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ABSTRACT

The normal-incidence elastic compressional reflectioffficient admits an exact, simple expressid
in terms of the acoustic impedance, namely, the productePHwave velocity and density, at bot
sides of the interface. With slight modifications a similapeession can, also exactly, express the
oblique-incidence acoustic reflection coefficient. A seviémitation on the use of the above two
reflection coefficients in analyzing seismic reflection dataat they provide no information on shear:
wave velocities that refer to the interface. In this paper,address the natural question of whether
a suitable impedance concept can be introduced for whicitramb P-P reflection coefficients car
be expressed in an analogous form as their counterparttacongs. We formulate this problen
by considering the mathematical conditions to be satisfie@urh a general impedance function.
Although no closed-form exact solution exists, our analpsbvides a general framework for which,
under suitable restrictions of the medium parameters,ilplessnpedance functions can be derived.
In particular, the well-established concept of elasticéaignce and the recently introduced concept|of
reflection impedance can be better understood. Concermésg ttwo impedances, we examine their
potential for modelling and for the estimation of the AVO icelors of intercept and gradient. Fo
typical synthetical examples, we show that the reflectigmadance formulation provides consistently
better results than those obtained using the elastic immeda
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INTRODUCTION

Estimation of reflection coefficients from primary reflectiois one of the key objectives of seismic
amplitude analysis. In elastic media, reflection coeffitidrave a rather complicated dependence to the
medium parameters (P- and S- wave velocities and densitydtatsides of the interface. As a conse-
guence, even if the reflection coefficients are correctlyredged from the seismic data, inversion of the
medium parameters using the full formulas is to avoided. Veraome these difficulties, geophysicists
have tried to express reflection coefficients in terms of tjtias that, on one side, can be estimated from
the data and, on the other hand, provide a better access moettie@m parameters. Following the simple
cases of normal-incidence in elastic media or generalligablincidence in acoustic media, the reflection
coefficient can be easily expressed by simple formulas Winglthe acoustic impedance, namely the prod-
uct between the P-wave velocity and the density. The acomsgiedance fulfills both previously indicated
requirements, namely, it carries direct information althetmedium parameters and, moreover, provides
a simple expression for the reflection coefficient. As shoeiol, the attractive simplicity of the above
expressions cannot, unfortunately, be fully extendedasti oblique-incidence. Nevertheless, under suit-
able restrictions of the medium parameters, convenientitapce definitions can be introduced to provide
useful approximations of the elastic reflection coefficsent

The first of these impedance concepts is thatlastic impedancas introduced by Connolly (1999),
under the assumption of a constant rafio= (32 /a2, between the square of the S- and P-wave velocities
of the media. A discussion on the formulation and practical of the elastic impedance concept is given
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in Whitcombe (2002). A second impedance concept, ca#iidction impedancéias been recently intro-
duced in Santos et al. (2002). Itis based on the alternadirditon that the shear-wave velocity is related
to the density ap = 37 In other words, a "Gardner’s type” law, generally cons@tkefor compressional
velocities, is also assumed for shear velocities.

In this work, we analyze the problem of finding an impedancefion for the general elastic P-P
reflection coefficient. In the framework of the analysis, weiew the concepts of elastic and reflection
impedance available in the literature. We finally consitierpotential of the two impedance concepts for
modelling the reflection coefficient, as well as on the extoamf AVO indicators such as the intercept and
gradient. Based on simple, but typical, synthetic expenitsieve conclude that the reflection impedance
is able to more accurately perform both tasks, as comparie telastic impedance.

SIMPLE CASES

We start by considering the simple cases of normal incidé@ne&astic/acoustic media and oblique-
incidence in acoustic media, in which the reflection coedfithas an attractive simple expression in terms
of an impedance function.

