure are small, thettam in this equation can be neglected.

STRESS DEPENDENCES OF THE STIFF AND COMPLIANT POROSITIES

We assume that stiff porosity changes with stress are imdkgye of the changes of the compliant porosity.
This means also, that changes of the stiff porosity are iedéent of the fact if the compliant porosity is
closed or not. If the compliant porosity is closed thign= 0 and we obtain from (23)

dds = (Cpt — Curs)AP + (¢50 + 65)(Con — Cp)dP,. (24)

However, if the assumption above is valid then this relaiop will be valid also for an arbitrary (however,
because of other assumptions, small) Therefore,

d¢c = _90¢ccd7'sdp + ¢(:(Cmt - Cp)de (25)

These two equations immediately provide us with the foltmp@pproximations of the stress dependences
of the stiff and compliant porosities:

¢s = (Cmt - Cdrs)P + ¢SO(Cmt - Cp)Pp (26)
(here we neglected; in comparison withp),
¢c = beo €xp (—0cPCyrs + (Crt — Cp)dP,). (27)

Note that equation (26) is not valid for very larfpebecause in equation (20) we neglected the stiff-porosity
dependence of the compressibildy,.s, which becomes equal G,,,; if P — oo. The validity of such

a simplification as well as the validity of equation (26) agstricted by the condition (19). For very high
stresses also the stiff porosity will obey an exponentigdiiurating decreasing behavior.
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STRESS DEPENDENCES OF ELASTIC PROPERTIES

Let us now consider an arbitrary elastic characterigtie.g., a seismic velocity, a stiffness or a compli-
ance) of a porous body. We will assume that the grain matsriabtropic and homogeneous. The first
consequence of this assumption is that in equation (23p8tadrm becomes zero due to the equivalence
Cmt = C,. Correspondingly, equations (26) and (27) are simplified.

Another consequence of the isotropy and homogeneity of Hiexmaterial is that the elastic anisotropy
of the porous body is only due to the geometry of the conngmbedsity. This geometry does not change
under an isotropic homogeneous change of load. Howeveg)dlséc characteristi& will be a function of
the porosity. We assume that the characteristican be approximated by a Taylor series expansion at the
pointg = ¢4 relative to the stiff and the compliant porosity (this stilo valid for all such characteristics
like seismic velocities and elastic moduli):

E(¢SO + ¢s; ¢c) = EO + 98E¢S + 90E¢c; (28)
where we neglected higher order terms. Furthermore,
OF OF
93 = 3> 9(: = 53 29
= 5 5= 50 (29)

with the derivatives taken at, = 0 and¢. = 0, respectively. By substituting equation (26) and (27) into
equation (28) we obtain:

E(P)=E(0) — 0s5(Cars — Cgr)P + 0c5pco exp (—0.PClars). (30)
In the case of the drained compressibility, substitutingegipns (26) and (27) into equation (17) gives:
Cir(P) = Cars [1 = 05(Cirs — Cgr) P 4 Ocpeo exp (—0.PCirs)] . (31)
In terms of the compliances this yields:
Sijkt(P) = Soijrt + Osiji(Cars — Cgr) P — Ocijrideo exp (—0.PCays). (32)

A comparison of these results with equation (1) shows the #il have the same formd + KP —
Bexp (—PD). Moreover, we should expect that for dry as well as for saaraocks in the first approxi-
mation all coefficientd are identic:

D;ji = D. (33)

We call the non-dimensional quantily the piezosensitivity.

APPLICATION

We applied the piezosensitivity approach to a set of lalboyatata measured at the Mineralogical-Geological
Institut of the University of Kiel, Germany. In a cubic prass cell three P- and six corresponding S-wave
velocities were measured in three orthogonal directiortifegrent hydrostatic stress levels ranging from
25 MPa up to 600 MPa. All measurement were conducted on dkysamples. These rocks were sampled
in the pilot hole of the German Continental Deep Drilling jed (KTB). Approximately 90 % of the rock
mass penetrated by the pilot hole consist of gneisses. fidneréhe cubic samples were cut from the cores
with respect to their macroscopically dominant texture imay that the bedding plane of the phyllosilli-
cates is oriented perpendicular to one of the measurement &igure 1 illustrates the spatial orientation
of the samples and the symmetry plane with respect to theursthselocities. Here, for a velocity;;
index i denotes the direction of propagation and index j tihection of particle motion. Note, the used
notation here with axis 1 as the symmetry axis does not agitbetve notation usually used when dealing
with VTI, where axes 3 denotes the symmetry axis.

In a first, quite natural assumption, one can treat the ge®igs intrinsically transversal isotropic (TI)
media due to the preferred orientation of the phyllositésa In such a TI medium, the velocities of waves
propagating within the symmetry plane are independent fitmerdirection of propagation. Furthermore,
waves being polarized within the symmetry plane should skgmw the same velocities. If the symmetry
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Figure 1: lllustration of the sample geometry and the orientationamotation of the measured velocities.

axes corresponds to the 1 directidhy = Vis = Vo1 = Vaq, Vag = Vi andViy = Vis. To satisfy these
theoretical characteristics of a TI medium, we averagedibasured velocities according to the mentioned
scheme.

