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ABSTRACT

The image wave equation for depth remigration is a partifiéiintial equation that is similar to
the acoustic wave equation. In this work, we determine tabilily conditions that have to be met
when solving the image wave equation by finite differencd®e 3tability criterion exhibits a strong
wavenumber dependence. Where higher horizontal tharcabnavenumbers are present in the data
to be remigrated, stability may be difficult to achieve. Nuite tests demonstrate that the imple
mentational form of the chosen FD scheme can be essentibtanaesults with a limited numerica
error even in situations where stability cannot be theoadlli guaranteed.

INTRODUCTION

Seismic remigration is an imaging technique that envisalyesconstruction of an improved migrated
section for an updated macrovelocity model (e.g., one tpkiteral velocity variations into account) on
the basis of a previously migrated section as obtained wdkfarent initial macrovelocity model (e.g.,
one employing simple velocity laws where the migration canvery efficiently realized). If the two
macrovelocity models do not differ too much, one generadlyscthe imaging procedure that corrects the
image a “residual migration” (Rothman et al., 1985). Whegaificant differences between both models
are allowed, the process is referred to as remigration (dwdiral., 1996a). In the seismic literature, it is
also known as velocity continuation (Fomel, 1994).

The sequence of images of a certain reflector as subsequeigfitgited with varying migration ve-
locities creates an impression of a propagating wavefrohts “propagating wavefront” was termed an
“image wave” by Hubral et al. (1996b). The propagation algdahowever, is not time as is the case for
conventional physical waves as described, e.g., by thesticavave equation, but the migration velocity.

For homogeneous media, Hubral et al. (1996b) and Tygel é1988) have studied the kinematic be-
haviour of these image waves as a function of the constamtiiog velocity. By treating them in a similar
way as conventional acoustic waves, they derived partisdréntial equations that describe the “propa-
gation” of the reflector image as a function of migration a#lp for both, time and depth remigration.
Therefore, these partial differential equations have beened “image wave equations.” Both image wave
equations for time and depth remigration are equationdaiita the acoustic wave equation (Fomel, 1994;
Hubral et al., 1996b).

The image wave equation for time remigration has already Hesoretically studied and implemented
(Jaya et al., 1996; Jaya, 1997), as well as successfullyeapia real data from ground-penetrating radar
(Jaya, 1997; Jaya et al., 1999). The topic of this paper isntlage wave equation for depth remigration.
Below, we will briefly review its derivation in 3-D, choose &D scheme for its implementation, and study
its consistency, stability, and convergence. These studhasist of a theoretical investigation as well as
numerical testing.
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DERIVATION OF THE 3-D IMAGE WAVE EQUATION

As mentioned in the Introduction, the derivation of the imagave equation is based on the kinematic
behaviour of the image wavefront, i.e., the reflector imag@ifferent migration velocities. Since it has
been previously derived by Fomel (1994) and Hubral et al9¢b) for a two-dimensional medium, we
briefly sketch the derivation in three dimensions.

We consider a reflector image, to be given that was obtained from a migration of zero-ofttt
using an incorrect migration velocity, say,. The aim is to construct froriiy the correct reflector image
3} that would have been obtained had the data been migrateglthsirtorrect velocity.

In order to quantitatively understand the kinematics of “ineage wave propagation,” the input re-
flector imageY, is considered as a set of points. Each of these points in the input velocity model
is kinematically equivalent to a surface in the output vi(jomodel, i.e., both generate the same zero-
offset reflection-time surface. The envelope of these edgit surfaces provides the new reflector image,
very much in the same way as a physical wavefront can be thaigis the envelope of Huygens waves
that originate at secondary sources along the previousfreente Therefore, these equivalent surfaces are
referred to as “Huygens image waves” (Hubral et al., 1996b).

