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ABSTRACT

The image wave equation for depth remigration is a partial differential equation that is similar to
the acoustic wave equation. In this work, we determine the stability conditions that have to be met
when solving the image wave equation by finite differences. The stability criterion exhibits a strong
wavenumber dependence. Where higher horizontal than vertical wavenumbers are present in the data
to be remigrated, stability may be difficult to achieve. Numerical tests demonstrate that the imple-
mentational form of the chosen FD scheme can be essential to obtain results with a limited numerical
error even in situations where stability cannot be theoretically guaranteed.

INTRODUCTION

Seismic remigration is an imaging technique that envisagesthe construction of an improved migrated
section for an updated macrovelocity model (e.g., one taking lateral velocity variations into account) on
the basis of a previously migrated section as obtained with adifferent initial macrovelocity model (e.g.,
one employing simple velocity laws where the migration can be very efficiently realized). If the two
macrovelocity models do not differ too much, one generally calls the imaging procedure that corrects the
image a “residual migration” (Rothman et al., 1985). Where significant differences between both models
are allowed, the process is referred to as remigration (Hubral et al., 1996a). In the seismic literature, it is
also known as velocity continuation (Fomel, 1994).

The sequence of images of a certain reflector as subsequentlymigrated with varying migration ve-
locities creates an impression of a propagating wavefront.This “propagating wavefront” was termed an
“image wave” by Hubral et al. (1996b). The propagation variable, however, is not time as is the case for
conventional physical waves as described, e.g., by the acoustic wave equation, but the migration velocity.

For homogeneous media, Hubral et al. (1996b) and Tygel et al.(1998) have studied the kinematic be-
haviour of these image waves as a function of the constant migration velocity. By treating them in a similar
way as conventional acoustic waves, they derived partial differential equations that describe the “propa-
gation” of the reflector image as a function of migration velocity for both, time and depth remigration.
Therefore, these partial differential equations have beentermed “image wave equations.” Both image wave
equations for time and depth remigration are equations similar to the acoustic wave equation (Fomel, 1994;
Hubral et al., 1996b).

The image wave equation for time remigration has already been theoretically studied and implemented
(Jaya et al., 1996; Jaya, 1997), as well as successfully applied to real data from ground-penetrating radar
(Jaya, 1997; Jaya et al., 1999). The topic of this paper is theimage wave equation for depth remigration.
Below, we will briefly review its derivation in 3-D, choose anFD scheme for its implementation, and study
its consistency, stability, and convergence. These studies consist of a theoretical investigation as well as
numerical testing.
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DERIVATION OF THE 3-D IMAGE WAVE EQUATION

As mentioned in the Introduction, the derivation of the image wave equation is based on the kinematic
behaviour of the image wavefront, i.e., the reflector image at different migration velocities. Since it has
been previously derived by Fomel (1994) and Hubral et al. (1996b) for a two-dimensional medium, we
briefly sketch the derivation in three dimensions.

We consider a reflector imageΣ0 to be given that was obtained from a migration of zero-offsetdata
using an incorrect migration velocity, say,v0. The aim is to construct fromΣ0 the correct reflector image
Σ that would have been obtained had the data been migrated using the correct velocityv.

In order to quantitatively understand the kinematics of the“image wave propagation,” the input re-
flector imageΣ0 is considered as a set of pointsP0. Each of these points in the input velocity model
is kinematically equivalent to a surface in the output velocity model, i.e., both generate the same zero-
offset reflection-time surface. The envelope of these equivalent surfaces provides the new reflector image,
very much in the same way as a physical wavefront can be thought of as the envelope of Huygens waves
that originate at secondary sources along the previous wavefront. Therefore, these equivalent surfaces are
referred to as “Huygens image waves” (Hubral et al., 1996b).

