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ABSTRACT

The normal-incidence elastic compressional reflection coefficient admits an exact, simple expression
in terms of the acoustic impedance, namely, the product of the P-wave velocity and density, at both
sides of the interface. With slight modifications a similar expression can, also exactly, express the
oblique-incidence acoustic reflection coefficient. A severe limitation on the use of the above two
reflection coefficients in analyzing seismic reflection datais that they provide no information on shear-
wave velocities that refer to the interface. In this paper, we address the natural question of whether
a suitable impedance concept can be introduced for which arbitrary P-P reflection coefficients can
be expressed in an analogous form as their counterpart acoustic ones. We formulate this problem
by considering the mathematical conditions to be satisfied by such a general impedance function.
Although no closed-form exact solution exists, our analysis provides a general framework for which,
under suitable restrictions of the medium parameters, possible impedance functions can be derived.
In particular, the well-established concept of elastic impedance and the recently introduced concept of
reflection impedance can be better understood. Concerning these two impedances, we examine their
potential for modelling and for the estimation of the AVO indicators of intercept and gradient. For
typical synthetical examples, we show that the reflection impedance formulation provides consistently
better results than those obtained using the elastic impedance.

INTRODUCTION

Estimation of reflection coefficients from primary reflections is one of the key objectives of seismic
amplitude analysis. In elastic media, reflection coefficients have a rather complicated dependence to the
medium parameters (P- and S- wave velocities and density) atboth sides of the interface. As a conse-
quence, even if the reflection coefficients are correctly estimated from the seismic data, inversion of the
medium parameters using the full formulas is to avoided. To overcome these difficulties, geophysicists
have tried to express reflection coefficients in terms of quantities that, on one side, can be estimated from
the data and, on the other hand, provide a better access to themedium parameters. Following the simple
cases of normal-incidence in elastic media or generally oblique incidence in acoustic media, the reflection
coefficient can be easily expressed by simple formulas involving the acoustic impedance, namely the prod-
uct between the P-wave velocity and the density. The acoustic impedance fulfills both previously indicated
requirements, namely, it carries direct information aboutthe medium parameters and, moreover, provides
a simple expression for the reflection coefficient. As shown below, the attractive simplicity of the above
expressions cannot, unfortunately, be fully extended to elastic oblique-incidence. Nevertheless, under suit-
able restrictions of the medium parameters, convenient impedance definitions can be introduced to provide
useful approximations of the elastic reflection coefficients.

The first of these impedance concepts is that ofelastic impedanceas introduced by Connolly (1999),
under the assumption of a constant ratio,K = β2/α2, between the square of the S- and P-wave velocities
of the media. A discussion on the formulation and practical use of the elastic impedance concept is given
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in Whitcombe (2002). A second impedance concept, calledreflection impedance, has been recently intro-
duced in Santos et al. (2002). It is based on the alternative condition that the shear-wave velocity is related
to the density asρ = bβγ . In other words, a ”Gardner’s type” law, generally considered for compressional
velocities, is also assumed for shear velocities.

In this work, we analyze the problem of finding an impedance function for the general elastic P-P
reflection coefficient. In the framework of the analysis, we review the concepts of elastic and reflection
impedance available in the literature. We finally consider the potential of the two impedance concepts for
modelling the reflection coefficient, as well as on the extraction of AVO indicators such as the intercept and
gradient. Based on simple, but typical, synthetic experiments, we conclude that the reflection impedance
is able to more accurately perform both tasks, as compared tothe elastic impedance.

SIMPLE CASES

We start by considering the simple cases of normal incidencein elastic/acoustic media and oblique-
incidence in acoustic media, in which the reflection coefficient has an attractive simple expression in terms
of an impedance function.