Normal incidence in elastic/acoustic media
The compressional wave reflection coefficient for normadeoce is given by

P20z — P10y

Ro(pi, o) = , 1
o(pis ai) poe——— (1)

wherep; anda; denote the density and P-velocity, respectively, at thelemt side(i = 1) and at the
opposite sidgi = 2) of the reflecting interface. Note that the normal-incidersfiéection coefficient
given by equation (1) is independent of the S-wave velacibiethe two media. Introducing theecoustic
impedance

Al =pa, (2)

namely the product of the density, with the P-wave velocitye, the reflection coefficientRy, can be

recast in the simple form
Al — AL

Ro(pi, ) = AL 1 AL

3)

Obligue incidence in acoustic media

In the case of non-normal incidence in acoustic media (Sewalocity 3 = 0), the corresponding
reflection coefficient is given by
Al sect, — Al secO @)
AL secOy + Al secty ’

where Al is the acoustic impedance as in equation (3), together Wétatditional requirements (Snell's
law)

R, (pi, i, 0)

in 0 5in 0
0, =0 and su1_1:s1n_2 (5)
a1 9

Defining theangular acoustic impedance
AI(9) = pasecd = Alsect , (6)

the expression for the oblique-incidence acoustic reflaatbefficient is given by an expression similar to

equation (3), namely,

Al (02) — AL (61)
Al (02) + AL (01)

Ra(pi, i, 0) (7)

Note that
AI(0 =0)=AI and Ru(pi, a0 =0)= R(ps, i), (8)

as expected.
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GENERAL CASE

For the general oblique incidence in elastic media (S-walecity 5 # 0), the expression for the
P-P reflection coefficient is also the ratio between two dtiast

P[pu Qg ﬁia 9]
Q[plv aivﬁia 9] -

However, the numeratofF?, and denominator), do not have the simple form as the previous ones (see,
e.g., Aki and Richards (1980)).

As seen by the recent literature (see, e.g., Connolly (19@8)lick (2001)), it makes sense to look
for a quantity (impedance) = I(p, «, 8,0) for which the reflection coefficient can be given, at least
approximately, by an expression of the form

R= (9)

-1
L+ hL

(10)

To examine this interesting question, we find useful to ishice the concept of theflectivity functionas
defined below.

The reflectivity function

Roughly speaking, the reflectivity function is a measurehefyariation of the reflection coefficient
as we move along a ray within a layered media. To quantitigtiaepress this variation, we consider that
the elastic characteristics, « andj, as well as the incident angle, are functions of a single variable,
o, that parameterize the ray. This variable can be, e.g.hdagime. In other words, we consider, along
the ray, the vector quantity(c) = (p(0), a(0), 8(c),0(c)). With this understanding, we can recast the
reflection coefficient, as given by equation (9), in the form

Pln(o),n(o + Ao)]
Qln(o),n(o + Ao)]
whereAgo is the parameter increment, chosen to be sufficiently simathe above formula ando + Ao

replace indices 1 and 2, respectively. For examyle) replaces:, a(o + Ac) replacesys, etc.
The P-Pelastic reflectivityfunction R can be defined as the limit,

R = R(o,A0) = (11)

(12)

Using theexactformula for the P-P elastic coefficient (see Aki and Richgd®80)), we readily obtain the

expression / / /
Rio) = 31— 4L+t ] - ] 5 63

where the prime denotes derivative with respect te emdp is the ray parameter given by Snell’s law
sinf(o)  sinf(o + Ao)

P= a(o) - aloc +Ac) (14)

Under the assumption of a flat-layered medium, the ray paeanig assumed to be constant along the ray.
Recall, however, that the anglg,is dependent on the parameter
Using the reflectivity function definition (12), and appnadting the derivatives in equation (13)
by their corresponding discrete differences, i£.~ Af/Ac, we arrive at the well-known first-order
approximation forR (Aki and Richards (1980)),
2 2
R~TR(o) Ao =~ % 1- 45— sin? 9} ar + % [sec2 9} fa _ {46— sin? 9} % . (15)

a? p e’ a?
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The attributes intercept and gradient

For sufficiently small incidence anglesyn® 6 ~ sin? 6, and then we may rewrite equation (15) as
the well-known Intercept and Gradient formula given in Sh(#985), namely

R~ A+ Bsin?0, (16)
where Ap A A B2 rA AB
_114p o _18a 5 18p  ,28
A72[p+a},and3f2a 2042{;)*25}' (17)

The impedance equation

The problem of finding a functioh satisfying equation (1(xactlyis equivalent to that of determin-
ing a solution of the differential equation resulting fronetcomputation of the limit in (12), assuming the
desired form (10):

) 1 I(c+ Ac) —I(0) 1I'(0)
=1 = == ) 18
Rlo) = Jim, {Aa Ilo+A0) +1(0)|  21(0) (18)
In other words, our original problem was reduced to the erist of solutions of the differential equation
I'(o) _ 2 217 1 o 2, 2|5
1(0)7[174ﬁp}p +[1—a2p2}a7[8ﬂp}ﬁ' (19)