Let us now consider a zero-offset experiment with coincident sources and receivers at positions de-
scribed by coordinatesξ andη on the planar earth surface. Then each of these Huygens imagewaves is
the surface that in the output velocity modelv has the same traveltime surfacet(ξ, η) as the given point
P0 = (x0, y0, z0) in the input velocity modelv0. The traveltime of pointP0 is

t(ξ, η) =
2

v0

√
(ξ − x0)2 + (η − y0)2 + z2

0 . (1)

The Huygens image wave can be constructed as the envelope of the isochrons of all points on this traveltime
surface. For a given pair of coordinatesξ andη, the corresponding isochron is the set of pointsP = (x, y, z)
that satisfies

2

v

√
(ξ − x)2 + (η − y)2 + z2 = t(ξ, η) . (2)

Since the traveltimet(ξ, η) in equations (1) and (2) is, by definition, the same, the ensemble of isochrons
to this traveltime surface can be described by the function

F (ξ, η) =
v2

v2
0

[
(ξ − x0)

2 + (η − y0)
2 + z2

0

]
− (ξ − x)2 − (η − y)2 − z2 = 0 , (3)

parameterized by the coordinates of the zero-offset data space,ξ andη. To construct the desired Huygens
image wave, these parameters must be eliminated by the envelope conditions

∂F

∂ξ
= 0 and

∂F

∂η
= 0 . (4)

These conditions yield

ξ =
x − m2x0

1 − m2
and η =

y − m2y0

1 − m2
, where m = v/v0 . (5)

Substitution of these results in equation (3) and solution for z yields the following expression for the 3-D
Huygens image wave

z = m

√
z2
0 +

1

1 − m2
[(x − x0)2 + (y − y0)2] . (6)

Figure 1 shows a 2-D sketch of the ensemble of isochrons described by equation (3). The envelope formed
by all these isochrons is the Huygens image wave described byequation (6). In other words, a reflector
of the shape of this envelope would, in a medium with velocityv, create the same zero-offset traveltime
surface as pointP0 in a medium with velocityv0.

Solution of equation (6) forv yields an equation of the formv = V(x, y, z), whereV is the eikonal of the
image wave. For simplicity, we will work with the normalizedeikonalM(x, y, z) = V(x, y, z)/v0, which
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Figure 1: 2-D sketch of the ensemble of isochrons of all points on the traveltime surface in equation (1).
Their envelope is the Huygens image wave described by equation (6). The sketch represents a situation
wherev > v0.

is obtained from solving equation (6) form = v/v0 instead ofv. To find a differential equation for this
eikonal, the corresponding expression has to be differentiated with respect tox, y, andz and the derivatives
must be combined in such a way thatx0, y0, andz0 are eliminated. The resulting differential equation is the
eikonal equation for the image wave propagation. However, since equation (6) is a quadratic equation in
m, it is easier to substitute directlym = M(x, y, z) in that equation and differentiate implicitely. Denoting
the partial derivatives ofM byMx, My, andMz, respectively, we can write

0 = MxX +
M2

z

x − x0

1 −M2
, (7a)

0 = MyX +
M2

z

y − y0

1 −M2
, (7b)

1 = MzX , (7c)

where

X =
∂z

∂m

∣∣∣∣
m=M

=
z

M +
M3

z(1 −M2)2
[
(x − x0)

2 + (y − y0)
2
]

. (8)

Here we have used that, because of equation (6) withm = M,

√
z2
0 +

1

1 −M2
[(x − x0)2 + (y − y0)2] =

z

M . (9)

Now, we solve equations (7a) and (7b) forx − x0 andy − y0, respectively, and (7c) forX . Substitution of
the results in equation (8) results then in the desired imageeikonal equation

M2
x + M2

y + M2
z −

M
z
Mz = 0 . (10)

Remembering thatV is obtained fromM by a simple multiplication with the constantv0, we see that also
V obeys the same image eikonal equation (10).
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The last step is to find a second-order differential equationfor the “image wavefield”p(x, y, z) such
that a substitution of the ray ansatz

p(x, y, z) = p0(x, y, z)f(v − V(x, y, z)) , (11)

yields the above eikonal equation. Here,p0 is the amplitude of the migrated reflector image, i.e., the image
wave, andf(v) is the source wavelet as a function of velocity. The simplestdifferential equation that
fulfills the above requirement is

pxx + pyy + pzz +
v

z
pvz = 0 . (12)

Note that to arrive at the eikonal equation (10) upon substitution of ray ansatz (11) in equation (12), one
needs to substitutev by V(x, y, z). This substitution is, of course, valid on the image wavefront v = V
itself. However, if the waveletf in equation (11) is of nonzero duration, points off the wavefront are also
involved in the propagation of the image. As we will see in thenumerical example, this leads to a stretch
of the wavelet in the propagating image.