As a consequence of the orthogonally aligned velocity nremsents, we are limited to four indepen-
dent velocities. Therefore, we are not able to determinetmeplete compliance tensor of a TI medium
since such a tensor consists of five independent parameters.

We perform the fitting of equation 1 separately to every of fingr velocity vs. pressure relations
in terms of a least squares fit. The nonlinearity of equatioaduires the application of an iterative fit
procedure, like, e.g., the Levenberg-Marquardt algorithm

The theoretical requirement of a constant parameter D iggptiee necessity on the fitting process to
be conducted as a two step process. In a first step, the welmeissure data for all directions are fitted
separately using all four parameters A, K, B, and D. In otherds, forn velocity stress relations one
obtains the fitting parameters, K;, B;, D;, withi = 1...n.

In the next step, we calculate the medn,(..,) of the quantityD,,. Then, the velocity-pressure
relations are fitted again, but only A, K, and B remain as fitfi@rameters and,,,..., is kept constant for
all velocities.

In general, a widely used measure for the quality of the §tpnocess is the deviatiah of the fitted
valuey; from the observation,,, at every point;, i.e.,

6 = yp(wi) — ym (i), (34)

and the sum of the squared deviationsccording to
xX=> 4. (35)

The following example should illustrate the fitting processl gives results for this gneiss from the
KTB pilot hole. Four velocities were fitted?;1, V12, Voo, andVas. As indicated abové’; > represents the
mean of the measured velociti®s,, , Vis,,, Vo1,,, andVsy,, andVa, the mean ofae  andVias, .

From the first fitting we obtained for A, K, B, and D the valuestdd in tabular 1. Obviously, the
variation of the parameter D in the different directionsésywsmall. Furthermore, the parameter K is much
smaller than the other parameters, as shown by Shapiro Y2002

As mentioned above we calculate the mean of the differentlDegagives D.,can = 0.0262), repeat
the fitting and obtain the values listed in tab. 2.

The results of the second fit do not vary significantly from fing fit. This could be expected since
the deviations of the D values from the mean are very smafjuréi 2 shows a comparison between the
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Figure 2: Comparison between measured (crosses and circles) anéithedbcities (dashed and solid

lines) (fig. 2(a) and fig. 2(a)) and the corresponding dewmti(fig. 2(c) and 2(d)) as obtained from the
second fit. The velocities are grouped as P- and S-wave paiosding to their direction of propagation.
Fitted velocities match well the observed with a mean d@andess than 0.01 (2(c)).
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Table 1: Resulting values of A, K, B, and D for the first fit. is the sum of the squared deviations.
Dir. | A[km/s] K[km/s/MPa] Bl[km/s] D[1/MPa] x[(km/s)?]
V11 | 5.425333 0.000526 0.377304  0.026736 2.27e-04
V12 | 3.233694 0.000162 0.267389  0.027460 1.68e-04
V22 | 6.426458 0.000294 0.229628  0.026842 1.86e-04
V23 | 3.899291 0.000079 0.266897  0.023923 2.60e-03
Table 2: Second fit results with D kept fixed.
D = Diyean = 0.0262[1/M Pa]
Dir. | Alkm/s| Klkm/s/MPa] B[km/s] x[(km/s)?]
V11 | 5.423855 0.000530 0.369313  2.25e-04
V12 | 3.233357 0.000164 0.257072 1.81e-04
V22 | 6.428483 0.000290 0.230645 1.72e-04
V23 | 3.896205 0.000085 0.281312  2.60e-0B

observed and best-fit velocities and the correspondingatiens at the observations points according to
equation 34.

The same procedure was applied to nine additional data etsthe KTB pilot hole. For all data
sets the best-fit velocities match the observations in al&irgood manner as in the shown example.
Furthermore, a similar constance of the fitting parameterad feund for all data sets. Our fitting results
agree well with the theoretical prediction that the presslependence of elastic properties of porous and
fractured rocks is, indeed, mainly controlled by one siqggleameter, D, for both, isotropic and anisotropic
media.

In order to investigate weather the parameter D shows a ceaistic magnitude for different rock
types we plot Dp vs. Ds (the index denotes if a P- or a S-wavefittad) as obtained from the first fitting
step for the crystalline samples (circles) together witheé3ults from sandstones (Eberhart-Phillips et al.,
1989; Jones, 1995), indicated by crosses 3.
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Figure 3: Dp versus Ds for crystalline rocks (circles) and sandst¢oessses). The solid line indicates
Dp = Ds.