ELASTIC IMPEDANCE

The Elastic Impedancéunction E1 proposed by Connolly (1999) is obtained by equalling equa-
tion (15) toAEI/2FEI (the discrete version df'I’ /2ET) and applying difference calculus, with the addi-
tional assumption th@&and the ratiodk’ = 32 /a? are constant. The same result can be found directly from
equation (19), resulting in the following differential eagion for the elastic impedance functiéi,

ET

/

/ !
_ 1 29| P 291 2,10
7T = 1 — 4K sin 9} p + [sec 9} - [SKsm 9} 3 (20)
The general solution for the above equation, under the imead assumptions, is given by
) 2 2
EI = El, pl —4Ksin”0 sec” 0 678Ks1n 0 : (21)

whereFE I is a normalization constant (see Whitcombe (2002)).

REFLECTION IMPEDANCE

We are interested on the existence of a general solutionwadtem (19), i.e., if there is Reflection
Impedancédunction RI, such that

RI'"

RI

Yo A S L PP EReI
[1 4ﬁp}p +{170¢2p2}a [8ﬁp}ﬁ7 (22)
for all possible choices af, 5 andp. Clearly, the solution is not unique, since any multipletagialso a
solution.
As shown in Appendix A, equation (22) admits a closed-fordutson only if 3 has a functional
dependence op, i.e.,3 = [(p). Under this assumption, the solution fBY is given by

2
RI = RI, —2% exp{4p2 {52 + / ﬂ—dp]} , (23)
1 — a2p? P
whereRI, is a constant. A particularly simple formula is obtained bguaming a relationship of the form

vy i r_ g
p=>b 3", orequivalently,— = ~ iR
P

(24)
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whereb is some constant of proportionality ands a constant. In this case, solution (23) reduces to

RI = RI,

2 2 /
pa 2.{exp{2[2+v]6p} , B #0 (25)

2, 2
—a?p p~ 48P , B =0

REDUCTION TO THE SIMPLE CASES

In the case of a normal incidence, both elasfit/ and the reflection RI) impedance functions
reduce to a multiple of the acoustic impedandd), so the approximation for the reflection coefficient
remains exact. Indeed,

El, - EL . RIL,—RI;, AlLL,— AL

lim —2 "1 - —R,. 26
L T EL o RL T RL AL+ AL o (26)

However, for the case of non-normal incidence in acoustidian = 0), the elastic impedance approxi-
mation for R does not reduct the exact one given by equation (7), as opposite to thectisifeimpedance
approximation, where the exact expression is maintainemteMxplicitly,

2 2
ElL, —EL, AL o 0 _ Ap, otan™0
1m -
8—0 El, + B, Al agaDQ 0 + AL a’%an2 0

# Ra , (27)

and
lim RIQ 7R11 _ AIQ SGCGQ — AIl sec91 _ Ra ' (28)
8—0 RIy + RI; Al secly + Al sec Oy

APPLICATIONS

In this session, we use simple, but typical synthetic exampb examine the approximation for
the P-P elastic reflection coefficient in terms of the elaatid reflection impedances. We discuss the
approximations both for modelling and inversion purposes.

Modelling

In order to analyse the accuracy®f and RI functions presented above, we consider a simple two-
layer model in three different situations: weak, medium &rde contrasts of the parameters. Table 1
summarizes the data.

We compare the exact reflection coefficient with its firstesrdpproximation (see equation (15), as
well as the impedance-type approximations of equation (t@er the use of the elastic impedance of
equation (21) and reflection impedance of equation (25paetsvely.

| Model [ Medium [| a [km/s] | 3 [km/s] | p[glcm?] |

Layer 1 3.20 1.50 2.30

Weak Layer 2 3.00 1.40 2.20
Contrast 0.06 0.06 0.04

Layer 1 3.50 1.80 2.50

Medium || Layer 2 3.00 1.40 2.20
Contrast 0.15 0.25 0.13

Layer 1 4.50 2.10 2.70

Large Layer 2 3.00 1.40 2.20
Contrast 0.40 0.40 0.20

Table 1: P- and S-wave velocities and densities for the numericadexy@nts.
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For the elastic impedance approximation we have chosersuas inm the literature,
o (Bi/e1)® + (Bz/02)? (29)
5 .