FINITE DIFFERENCES

We consider a grid of depth points and a discretized velocityaxis. The image wavefield at a given grid
point(x, y, z) = (k∆x, l∆y, m∆z), as calculated for a certain migration velocityv = n∆v, is denoted by
pn

k,l,m. On this grid, we approximate the derivatives in equation (12) by finite differences. For the spatial
derivatives, we use fourth-order approximations, i.e.,

pxx ≈ 1

12(∆x)2
[
−pn

k+2,l,m − pn
k−2,l,m + 16(pn

k+1,l,m + pn
k−1,l,m) − 30pn

k,l,m

]
(13)

and corresponding expressions forpyy andpzz. For the mixed derivative, we choose a scheme that is
forward inv andz, given by

pvz ≈ 1

∆v∆z

[
pn+1

k,l,m+1 − pn+1
k,l,m − pn

k,l,m+1 + pn
k,l,m

]
. (14)

Using these approximations for the derivatives in the imagewave equation (12) and isolatingpn+1
k,l,m+1,

we find the following FD scheme,

pn+1
k,l,m+1 = −zm∆v∆z

12vn

{−pn
k+2,l,m − pn

k−2,l,m + 16(pn
k+1,l,m + pn

k−1,l,m) − 30pn
k,l,m

(∆x)2

+
−pn

k,l+2,m − pn
k,l−2,m + 16(pn

k,l+1,m + pn
k,l−1,m) − 30pn

k,l,m

(∆y)2

+
−pn

k,l,m+2 − pn
k,l,m−2 + 16(pn

k,l,m+1 + pn
k,l,m−1) − 30pn

k,l,m

(∆z)2

}

+pn+1
k,l,m + pn

k,l,m+1 − pn
k,l,m . (15)

Here,vn andzm are the discretized values at the present level, i.e.vn = v0 + n∆v andzm = m∆z.
The initial condition for the propagation of the image wave is, of course, the original migrated section

for the velocityv0. Since the geophysical problem provides no explicit boundary conditions, we use that
the field outside the given target zone of the input section should be zero.

We observe from equation (15) that the computation of the wavefieldpn+1
k,l,m+1 at stepn+1 at gridpoint

(k, l, m + 1) requires the knowledge of the wavefieldpn+1
k,l,m at the same stepn + 1 at gridpoint(k, l, m),

in addition to the wavefield at the surrounding gridpoints atthe previous stepn. This fact makes the
FD scheme an implicit one. However, its computation would require the solution of a linear system of
equations in each step. Such a procedure would, of course, beexpensive to realize, particularly for large
migrated sections.

For this reason, we prefer to treat equation (15) as an explicit scheme. This is no major problem as
pn+1

k.l,m is just the value of the image wavefield at the neighboring gridpoint and has been calculated in the
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anterior step inz. However, this way of procedure requires an additional boundary condition to initialize
the loop inz. We choose again a homogeneous boundary condition.

In order to actually use the FD scheme (15), its consistency and stability need to be investigated, so as
to find conditions for the step size∆v as a function of the medium parameters and the grid intervals∆x,
∆y, and∆z. This is done in the next sections.

CONSISTENCY

A finite difference scheme is consistent with the corresponding partial differential equation, if for any
smooth functionφ(x, z, v), the difference between the differential operator,D, and the discretized operator,
D∆v

∆x,∆y,∆z, applied toφ, tends to zero when∆x, ∆y, ∆z, and∆v tend to zero (Strikwerda, 1989). In
symbols, the scheme is required to guarantee that

Dφ − D∆v
∆x,∆y,∆zφ → 0, for ∆x, ∆y, ∆z, ∆v → 0. (16)

We now apply this concept to the image wave equation (12) and its FD scheme (15). The differential
operator applied to a functionφ is

Dφ = φxx + φyy + φzz +
v

z
φvz . (17)

Application of the discretized operator according to scheme (15) to the same functionφ yields, under
consideration of the truncation errors of the approximations (13) and (14), after some straightforward
algebra,

D∆v
∆x,∆y∆zφ = φxx + O(∆x4) + φyy + O(∆y4) + φzz + O(∆z4)

+
vn

zm
(φvz + O(∆z) + O(∆v)) . (18)

The difference of equations (17) and (18) yields

Dφ −D∆v
∆x,∆zφ = O(∆x4) + O(∆y4) + O(∆z) + O(∆v) . (19)

We conclude that

Dφ −D∆v
∆x,∆y,∆zφ → 0, for ∆x, ∆y, ∆z, ∆v → 0 . (20)

i.e., the FD scheme (15) is unconditionally consistent withthe image wave equation (12).