Let us now consider a zero-offset experiment with coincdidgmrces and receivers at positions de-
scribed by coordinates andn on the planar earth surface. Then each of these Huygens weagess is
the surface that in the output velocity modehas the same traveltime surfa€, ) as the given point
Py = (x0, yo, 20) in the input velocity moded,. The traveltime of poinf is

2 St =20+ (-0 + 4. W

Vo

t(€,m)

The Huygens image wave can be constructed as the enveldpeisbthrons of all points on this traveltime
surface. For a given pair of coordinatesndr, the corresponding isochron is the set of poiits: (x, y, 2)
that satisfies

%\/(g—z)2+(77*y)2+22:t(faﬁ)- @)

Since the traveltime(¢, n) in equations (1) and (2) is, by definition, the same, the ebteof isochrons
to this traveltime surface can be described by the function
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parameterized by the coordinates of the zero-offset dateespandr. To construct the desired Huygens
image wave, these parameters must be eliminated by theopmvebnditions

oF OF
— = d — =0. 4
o€ 0 an an 0 (4)
These conditions yield
fo T g =T here =y 5)
 1—-m? . m=vr%

Substitution of these results in equation (3) and solutar:fyields the following expression for the 3-D
Huygens image wave

= W 2+ ﬁ [(z — 20)2 + (y — %0)?] - 6)

Figure 1 shows a 2-D sketch of the ensemble of isochronsitesdry equation (3). The envelope formed
by all these isochrons is the Huygens image wave describedjbation (6). In other words, a reflector
of the shape of this envelope would, in a medium with velogitgreate the same zero-offset traveltime
surface as poinb, in a medium with velocity.

Solution of equation (6) for yields an equation of the form= V(z, y, z), whereV is the eikonal of the
image wave. For simplicity, we will work with the normalizetkonal M (z,y, z) = V(z, y, z)/vo, which
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Figure 1: 2-D sketch of the ensemble of isochrons of all points on theeltime surface in equation (1).
Their envelope is the Huygens image wave described by enugd). The sketch represents a situation
wherev > vy.

is obtained from solving equation (6) fer = v/v, instead ofv. To find a differential equation for this
eikonal, the corresponding expression has to be diffextattiwith respect te, y, andz and the derivatives
must be combined in such a way that yo, andzg are eliminated. The resulting differential equation is the
eikonal equation for the image wave propagation. Howewecesequation (6) is a quadratic equation in
m, it is easier to substitute directly = M(x, y, z) in that equation and differentiate implicitely. Denoting
the partial derivatives oM by M., M., and M., respectively, we can write

M2 T — o
0 = MIX+7W7 (78)
_ My —yo
0 = MyX+717M2, (7b)
1 = M.X, (7¢)
where
0z z M3 9 9
X—a—mm:M—M+m[($—xo)+(?J—yo)}- (8)
Here we have used that, because of equation (6)with M,
\/’22 P (& — 20)2 + (y — 90)?] = = . ©)
01— M2 M

Now, we solve equations (7a) and (7b) for xy andy — yg, respectively, and (7c) fot’. Substitution of
the results in equation (8) results then in the desired ineéigmal equation

Mi+M§+M§—%MZ:O. (10)

Remembering that is obtained fromM by a simple multiplication with the constang, we see that also
V obeys the same image eikonal equation (10).
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The last step is to find a second-order differential equdtorthe “image wavefieldp(x, y, z) such
that a substitution of the ray ansatz

p(x,y,z) :po(m,y,z)f(v—V(ac,y,z)) ) (11)

yields the above eikonal equation. Hesgjs the amplitude of the migrated reflector image, i.e., thegm
wave, andf(v) is the source wavelet as a function of velocity. The simpiéferential equation that
fulfills the above requirement is

v

Note that to arrive at the eikonal equation (10) upon suligtit of ray ansatz (11) in equation (12), one
needs to substitute by V(z,y, z). This substitution is, of course, valid on the image waveffto = V
itself. However, if the wavelef in equation (11) is of nonzero duration, points off the wavef are also
involved in the propagation of the image. As we will see intivenerical example, this leads to a stretch
of the wavelet in the propagating image.