The distribution of the crystalline and sedimentary samjielicates a separation of both rock types
at approx. 0.1 per MPa. Obviously, the theoretical requéenthat Dp is equal to Ds seems to be more
accomplished in crystalline rocks than in sedimentary. 3theng difference between Dp and Ds for the
sandstones can be caused by such factors like pore shapesigeadistribution, the degree of cementa-
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Table 3: Resulting values of A, K, B, and D for the first fit. All nine memsed velocities were fitted.
Again, x is the sum of the squared deviations.

Dir. | A[km/s] K[km/s/MPa] Bl[km/s] D[1/MPa] x[(km/s)?]

V11 | 5.425333 0.000526 0.377304  0.026736 2.27e4
V12 | 3.194678 0.000229 0.281762  0.043923 3.1le-#4
V13 | 3.351793 0.000155 0.279077  0.025465 8.60e-5
V22 | 6.301271 0.000287 0.199504  0.020222 3.82e-4
V21 | 3.890744 0.000091 0.117543  0.025575 1.20e6
V23 | 3.197202 0.000176 0.565104  0.044941 1.08e4
V33 | 6.562397 0.000278 0.240769  0.027534 6.20e-5
V31 | 3.901571 0.000081 0.419581  0.024625 9.96e-3
V32 | 3.200580 0.000075 0.181381  0.011990 1.59e4

Table 4: Second fit results with D kept fixed.
D = Dypean = 0.027890[1/M Pa]
Dir. | A[km/s] Klkm/s/MPa] B [km/s] X
V11 | 5.420879 0.000536 0.381853 2.00€¢-4
V12 | 3.202880 0.000211 0.189312 5.10¢-4
V13 | 3.348246 0.000163 0.293835 1.02¢-4
V22 | 6.291994 0.000306 0.236985 5.33¢-4

V21 | 3.889407 0.000094 0.123500 1.80e-5
V23 | 3.213761 0.000140 0.368053 9.21¢-4
V33 | 6.562336 0.000278 0.243958 6.10€-5

V31 | 3.898130 0.000088 0.458373 1.02e-2
V32 | 3.160713 0.000158 0.216346 7.80e-4

tion and the loading/unloading history, which are less ingutt for the low porosity metamorphic rocks.
However, these interpretations have to be understoodrrathe hint than a result since the amount of 10
crystalline samples does not represent a statisticaliyesgmtative base.

Since the piezosensitivity approach is valid for all ispyr@lasses we applied it also to the same data
set shown before but without averaging the velocities aloé#uk fit.

Tabular 3 shows the resulting parameters as obtained frerfirh fit step. In general, the numerical
quality of both, the first and the second fit is as good as wignayed velocities. The first fit yields a mean
x of 1.30e-3 (its median is 1.5917e-04), the second fit a meaiil.50e-3 and a median of 5.10e-04. The
slightincrease iry is mainly caused by the relatively poor best-filgf (tab. 3 and 4). In comparisonto the
fitting of the averaged velocities (tab. 1 and 2), the paranietshows more distinct variations. However,
in comparison to the sandstone fits (fig. 3) the variations aféstill very small and all observed velocities
can be fitted successfully, as shown in figure 4. The mean wdlDechanges only slightly from 0.026 in
the Tl case to 0.028 when fitting all nine velocities. Thisclgindicates that the piezosensitivity approach
can deal with arbitrary symmetry classes.

CONCLUSIONS

In the first approximation elastic moduli, seismic velagstas well as the porosity depend on the differential
stress, i.e., the difference between the confining pressud¢he pore pressure only. The stress dependence
of the porosity controls the elastic moduli and velocity mfpas with stress. Here, the most important
property is the compliant porosity which is usually a veryafirpart of the total porosity. The closure of the
compliant porosity with increasing differential strespkains the experimentally observed exponentially
saturating increase of seismic velocities. Coefficientshid relationship are defined by the compliant
porosity dependence of the drained bulk modulus.

The dimensionless quantity. defines the sensitivity of the elastic characteristics ® dtferential
stress. We propose to call it the elastic piezosensitivitye piezosensitivity is an important property of
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Figure 4. Comparison between measured (crosses and circles) anéithedbcities (dashed and solid
lines) (fig. 4(a), fig. 4(c), and fig. 4(e)) and the correspagdieviations (fig. 4(b), fig. 4(d) and 4(f) ) as
obtained from the second fit. All curves were fitted with= D, .o, = 0.027890/M Pa.



Annual WIT report 2002 163

rocks. From the derivation above it is clear that it is defibgdhe compliant porosity of rocks. Moreover,
it is approximately proportional to an effective reciprbaspect ratio of the compliant porosity.

The velocities of all 10 rock samples have been fitted sub@éssvith a four parametric exponential
equation. The four parameters A, K, B, and D represent coatibins of different rock physical parameters.
As derived from our theoretical considerations the parani@tis approx. constant for all observed veloci-
ties of a sample in any direction. Its magnitude ranges frpprax. 0.01 to 0.05 per MPa. A comparison
with data from the literature shows that D ranges in san@stimgeneral from 0.1 to 0.3 per MPa.
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