STABILITY

According to Lax’s theorem (Thomas, 1995), an FD scheme is convergent, i.e., its solutions converges to
the solution of the original differential equation, if it isconsistent and stable. To determine the conditions
under which the FD scheme (15) is stable, we apply the von Neumann criterion (Strikwerda, 1989; Thomas,
1995), i.e., we substitute the wavefieldpn

k,l,m in equation (15) by a generic component of its discrete Fourier
transform. This reads

pn
k,l,m = ξneikκx∆xeilκy∆yeimκz∆z , (21)

whereκx, κy, andκz are the components of the wavenumber vector in thex-, y-, andz-directions. Ac-
cording to the von Neumann condition, an FD scheme is stable if pn

k,l,m as expressed in equation (21) does
not increase for increasingn. This is guaranteed by aξ the modulus of which satisfies|ξ| ≤ 1.

From substitution of the discrete Fourier transform (21) inequation (15) and solution of the resulting
equation forξ, we find the expression

ξ =
1

(eiκz∆z − 1)

{
16zm

12vn

∆v∆z

(∆x)2
sin2 κx∆x

2

[
3 + sin2 κx∆x

2

]

+
16zm

12vn

∆v∆z

(∆y)2
sin2 κy∆y

2

[
3 + sin2 κx∆y

2

]

+
16zm

12vn

∆v∆z

(∆z)2
sin2 κz∆z

2

[
3 + sin2 κz∆z

2

]}
+ 1. (22)
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Upon denoting the expression within curly brackets byΛ, equation (22) reduces to

ξ =
Λ

(eiκz∆z − 1)
+ 1 =

(
1 − Λ

2

)
− i

(
Λ

2

cos κz∆z
2

sin κz∆z
2

)
. (23)

We observe thatξ is not defined ifsin κz∆z
2 = 0. This is not a real restriction to the stability of scheme

(15) since it is not difficult to see from equation (23) that

lim
sin(κz∆z/2)→0

ξ = 1. (24)

This means that scheme (15) will be stable for wavenumbersκz for which sin(κz∆z/2) = 0 as long as it
is stable for all wavenumbers in its vicinity.

Application of the condition|ξ| ≤ 1 to equation (23) provides the inequation

Λ2

[
1

4 sin2 κz∆z
2

]
− Λ ≤ 0. (25)

Since the coefficient ofΛ2 in equation (25) is always positive, we conclude thatΛ must satisfy the condition

0 ≤ Λ ≤ 4 sin2 κz∆z

2
. (26)

Thus, the stability condition for the FD scheme (15) reads

0 ≤ zm

3vn

∆v∆z

(∆x)2
sin2 κx∆x

2

[
3 + sin2 κx∆x

2

]

+
zm

3vn

∆v∆z

(∆y)2
sin2 κy∆y

2

[
3 + sin2 κy∆y

2

]

+
zm

3vn

∆v∆z

(∆z)2
sin2 κz∆z

2

[
3 + sin2 κz∆z

2

]
≤ sin2 κz∆z

2
. (27)

Equation (27) represents the general stability condition for the FD scheme (15). It is, however, hard to
appreciate its meaning. Let us thus investigate it in more detail.