FINITE DIFFERENCES

We consider a grid of depth points and a discretized velariig. The image wavefield at a given grid
point(z,y, z) = (kAx,lAy, mAz), as calculated for a certain migration velocity= nAv, is denoted by
PR, - On this grid, we approximate the derivatives in equatid) (dy finite differences. For the spatial
derivatives, we use fourth-order approximations, i.e.,

1
Pez ™ A2 [—Pitotm — Phoim + 16081 1m + PR11m) — 30D% 1) (13)

and corresponding expressions fgy, andp... For the mixed derivative, we choose a scheme that is
forward inv andz, given by

1 1 1
Pos % o [Pl s = Pt = Pt + Phim] - -

Using these approximations for the derivatives in the imagee equation (12) and isolati I}nﬂ,

we find the following FD scheme,

pn+1 _ 2mAvAZ 7p;€l+2,l,m - pZ—Q,l,m + 16(pz+1,l,m +p2—1,l,m) - 30p;€l,l,m
kol m1 120, (Ax)?

+ _pz,l-ﬁ—Q,m - pz,l—Q,m + 16(p;€l,l+1,m + pz,l—l,m) - Sop;cl,l,m
(Ay)?

+ 7p;€l,l,m+2 7p}rcl,l,m—2 + 16(p;€l,l,m+1 +p2,l,m—1) - 30p;€l,l,m
(Az)?

1
+pZ,IJr,m +pz,l,nL+1 - pz,l,nL . (15)

Here,v,, andz,, are the discretized values at the present levelpj,e= vg + nAv andz,,, = mAz.

The initial condition for the propagation of the image wasgedf course, the original migrated section
for the velocityyy. Since the geophysical problem provides no explicit bomndanditions, we use that
the field outside the given target zone of the input secti@ulshbe zero.

We observe from equation (15) that the computation of theecﬁaldpzj}n“ at stepn + 1 at gridpoint
(k,l,m + 1) requires the knowledge of the Waveﬁeim’}n at the same step + 1 at gridpoint(k,,m),
in addition to the wavefield at the surrounding gridpointshegt previous stem. This fact makes the
FD scheme an implicit one. However, its computation woulguiee the solution of a linear system of
equations in each step. Such a procedure would, of coursexgemnsive to realize, particularly for large
migrated sections.

For this reason, we prefer to treat equation (15) as an éxptiheme. This is ho major problem as

p}jﬁn is just the value of the image wavefield at the neighborindpmpint and has been calculated in the
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anterior step ire. However, this way of procedure requires an additional ey condition to initialize
the loop inz. We choose again a homogeneous boundary condition.

In order to actually use the FD scheme (15), its consistendysgability need to be investigated, so as
to find conditions for the step siz&v as a function of the medium parameters and the grid intetyals
Ay, andAz. This is done in the next sections.

CONSISTENCY

A finite difference scheme is consistent with the correspungartial differential equation, if for any
smooth function(z, z, v), the difference between the differential operafarand the discretized operator,
Dﬁ;,A%AZ, applied tog, tends to zero whethz, Ay, Az, andAv tend to zero (Strikwerda, 1989). In
symbols, the scheme is required to guarantee that

Do — DAY ayazd — 0, for Az, Ay, Az, Av — 0. (16)

We now apply this concept to the image wave equation (12) enBD scheme (15). The differential
operator applied to a functiahis

D= Gu + Gy + G2+~ Puz - (17)

Application of the discretized operator according to scedfb) to the same functioa yields, under
consideration of the truncation errors of the approximei¢13) and (14), after some straightforward
algebra,

DRV Ayaz® = Gae + O(AZ?) + ¢y + O(AY*) + 6. + O(AZ")
+;’—” (hos + O(A2) + O(AV)) . (18)

m

The difference of equations (17) and (18) yields

D¢ — DAY .0 = O(Az*) + O(Ay*) + O(Az) + O(Av) . (19)
We conclude that

Do — DﬁZ,A%AZ(ﬁ — 0, for Az, Ay,Az,Av — 0. (20)

i.e., the FD scheme (15) is unconditionally consistent Withimage wave equation (12).