Normal incidence in elastic/acoustic media

The compressional wave reflection coefficient for normal incidence is given by

R0(ρi, αi) =
ρ2α2 − ρ1α1

ρ2α2 + ρ1α1
, (1)

whereρi andαi denote the density and P-velocity, respectively, at the incident side(i = 1) and at the
opposite side(i = 2) of the reflecting interface. Note that the normal-incidencereflection coefficient
given by equation (1) is independent of the S-wave velocities of the two media. Introducing theacoustic
impedance

AI = ρ α , (2)

namely the product of the density,ρ, with the P-wave velocity,α, the reflection coefficient,R0, can be
recast in the simple form

R0(ρi, αi) =
AI2 − AI1

AI2 + AI1
. (3)

Oblique incidence in acoustic media

In the case of non-normal incidence in acoustic media (S-wave velocityβ = 0), the corresponding
reflection coefficient is given by

Ra(ρi, αi, θ) =
AI2 sec θ2 − AI1 sec θ1

AI2 sec θ2 + AI1 sec θ1
, (4)

whereAIi is the acoustic impedance as in equation (3), together with the additional requirements (Snell’s
law)

θ1 = θ and
sin θ1

α1
=

sin θ2

α2
. (5)

Defining theangular acoustic impedance

AI(θ) = ρα sec θ = AI sec θ , (6)

the expression for the oblique-incidence acoustic reflection coefficient is given by an expression similar to
equation (3), namely,

Ra(ρi, αi, θ) =
AI2(θ2) − AI1(θ1)

AI2(θ2) + AI1(θ1)
. (7)

Note that
AI(θ = 0) = AI and Ra(ρi, αi, θ = 0) = R(ρi, αi) , (8)

as expected.
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GENERAL CASE

For the general oblique incidence in elastic media (S-wave velocity β 6= 0), the expression for the
P-P reflection coefficient is also the ratio between two quantities,

R =
P [ρi, αi, βi, θ]

Q[ρi, αi, βi, θ]
. (9)

However, the numerator,P , and denominator,Q, do not have the simple form as the previous ones (see,
e.g., Aki and Richards (1980)).

As seen by the recent literature (see, e.g., Connolly (1999); Mallick (2001)), it makes sense to look
for a quantity (impedance)I ≡ I(ρ, α, β, θ) for which the reflection coefficient can be given, at least
approximately, by an expression of the form

R =
I2 − I1

I2 + I1
. (10)

To examine this interesting question, we find useful to introduce the concept of thereflectivity function, as
defined below.

The reflectivity function

Roughly speaking, the reflectivity function is a measure of the variation of the reflection coefficient
as we move along a ray within a layered media. To quantitatively express this variation, we consider that
the elastic characteristics,ρ, α andβ, as well as the incident angle,θ, are functions of a single variable,
σ, that parameterize the ray. This variable can be, e.g., depth or time. In other words, we consider, along
the ray, the vector quantityη(σ) = (ρ(σ), α(σ), β(σ), θ(σ)). With this understanding, we can recast the
reflection coefficient, as given by equation (9), in the form

R ≡ R(σ, ∆σ) =
P [η(σ), η(σ + ∆σ)]

Q[η(σ), η(σ + ∆σ)]
. (11)

where∆σ is the parameter increment, chosen to be sufficiently small.In the above formulaσ andσ + ∆σ
replace indices 1 and 2, respectively. For example,ρ(σ) replacesρ1, α(σ + ∆σ) replacesα2, etc.

The P-Pelastic reflectivityfunctionR can be defined as the limit,

R(σ) = lim
∆σ→0

R(σ, ∆σ)

∆σ
. (12)

Using theexactformula for the P-P elastic coefficient (see Aki and Richards(1980)), we readily obtain the
expression

R(σ) =
1

2

[
1 − 4β2p2

]ρ′
ρ

+
1

2

[ 1

1 − α2p2

]α′

α
−
[
4β2p2

]β′

β
, (13)

where the prime denotes derivative with respect to toσ andp is the ray parameter given by Snell’s law

p =
sin θ(σ)

α(σ)
=

sin θ(σ + ∆σ)

α(σ + ∆σ)
. (14)

Under the assumption of a flat-layered medium, the ray parameter, is assumed to be constant along the ray.
Recall, however, that the angle,θ, is dependent on the parameterσ.