The caseΛ = 0 is not really meaningful since this requiressin2 κx∆x
2 = sin2 κy∆y

2 = sin2 κz∆z
2 = 0,

which can only be satisfied for certain selected values of thewavenumbersκx, κy, andκz .
Note that equation (27) must be satisfied for all wavenumbersκx, κy, andκz involved in the remigration

problem to be solved. This can be a difficult condition to meet. The simplest situation is the case where
wavenumbers and grid increments are of the same size, such that∆x = ∆y = ∆z andκx∆x ≈ κy∆y ≈
κz∆z. In this situation, the above condition can be divided bysin2 κz∆z

2 to yield

0 <
4zmax

3vmin

∆v

∆z
+

4zmax

3vmin

∆v

∆z
+

4zmax

3vmin

∆v

∆z
≤ 1 =⇒ ∆v ≤ 1

4

vmin

zmax
∆z, (28)

where we have used that3 + sin2 κz∆z
2 ≤ 4. Moreover, we have replacedzm andvn by their maximum

and minimum values,zmax andvmin, respectively.
If different wavenumbers are involved in different directions, the presence of the termsin2 κz∆z

2 on the
right-hand side of equation (27) has an important consequence for the stability of the FD scheme (15). If
there are vertical wavenumbersκz present in the data for which this term is very close to zero, it will be
very hard to make the scheme stable. Very small values of∆v might be needed to fulfill the requirements.
We will further comment on this observation below when discussing the numerical examples.

Finally, let us comment on the requirementΛ > 0. It means that for possitive∆z, only positive values
for ∆v are admitted. In other words, scheme (15)can onlybe used to propagate a reflector image from
smaller to larger velocities. For the inverse direction, a different FD scheme is needed. One can use, e.g., a
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Figure 2: Earth model for the remigration example. Also shown is a family of zero-offset rays.

scheme that is forward inv and backward inz, i.e., one which represents the mixed derivative in equation
(12) as

pvz =
1

∆v∆z

[
pn+1

k,l,m − pn+1
k,l,m−1 − pn

k,l,m + pn
k.l,m−1

]
. (29)

The stability condition for the corresponding FD scheme is given by equation (27) multiplied by minus
one. Therefore, this scheme requires a negative∆v, i.e., it allows only for image propagation from larger
to smaller velocities. Other FD schemes are currently underinvestigation.

NUMERICAL TESTS

In this section, we demonstrate the numerical realization of a remigration by means of the application of
FD scheme (15). Because of computational limitations, the numerical testing had to be restricted to the
corresponding 2-D scheme, which is obtained from equation (15) by eliminating the second line (i.e., the
y-derivative). For the remigration, we used migrated data from a simple earth model (see Figure 2). It
consists of two homogeneous halfspaces, separated by a horizontal reflector at a depth of 550 m. The
velocities above and below the reflector arec1 = 3 km/s andc2 = 3.5 km/s. The simulated seismic survey
is a zero-offset experiment with 401 source-receiver pairs, located at every 10 m between -2000 m and
2000 m along thex-axis.

The input data to the remigration where generated by migrating the so-obtained zero-offset data to depth
with a wrong migration velocity ofv0 = 2 km/s. The result of this depth migration is depicted in Figure 3a.
As we can see, the reflector is imaged at a wrong depth of about 370 m, because of the wrong migration
velocity. Note that the target region for migration was chosen quite large so as to include all boundary
effects from migration but to eliminate additional boundary reflections from the image wave propagation.
For the same reason, the depth axis was extended tozmax = 1.6 km.

This wrongly migrated depth section was then remigrated using FD scheme (15). The grid size of the
depth region was∆x = ∆z = 10 m. According to the 2-D version of stability condition (28) (where the
factor1/4 is replaced by3/8), this implies the use of a velocity increment smaller than3

8
2

1.610 ≈ 4.7 m/s.
We have chosen∆v = 4 m/s. Parts b and c of Figure 3 show two snapshots of this image wave propagation
for velocitiesv = 2.4 km/s andv = 3 km/s, the latter being the true medium velocity. We observe that the
reflector image in Figure 3c is remigrated to the correct depth of 550 m.

However, there are quite large regions of the remigrated image where the image is obscured by noise.
In fact, the noise is many orders of magnitude larger than theactual image. Therefore, to enable the
presentation of Figure 3, the error had to be zeroed out wherever it exceeds the amplitude of the reflector
image. In this way, one can see the borders of the regions thatare affected by the very large error.