STABILITY

According to Lax’s theorem (Thomas, 1995), an FD schemerisement, i.e., its solutions converges to
the solution of the original differential equation, if ité®nsistent and stable. To determine the conditions
under which the FD scheme (15) is stable, we apply the von Meurariterion (Strikwerda, 1989; Thomas,
1995), i.e., we substitute the wavefiglfl, ,, in equation (15) by a generic componentof its discrete feouri
transform. This reads

n n _tkksAx _ilk, Ay _imk.Az
Pram =§"€ e"vYe , (21)

wherek, Ky, andk, are the components of the wavenumber vector inthe-, andz-directions. Ac-
cording to the von Neumann condition, an FD scheme is sthpjg,i,, as expressed in equation (21) does
not increase for increasing This is guaranteed by&the modulus of which satisfigg| < 1.

From substitution of the discrete Fourier transform (21¢guation (15) and solution of the resulting
equation forg, we find the expression

¢ = 1 16z,, AvAz sin? Ky Ax 34
T (emAr 1) | 120, (A2)2 0T T 2 o
162, AvAz | 5 KyAy . o kgAY

20, (Ay )2 sin” — 3+ sin 5

162z, AvAz . 5 KAz . g Kz AZ
5in® —— 1. 22
+ 120, (A2)2 sin” —5 [3 + sin 5 } } + (22)

5 K$A$:|
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Upon denoting the expression within curly brackets\hyequation (22) reduces to

A A A cos £=8z
et ( 2) Z(?sin—“z“) =

We observe thag is not defined ifsin ”ZTAZ = 0. This is not a real restriction to the stability of scheme
(15) since it is not difficult to see from equation (23) that

=1. (24)

lim
sin(k,Az/2)—0

This means that scheme (15) will be stable for wavenumbgfsr whichsin(x.Az/2) = 0 as long as it
is stable for all wavenumbers in its vicinity.
Application of the condition¢| < 1 to equation (23) provides the inequation

1

A2|— 2 | —A<o. (25)
: KAz —
[4 Sln2 9

Since the coefficient of? in equation (25) is always positive, we conclude thamust satisfy the condition

2A
0 < A < 4sin? % (26)
Thus, the stability condition for the FD scheme (15) reads
Zm AvAz | 5 KAz . o kgAx
0 < % INOE sin > {3 + sin —}
zm AVAZ 5 KyAy o KyAy
Zm 3 2y=J
—|—30n (Ay)2 sin 5 —+ sin 5
m AvA A . A . A
+§Tn (sz)j sin? & 5 : {3 + sin® %] < sin® F=2% (27)

Equation (27) represents the general stability conditioriie FD scheme (15). It is, however, hard to
appreciate its meaning. Let us thus investigate it in motailde

The case\ = 0 is not really meaningful since this requirga?® £=22 — gin? 2Y — gjn? 8282 —
which can only be satisfied for certain selected values ofvidneenumbers,;, x,, andsx..

Note that equation (27) must be satisfied for all wavenumbgrs,, andx . involved in the remigration
problem to be solved. This can be a difficult condition to mfédte simplest situation is the case where
wavenumbers and grid increments are of the same size, saichth= Ay = Az andr, Az =~ k,Ay =~
#.Az. In this situation, the above condition can be dividedsy =22 to yield

4Zma\xﬁ 4Zma\xﬁ 4Zma\x& <1 — Av < l Umin
3Umin Az 3Umin Az 3Umin Az Zmax

Az

0< (28)

)

where we have used that+ sin? "”"ZTAZ < 4. Moreover, we have replaceg, andv,, by their maximum
and minimum values;max anduvmin, respectively.