Using the reflectivity function definition (12), and approximating the derivatives in equation (13)
by their corresponding discrete differences, i.e.,f ′ ≈ ∆f/∆σ, we arrive at the well-known first-order
approximation forR (Aki and Richards (1980)),

R ≈ R(σ) ∆σ ≈ 1

2

[
1 − 4

β2

α2
sin2 θ

]∆ρ

ρ
+

1

2

[
sec2 θ

]∆α

α
−
[
4
β2

α2
sin2 θ

]∆β

β
. (15)
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The attributes intercept and gradient

For sufficiently small incidence angles,tan2 θ ≈ sin2 θ, and then we may rewrite equation (15) as
the well-known Intercept and Gradient formula given in Shuey (1985), namely

R ≈ A + B sin2 θ , (16)

where

A =
1

2

[∆ρ

ρ
+

∆α

α

]
, andB =

1

2

∆α

α
− 2

β2

α2

[∆ρ

ρ
+ 2

∆β

β

]
. (17)

The impedance equation

The problem of finding a functionI satisfying equation (10)exactlyis equivalent to that of determin-
ing a solution of the differential equation resulting from the computation of the limit in (12), assuming the
desired form (10):

R(σ) = lim
∆σ→0

[
1

∆σ

I(σ + ∆σ) − I(σ)

I(σ + ∆σ) + I(σ)

]
=

1

2

I ′(σ)

I(σ)
. (18)

In other words, our original problem was reduced to the existence of solutions of the differential equation

I ′(σ)

I(σ)
=
[
1 − 4β2p2

]ρ′
ρ

+
[ 1

1 − α2p2

]α′

α
−
[
8β2p2

]β′

β
. (19)

ELASTIC IMPEDANCE

The Elastic Impedancefunction EI proposed by Connolly (1999) is obtained by equalling equa-
tion (15) to∆EI/2EI (the discrete version ofEI ′/2EI) and applying difference calculus, with the addi-
tional assumption thatθ and the ratioK = β2/α2 are constant. The same result can be found directly from
equation (19), resulting in the following differential equation for the elastic impedance functionEI,

EI ′

EI
=
[
1 − 4K sin2 θ

]ρ′
ρ

+
[
sec2 θ

]α′

α
−
[
8K sin2 θ

]β′

β
. (20)

The general solution for the above equation, under the mentioned assumptions, is given by

EI = EI0 ρ1 − 4K sin2 θ αsec2 θ β−8K sin2 θ , (21)

whereEI0 is a normalization constant (see Whitcombe (2002)).

REFLECTION IMPEDANCE

We are interested on the existence of a general solution of equation (19), i.e., if there is aReflection
ImpedancefunctionRI, such that

RI ′

RI
=
[
1 − 4β2p2

]ρ′
ρ

+
[ 1

1 − α2p2

]α′

α
−
[
8β2p2

]β′

β
, (22)

for all possible choices ofα, β andρ. Clearly, the solution is not unique, since any multiple of it is also a
solution.

As shown in Appendix A, equation (22) admits a closed-form solution only if β has a functional
dependence onρ, i.e.,β ≡ β(ρ). Under this assumption, the solution forRI is given by

RI = RI0
ρ α√

1 − α2p2
exp

{
−4p2

[
β2 +

∫
β2

ρ
dρ

]}
, (23)

whereRI0 is a constant. A particularly simple formula is obtained by assuming a relationship of the form

ρ = b βγ , or equivalently,
ρ′

ρ
= γ

β′

β
, (24)



280 Annual WIT report 2002

whereb is some constant of proportionality andγ is a constant. In this case, solution (23) reduces to

RI = RI0
ρ α√

1 − α2p2
·
{

exp{−2[2 + γ]β2p2} , β′ 6= 0

ρ−4β2p2
, β′ = 0

. (25)

REDUCTION TO THE SIMPLE CASES

In the case of a normal incidence, both elastic (EI) and the reflection (RI) impedance functions
reduce to a multiple of the acoustic impedance (AI), so the approximation for the reflection coefficient
remains exact. Indeed,

lim
θ→0

EI2 − EI1

EI2 + EI1
= lim

p→0

RI2 − RI1

RI2 + RI1
=

AI2 − AI1

AI2 + AI1
= R0 . (26)