Observe that in the large-constrast model the rdfia was made constank{ = 0.218) in order to offer
the best conditions for the elastic impedance approximafi@r the reflection impedance approximation
(taking into account that; # 35) we set

_ In(p2/p1)

"= (Ba/Br) (30)

The values for the constants/, and R, are irrelevant: any choice will produce the same value fer th
approximation ofR.

For each situation we consider the complete range of refleatngles@ < 6 < 90°). This includes,
of course, both pre- and post-critical reflections. Theltgguapproximations for the reflection coefficient
are shown in Figures 1-3.

From the experiments, we conclude that the reflection impeslapproximation has the best perfor-
mance in all cases. In the case of post-critical reflectithrestesults are far better: all other approximations
do not follow the correct shape of the exact curve. Theretbeze is a significant gain in accuracy provided
by the reflection impedance approximation, as comparecttotie that uses the elastic impedance.
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Figure 1: P-P reflection coefficient for the weak-contrast model givelable 1: without (top) and with
(bottom) post-critical reflections.
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Figure 2: P-P reflection coefficient for the medium-contrast modekgiin Table 1: without (top) and

with (bottom) post-critical reflections.
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Figure 3: P-P reflection coefficient for the large-contrast model giveTable 1: without (top) and with

(bottom) post-critical reflections.

AVO Inversion

We have also compared the performance of the three diffapgrbximations o for the estimation
of the interceptA, and gradientp, attributes, according to equation (16). The model pararaetre the
same as in the previous experiments. We have added a wh#e obratio 1:3 to the exact reflection
coefficient’'s curve and then apply least-squares techsitpueecoverd and B. The details of the used

numerical procedure are shown in Appendix B.

Tables 2 and 3 summarize the inversion results, where, agacan observe that the inverted
attributes using the reflection impedance approximatieroébetter accuracy than all the others. In Fig-
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ures 4-6 we show the approximation fBrusing the inverted parameters and the corresponding approx

mation formulas.

| Contrast|| Reflection || Exact| Linear | El | RI |
Weak Noncritical || —0.0544| 0.0360| 0.0723| —0.0345
Critical 0.0544 0.1353 0.1111 0.0442

Medium || Noncritical || —0.1401| —0.0549| —0.0398| —0.1120
Critical 0.1401| 0.3141| 0.2830| 0.1372

Large Noncritical || —0.2960| —0.2293| —0.2099| — 0.2767
Critical 0.2960| 0.5724| 0.5305| 0.3318

Table 2: Results for the least-squares estimation of the IntercaatpeterA.

| Contrast|| Reflection || Exact| Linear | El | RI |
Weak Noncritical 0.0475| —0.3266| —0.4468| 0.0559
Critical —0.0475| —0.3578| —0.2563| —0.0862

Medium || Noncritical 0.2273| —0.2412| —0.3125| 0.1139
Critical —0.2273| —0.8563| —0.6302| —0.2952

Large Noncritical 0.2373| —0.1822| —0.3084| 0.1181
Critical —0.2373| —1.4034| —0.8847| —0.4690

Table 3: Results for the least-squares estimation of the GradieanpeterB.
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Figure 4: AVO curves for the weak-contrast model inverted parameétef@bles 2 and 3: without (top)
and with (bottom) post-critical reflections.
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Figure 5: AVO curves for the medium-contrast model inverted parameéteTables 2 and 3: without (top)
and with (bottom) post-critical reflections.
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Figure 6: AVO curves for the large-contrast model inverted paransdteiTables 2 and 3: without (top)
and with (bottom) post-critical reflections.

CONCLUSIONS

We have discussed the problem of determination and use afdare functions generalizing the
simple expression of the P-P reflection coefficient undem@abincidence in acoustic/elastic media under
oblique incidence in acoustic media, to oblique-incideincelastic media. We have shown that for arbi-
trary selection of densities and P- and S-velocities, tien® closed-form impedance function fulfills the
required task. Under additional, ad hoc, assumptions, dapee functions can be defined that provide use-
ful approximations to the P-P reflection coefficients. Weehexamined two of such impedance functions
available in the literature, namely, the elastic and rafdedmpedances, and discussed their potential for
approximating the P-P reflection coefficient for modellimglénversion purposes. Our simple, but typical,
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numerical experiments have shown that the reflection impeglarovide significantly better results, both
for modelling and AVO inversion.