If different wavenumbers are involved in different direets, the presence of the texin? ”ZTAZ onthe
right-hand side of equation (27) has an important consexpufor the stability of the FD scheme (15). If
there are vertical wavenumbets present in the data for which this term is very close to zeraijli be
very hard to make the scheme stable. Very small valugswomight be needed to fulfill the requirements.
We will further comment on this observation below when désing the numerical examples.

Finally, let us comment on the requiremént> 0. It means that for possitivA z, only positive values
for Av are admitted. In other words, scheme (t&j onlybe used to propagate a reflector image from
smaller to larger velocities. For the inverse directionifeietent FD scheme is needed. One can use, e.g., a
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Figure 2: Earth model for the remigration example. Also shown is a kawii zero-offset rays.

scheme that is forward in and backward ir, i.e., one which represents the mixed derivative in equatio
(12) as

1 1 L
Doz = NN PZIm - PZImq —pZ,l,m +pZ,l,m_1 . (29)

The stability condition for the corresponding FD schemeiigig by equation (27) multiplied by minus
one. Therefore, this scheme requires a negdivei.e., it allows only for image propagation from larger
to smaller velocities. Other FD schemes are currently uimdesstigation.

NUMERICAL TESTS

In this section, we demonstrate the numerical realizatfom @migration by means of the application of
FD scheme (15). Because of computational limitations, tnaerical testing had to be restricted to the
corresponding 2-D scheme, which is obtained from equafiéh i§y eliminating the second line (i.e., the
y-derivative). For the remigration, we used migrated davanfia simple earth model (see Figure 2). It
consists of two homogeneous halfspaces, separated by zohtali reflector at a depth of 550 m. The
velocities above and below the reflector are= 3 km/s andec; = 3.5 km/s. The simulated seismic survey
is a zero-offset experiment with 401 source-receiver péiated at every 10 m between -2000 m and
2000 m along the:-axis.

The input data to the remigration where generated by miggdltie so-obtained zero-offset data to depth

with a wrong migration velocity of, = 2 km/s. The result of this depth migration is depicted in F&3a.
As we can see, the reflector is imaged at a wrong depth of alf@ut3 because of the wrong migration
velocity. Note that the target region for migration was aroguite large so as to include all boundary
effects from migration but to eliminate additional boundeaflections from the image wave propagation.
For the same reason, the depth axis was extendgghfc= 1.6 km.

This wrongly migrated depth section was then remigratedgusD scheme (15). The grid size of the
depth region wag\z = Az = 10 m. According to the 2-D version of stability condition (28)H{ere the
factor1/4 is replaced by /8), this implies the use of a velocity increment smaller t@a&—lo ~ 4.7mls.
We have choseAwv = 4 m/s. Parts b and ¢ of Figure 3 show two snapshots of this image propagation
for velocitiesv = 2.4 km/s andv = 3 km/s, the latter being the true medium velocity. We obsehe¢ the
reflector image in Figure 3c is remigrated to the correctldeps50 m.

However, there are quite large regions of the remigratedjvehere the image is obscured by noise.
In fact, the noise is many orders of magnitude larger thanatttaeal image. Therefore, to enable the
presentation of Figure 3, the error had to be zeroed out whereexceeds the amplitude of the reflector
image. In this way, one can see the borders of the regionateaiffected by the very large error.

What happened in this part of the image? Why is there so langeenical noise, although stability
condition (28) is satisfied? The reason is a violation of thieter condition (27). Looking at the wrongly
migrated reflector image in Figure 3, we see that at the refléttage itself, the wavenumber content in
the horizontal direction is rather low. This means tsiat "”"ITM is a very small quantity in equation (27).
Therefore, the scheme (15) is stable as long as conditionig¢2&atisfied. At the tips of the migration
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Figure 3: Image wave propagation. Direct implementation. (a) In@tador the remigration example:
data after migration with a wrong migration velocity af = 2 km/s. (b) Remigrated image far =
2.4 km/s. (c) Remigrated image for= 3 km/s.

boundary effects (smiles), however, we have higher wavémusin the horizontal than in the vertical
direction. As commented before, this gives rise to a violatf condition (27). This causes the numerical
error.