What happened in this part of the image? Why is there so large numerical noise, although stability
condition (28) is satisfied? The reason is a violation of the stricter condition (27). Looking at the wrongly
migrated reflector image in Figure 3, we see that at the reflector image itself, the wavenumber content in
the horizontal direction is rather low. This means thatsin2 κx∆x

2 is a very small quantity in equation (27).
Therefore, the scheme (15) is stable as long as condition (28) is satisfied. At the tips of the migration
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Figure 3: Image wave propagation. Direct implementation. (a) Input data for the remigration example:
data after migration with a wrong migration velocity ofv0 = 2 km/s. (b) Remigrated image forv =
2.4 km/s. (c) Remigrated image forv = 3 km/s.

boundary effects (smiles), however, we have higher wavenumbers in the horizontal than in the vertical
direction. As commented before, this gives rise to a violation of condition (27). This causes the numerical
error.

The fact that the numerical error indeed originates at the tips of the boundary effect is illustrated in
Figure 4. It shows the image wave propagation at a very early stage for a migration velocity ofv =
2.04 km/s.

There is, however, a way to obtain a better remigration result with scheme (15). Figure 5 depicts the
results of an FD remigration using scheme (15) in reverse implementation. In other words, while Figure 3
represents the results of the FD scheme exactly in the way it is written in equation (15), the results in
Figure 5 where obtained by solving equation (15) forpn+1

k,l,m. In this way,pn+1
k,l,m is calculated at themth

level inz as a function ofpn+1
k,l,m+1 at the(m + 1)th level, together with the terms of stepn.

Why are the two results of Figures 3 and 5 are different, although they are obtained from implementa-
tions of the same FD scheme and are thus governed by the same stability conditions? The reason is that the
numerical error caused by the unstability affects the direct and reverse implementations in different ways.
Because of the factorz that multiplies the spatial difference terms in scheme (15), this error increases ex-
ponentially in the direct implementation, which is realized in the direction of increasingz. On the other
hand, it is damped in the reverse implementation, which is realized in the direction of decreasingz.
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Figure 4: Snapshot of image wave propagation with the direct implementation of scheme (15) atv =
2.04 km/s. The numerical error originates at the tips of the boundary effect.

As a final observation, let us comment on the pulse stretch that can be seen in both, Figures 3 and 5.
Note that the source pulse that represents the reflector image in Figure 5c is much longer than in Figure 5a.
This effect has two reasons. The first one is the conventionalpulse stretch due to depth migration, which
is proportional to the migration velocity (Tygel et al., 1994). Since the migration velocity has increased
from 2 km/s to 3 km/s, this implies a 1.5 times longer wavelet.However, the stretch that can be seen in
Figure 5 is much larger than that. The second reason that causes the additional stretch is the substitution of
V by v in the derivation of the image wave equation (12). This meansthat off the reflector, a slight error is
introduced into the kinematic behavior of the pulse. In effect, this causes the upper part of the pulse to be
moved to shallower depths than it should be, while at the sametime the lower part of the pulse is moved to
greater depths.

CONCLUSIONS

The image wave equation for depth remigration is a second-order partial differential equation that describes
the “propagation” of a migrated reflector image as a functionof a changing migration velocity (Hubral et al.,
1996b). In this paper, we have studied the consistency and stability of an FD scheme for this equation. The
theoretical stability condition obtained from the von Neumann criterion points towards general difficulties
of the process when remigrating data containing large wavenumbers in the horizontal directions. Numerical
tests have demonstrated that instabilities indeed arise insuch situations. They can, however, be controlled
by using an implementation of the FD scheme in the reverse vertical direction.

With the investigated FD schemes, reflector images can be remigrated only either to larger or to smaller
migration velocities. The scheme forward inv and forward inz allows only for an increase, the scheme
forward inv and backward inz only for a decrease of the migration velocity. Other FD schemes that may
be less restrictive are currently under investigation.

The remigrated images present an exaggerated pulse strech.This is a drawback of image wave remi-
gration as it degrades the vertical resolution of the remigrated image. The effect is inherent to the method
as it is introduced by the very image wave equation that describes the propagation. Further investigations
are necessary to evaluate whether this effect can be reducedby a modification of the image wave equation.
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Figure 5: Image wave propagation. Reverse implementation. (a) Inputdata for the remigration example:
data after migration with a wrong migration velocity ofv0 = 2 km/s. (b) Remigrated image forv =
2.4 km/s. (c) Remigrated image forv = 3 km/s.
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