The elastic impedance has shown to provide good insight esults on calibration of seismic data
for inversion purposes from well data (see Connolly (199%hjtcombe (2002); Mallick (2001)). Current
research is being done to employ a similar approach usingever the reflection impedance function.
Furst results in this direction are shown in Santos et aD220
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APPENDIX A

Let us assume that the differential equation (22) has aisal&! = RI(p, a, 8, o) for any choice of
the density and velocity functions. Under a vertically imfegeneous assumption, as previously indicated,
the rayparametep, has a constant value (that is, it does not depend on the meuwameters and also
does not depend ar). Therefore, the total differential for the functidty is

ORI , ORI ORI ORI

I/ — / / 31
RE =570+ 309t 359 T %5 (31)
Hence, to satisfy equation (22), we must have
1 ORI 1—43%p? 1 ORI 1 1 ORI 9 1 ORI
— = — = —— =-8 and———=0. (32
RI 0p p ' RI da o(l—a2p?)’ RI 03 fp RI do (32)

From the last condition, we conclude thiaf does not depend an Using the condition for thg-term, it
follows thatRI has the form
RI = G(p,a) exp{—45%p*} , (33)

whereG is some function to be determined. Substituting the abopesssion in the-term in equation
(32) we arrive at
10G 1—43%p?
Gap  p
which is impossible sinc& does not depend af. This shows tha2] cannot have a closed-form expres-
sion that is valid for all medium parameteps v andg.
This can be overcome, for example, by considering thags a functional dependence pni.e.,
B = B(p). With such an assumption, relations (32) turn out to be

(34)

1 1 —45%p? 1 1
_%:ﬂ and _%7

=—— . 35
G dp p ’ Goa ol —a?p?) (35)
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The differential equation fat is easily solved giving
_«
V1i—a2p?’

with H being some function. Substituting the above solution iheodifferential equation ip yields

G = H(p) (36)

LOH 1 4py?

R i 37
T op ) (37)
and so,
62
H = RIyp exp {—4p2/—dp} , (38)
p
whereRI is a constant. Collecting results, we finally conclude that
2
RI = RI, —2% exp{4p2 {52 + / ﬂ—dp]} , (39)
V1-—a?p? P
APPENDIX B

The P—wave reflection coefficient can be approximated by Bhtwo-term approximation (Shuey
(1985)),
R~ A+ Bsin?0, (40)

whereA is theAVO interceptnamely the normal incidence P-wave reflection coefficient,

1rA A
A:Roz—{—%—a}, (41)
2L p o
and B is the AVO gradient (or slope),
1 Aa B2 1 Ap Ap
=——— o |=L 4o} 42
2 « aQ[ p * B } (42)

Using simple least-squares procedures, the AVO indicatceiad B can be directly estimated from
amplitudesversusangle of incidence data. The expression of the reflectiofficmat in terms of elastic
(E1) and reflection 1) impedances can also be used to estimate the same indic@terprocedure is
described as follows.

First, from the impedance concept, formula (10), we definew quantity F' as the ratio of the
impedancest’ = I»/I;. Therefore,

 L-L L/L-1 F-1

R= = = : 43
L+1, L/L+1 F+1 (43)

and LR
poitt (44)

1-R

From the elastic impedance function (21), and using the sappeoximation to obtain (40), i.e.,
tan? @ ~ sin? 6, we arrive at

EI 1o @ 32 —aK
lnF:ln{—Q]:ln[m 2]+1n —2(p2 i) sin?@ = Ay + Az sin 6 . (45)
EL p1ag o1 \ p153y

After a simple application of a linear least-squares apipnaxon to obtain the besgt; andA, that fitsln £
andsin? @, the AVO indicators4 and B are given by

_exp{A1}—1 andB — exp{Aa} —1

Cexp{A;}+17 Cexp{Ag}+1°7 (46)
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Now, from the reflection impedance function (25), and assgmi # (», we have

P RIy  paas cosf cos

RIy  proa /1 — a2p? \/1— A3sin?6

Again, we can find\1, A, andA; in a least-squares sense. It is important to note that hisradt possible

to “linearize” the expression to apply linear least-sqaagenonlinear solver must be used. Nevertheless,
since there are only three unknowns, the procedure is eéagilgmented. After some algebraic manipula-
tions, the AVO indicatorst and B can be recast as functions of thés

exp{—2[2+7][63 - A7Ip*} = At exp{Azsin2 0} . (47)

A -1 Ay —1 A
i andB = -2 3

A= —— —
A +17 AngljL 2

(48)