The fact that the numerical error indeed originates at the oif the boundary effect is illustrated in
Figure 4. It shows the image wave propagation at a very egalyesfor a migration velocity of =
2.04 km/s.

There is, however, a way to obtain a better remigration tesitth scheme (15). Figure 5 depicts the
results of an FD remigration using scheme (15) in reverséementation. In other words, while Figure 3
represents the results of the FD scheme exactly in the wayitritten in equation (15), the results in
Figure 5 where obtained by solving equation (15)]fgﬁn. In this Way,pz,ﬁn is calculated at thenth

level in z as a function opy ;| ., at the(m + 1)th level, together with the terms of step
Why are the two results of Figures 3 and 5 are different, alinahey are obtained from implementa-
tions of the same FD scheme and are thus governed by the sailgystonditions? The reason is that the
numerical error caused by the unstability affects the dized reverse implementations in different ways.
Because of the factar that multiplies the spatial difference terms in scheme (83 error increases ex-
ponentially in the direct implementation, which is reatlza the direction of increasing. On the other

hand, it is damped in the reverse implementation, whichalzed in the direction of decreasing
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Figure 4: Snapshot of image wave propagation with the direct impleatem of scheme (15) at =
2.04 km/s. The numerical error originates at the tips of the baumpéffect.

As a final observation, let us comment on the pulse stretdhcdrabe seen in both, Figures 3 and 5.
Note that the source pulse that represents the reflectoeimadggure 5c¢ is much longer than in Figure 5a.
This effect has two reasons. The first one is the conventjuuiak stretch due to depth migration, which
is proportional to the migration velocity (Tygel et al., ¥99 Since the migration velocity has increased
from 2 km/s to 3 km/s, this implies a 1.5 times longer waveldbwever, the stretch that can be seen in
Figure 5 is much larger than that. The second reason thats#us additional stretch is the substitution of
VY by v in the derivation of the image wave equation (12). This mehatoff the reflector, a slight error is
introduced into the kinematic behavior of the pulse. In@fféhis causes the upper part of the pulse to be
moved to shallower depths than it should be, while at the damesthe lower part of the pulse is moved to
greater depths.

CONCLUSIONS

The image wave equation for depth remigration is a secoddrqartial differential equation that describes
the “propagation” of a migrated reflectorimage as a funatitemchanging migration velocity (Hubral et al.,
1996b). In this paper, we have studied the consistency ahdigt of an FD scheme for this equation. The
theoretical stability condition obtained from the von Nearm criterion points towards general difficulties
of the process when remigrating data containing large wawders in the horizontal directions. Numerical
tests have demonstrated that instabilities indeed arisedh situations. They can, however, be controlled
by using an implementation of the FD scheme in the revergesaédirection.

With the investigated FD schemes, reflector images can bigrated only either to larger or to smaller
migration velocities. The scheme forwarddrand forward inz allows only for an increase, the scheme
forward inv and backward i only for a decrease of the migration velocity. Other FD scegthat may
be less restrictive are currently under investigation.

The remigrated images present an exaggerated pulse sirbishis a drawback of image wave remi-
gration as it degrades the vertical resolution of the reategt image. The effect is inherent to the method
as it is introduced by the very image wave equation that dessthe propagation. Further investigations
are necessary to evaluate whether this effect can be retty@echodification of the image wave equation.
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Figure 5: Image wave propagation. Reverse implementation. (a) ldatat for the remigration example:
data after migration with a wrong migration velocity af = 2 km/s. (b) Remigrated image faor =
2.4 km/s. (c) Remigrated image for= 3 km/s.
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