However, for the case of non-normal incidence in acoustic media (β = 0), the elastic impedance approxi-
mation forR does not reduceto the exact one given by equation (7), as opposite to the reflection impedance
approximation, where the exact expression is maintained. More explicitly,

lim
β→0

EI2 − EI1

EI2 + EI1
=

AI2 αtan2 θ
2 − AI1 αtan2 θ

1

AI2 αtan2 θ
2 + AI1 αtan2 θ

1

6= Ra , (27)

and

lim
β→0

RI2 − RI1

RI2 + RI1
=

AI2 sec θ2 − AI1 sec θ1

AI2 sec θ2 + AI1 sec θ1
= Ra . (28)

APPLICATIONS

In this session, we use simple, but typical synthetic examples to examine the approximation for
the P-P elastic reflection coefficient in terms of the elasticand reflection impedances. We discuss the
approximations both for modelling and inversion purposes.

Modelling

In order to analyse the accuracy ofEI andRI functions presented above, we consider a simple two-
layer model in three different situations: weak, medium andlarge contrasts of the parameters. Table 1
summarizes the data.

We compare the exact reflection coefficient with its first-order approximation (see equation (15), as
well as the impedance-type approximations of equation (10)under the use of the elastic impedance of
equation (21) and reflection impedance of equation (25), respectively.

Model Medium α [km/s] β [km/s] ρ [g/cm3]

Layer 1 3.20 1.50 2.30
Weak Layer 2 3.00 1.40 2.20

Contrast 0.06 0.06 0.04

Layer 1 3.50 1.80 2.50
Medium Layer 2 3.00 1.40 2.20

Contrast 0.15 0.25 0.13

Layer 1 4.50 2.10 2.70
Large Layer 2 3.00 1.40 2.20

Contrast 0.40 0.40 0.20

Table 1: P- and S-wave velocities and densities for the numerical experiments.
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For the elastic impedance approximation we have chosen, as usual in the literature,

K =
(β1/α1)

2 + (β2/α2)
2

2
. (29)

Observe that in the large-constrast model the ratioβ/α was made constant (K = 0.218) in order to offer
the best conditions for the elastic impedance approximation. For the reflection impedance approximation
(taking into account thatβ1 6= β2) we set

γ =
ln(ρ2/ρ1)

ln(β2/β1)
. (30)

The values for the constantsEI0 andRI0 are irrelevant: any choice will produce the same value for the
approximation ofR.

For each situation we consider the complete range of reflection angles (0 ≤ θ ≤ 90o). This includes,
of course, both pre- and post-critical reflections. The resulting approximations for the reflection coefficient
are shown in Figures 1–3.

From the experiments, we conclude that the reflection impedance approximation has the best perfor-
mance in all cases. In the case of post-critical reflections,the results are far better: all other approximations
do not follow the correct shape of the exact curve. Therefore, there is a significant gain in accuracy provided
by the reflection impedance approximation, as compared to the one that uses the elastic impedance.

10 20 30 40 50 60 70 80 90

−1

−0.5

0

Incidence Angle (degrees)

P−
P 

Re
fle

cti
on

 C
oe

ffic
ien

t

First Order
Elastic Impedance
Reflection Impedance
Exact

10 20 30 40 50 60 70 80 90
−1

−0.5

0

0.5

1

Incidence Angle (degrees)

P−
P 

Re
fle

cti
on

 C
oe

ffic
ien

t

First Order
Elastic Impedance
Reflection Impedance
Exact

Figure 1: P-P reflection coefficient for the weak-contrast model givenin Table 1: without (top) and with
(bottom) post-critical reflections.
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Figure 2: P-P reflection coefficient for the medium-contrast model given in Table 1: without (top) and
with (bottom) post-critical reflections.
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Figure 3: P-P reflection coefficient for the large-contrast model given in Table 1: without (top) and with
(bottom) post-critical reflections.

AVO Inversion

We have also compared the performance of the three differentapproximations ofR for the estimation
of the intercept,A, and gradient,B, attributes, according to equation (16). The model parameters are the
same as in the previous experiments. We have added a white noise of ratio 1:3 to the exact reflection
coefficient’s curve and then apply least-squares techniques to recoverA andB. The details of the used
numerical procedure are shown in Appendix B.

Tables 2 and 3 summarize the inversion results, where, again, we can observe that the inverted
attributes using the reflection impedance approximation are of better accuracy than all the others. In Fig-
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ures 4–6 we show the approximation forR using the inverted parameters and the corresponding approxi-
mation formulas.

Contrast Reflection Exact Linear EI RI

Weak Noncritical – 0.0544 0.0360 0.0723 – 0.0345
Critical 0.0544 0.1353 0.1111 0.0442

Medium Noncritical – 0.1401 – 0.0549 – 0.0398 – 0.1120
Critical 0.1401 0.3141 0.2830 0.1372

Large Noncritical – 0.2960 – 0.2293 – 0.2099 – 0.2767
Critical 0.2960 0.5724 0.5305 0.3318

Table 2: Results for the least-squares estimation of the Intercept parameterA.

Contrast Reflection Exact Linear EI RI

Weak Noncritical 0.0475 – 0.3266 – 0.4468 0.0559
Critical – 0.0475 – 0.3578 – 0.2563 – 0.0862

Medium Noncritical 0.2273 – 0.2412 – 0.3125 0.1139
Critical – 0.2273 – 0.8563 – 0.6302 – 0.2952

Large Noncritical 0.2373 – 0.1822 – 0.3084 0.1181
Critical – 0.2373 – 1.4034 – 0.8847 – 0.4690

Table 3: Results for the least-squares estimation of the Gradient parameterB.
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Figure 4: AVO curves for the weak-contrast model inverted parametersin Tables 2 and 3: without (top)
and with (bottom) post-critical reflections.
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Figure 5: AVO curves for the medium-contrast model inverted parameters in Tables 2 and 3: without (top)
and with (bottom) post-critical reflections.
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Figure 6: AVO curves for the large-contrast model inverted parameters in Tables 2 and 3: without (top)
and with (bottom) post-critical reflections.

CONCLUSIONS

We have discussed the problem of determination and use of impedance functions generalizing the
simple expression of the P-P reflection coefficient under normal incidence in acoustic/elastic media under
oblique incidence in acoustic media, to oblique-incidencein elastic media. We have shown that for arbi-
trary selection of densities and P- and S-velocities, thereis no closed-form impedance function fulfills the
required task. Under additional, ad hoc, assumptions, impedance functions can be defined that provide use-
ful approximations to the P-P reflection coefficients. We have examined two of such impedance functions
available in the literature, namely, the elastic and reflection impedances, and discussed their potential for
approximating the P-P reflection coefficient for modelling and inversion purposes. Our simple, but typical,
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numerical experiments have shown that the reflection impedance provide significantly better results, both
for modelling and AVO inversion.

The elastic impedance has shown to provide good insight and results on calibration of seismic data
for inversion purposes from well data (see Connolly (1999);Whitcombe (2002); Mallick (2001)). Current
research is being done to employ a similar approach using, however the reflection impedance function.
Furst results in this direction are shown in Santos et al. (2002).
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APPENDIX A

Let us assume that the differential equation (22) has a solution RI ≡ RI(ρ, α, β, σ) for any choice of
the density and velocity functions. Under a vertically inhomogeneous assumption, as previously indicated,
the rayparameter,p, has a constant value (that is, it does not depend on the medium parameters and also
does not depend onσ). Therefore, the total differential for the functionRI is

RI ′ =
∂RI

∂ρ
ρ′ +

∂RI

∂α
α′ +

∂RI

∂β
β′ +

∂RI

∂σ
, (31)

Hence, to satisfy equation (22), we must have

1

RI

∂RI

∂ρ
=

1 − 4β2p2

ρ
,

1

RI

∂RI

∂α
=

1

α(1 − α2p2)
,

1

RI

∂RI

∂β
= −8βp2 and

1

RI

∂RI

∂σ
= 0 . (32)

From the last condition, we conclude thatRI does not depend onσ. Using the condition for theβ-term, it
follows thatRI has the form

RI = G(ρ, α) exp{−4β2p2} , (33)

whereG is some function to be determined. Substituting the above expression in theρ-term in equation
(32) we arrive at

1

G

∂G

∂ρ
=

1 − 4β2p2

ρ
, (34)

which is impossible sinceG does not depend onβ. This shows thatRI cannot have a closed-form expres-
sion that is valid for all medium parameters,ρ, α andβ.

This can be overcome, for example, by considering thatβ has a functional dependence onρ, i.e.,
β ≡ β(ρ). With such an assumption, relations (32) turn out to be

1

G

∂G

∂ρ
=

1 − 4β2p2

ρ
, and

1

G

∂G

∂α
=

1

α(1 − α2p2)
. (35)
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The differential equation forα is easily solved giving

G = H(ρ)
α√

1 − α2p2
, (36)

with H being some function. Substituting the above solution into the differential equation inρ yields

1

H

∂H

∂ρ
=

1 − 4β2p2

ρ
(37)

and so,

H = RI0 ρ exp

{
−4p2

∫
β2

ρ
dρ

}
, (38)

whereRI0 is a constant. Collecting results, we finally conclude that

RI = RI0
ρ α√

1 − α2p2
exp

{
−4p2

[
β2 +

∫
β2

ρ
dρ

]}
, (39)

APPENDIX B

The P–wave reflection coefficient can be approximated by Shuey’s two-term approximation (Shuey
(1985)),

R ≈ A + B sin2 θ , (40)

whereA is theAVO intercept, namely the normal incidence P-wave reflection coefficient,

A = R0 ≈ 1

2

[∆ρ

ρ
+

∆α

α

]
, (41)

andB is the AVO gradient (or slope),

B =
1

2

∆α

α
− 2

β2

α2

[∆ρ

ρ
+ 2

∆β

β

]
. (42)

Using simple least-squares procedures, the AVO indicatorsA andB can be directly estimated from
amplitudesversusangle of incidence data. The expression of the reflection coefficient in terms of elastic
(EI) and reflection (RI) impedances can also be used to estimate the same indicators. The procedure is
described as follows.

First, from the impedance concept, formula (10), we define a new quantityF as the ratio of the
impedances,F = I2/I1. Therefore,

R =
I2 − I1

I2 + I1
=

I2/I1 − 1

I2/I1 + 1
=

F − 1

F + 1
, (43)

and

F =
1 + R

1 − R
. (44)

From the elastic impedance function (21), and using the sameapproximation to obtain (40), i.e.,
tan2 θ ≈ sin2 θ, we arrive at

lnF = ln

[
EI2

EI1

]
= ln

[
ρ2α2

ρ1α1

]
+ ln

[
α2

α1

(
ρ2β

2
2

ρ1β2
1

)−4K
]

sin2 θ = Λ1 + Λ2 sin2 θ . (45)

After a simple application of a linear least-squares approximation to obtain the bestΛ1 andΛ2 that fitslnF
andsin2 θ, the AVO indicatorsA andB are given by

A =
exp{Λ1} − 1

exp{Λ1} + 1
, andB =

exp{Λ2} − 1

exp{Λ2} + 1
. (46)
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Now, from the reflection impedance function (25), and assumingβ1 6= β2, we have

F =
RI2

RI1
=

ρ2α2

ρ1α1

cos θ√
1 − α2

2p
2

exp{−2[2+γ][β2
2−β2

1 ]p
2} = Λ1

cos θ√
1 − Λ2

2 sin2 θ
exp{Λ3 sin2 θ} . (47)

Again, we can findΛ1, Λ2 andΛ3 in a least-squares sense. It is important to note that here itis not possible
to “linearize” the expression to apply linear least-squares: a nonlinear solver must be used. Nevertheless,
since there are only three unknowns, the procedure is easilyimplemented. After some algebraic manipula-
tions, the AVO indicatorsA andB can be recast as functions of theΛ’s

A =
Λ1 − 1

Λ1 + 1
, andB =

Λ2 − 1

Λ2 + 1
+

Λ3

2
. (48)


