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INTRODUCTION

Numerical modeling of seismic wave propagation in reai@bmplex) media is an important tool used in
earthquake and exploration seismology. It has been useppost interpretations of field data, to provide
synthetic data for testing processing techniques and sitigni parameters, and to improve seismologists’
understanding of seismic wave propagation. Since the widstd finite-difference (FD) approaches are
based on the wave equation without physical approximatittes methods account not only for direct
waves, primary reflected waves, and multiply reflected wawetsalso for surface waves, head waves, con-
verted reflected waves, and waves observed in ray-theakrstiadow zones (Kelly et al., 1976).

Staggered grid FD operators are commonly applied to contpatderivatives occurring in the wave equa-
tions for elastic, viscoelastic, and anisotropic medig.(@/irieux, 1986; Levander, 1988; Robertsson et al.,
1994; Igel et al., 1995)). However, the standard FD opesatause instabilities when the medium possesses
high contrasts in material properties. Boundary condgtiofthe elastic wavefield at high contrast discon-
tinuities have to be defined explicitely in the FD algoritheny, (Robertsson, 1996)). Instability problems
can be avoided by using the so-called rotated staggeredR8) technique (Saenger et al., 2000): the
boundary conditions at high contrast discontinuities arplicitly fulfilled by the distribution of material
parameters.

The numerical accuracy of the RSG for modeling scatterirgrgity fractures was successfully verified by
comparison with an analytical solution (Kruger et al., 200erefore, this grid is for example a powerful
tool to study effective velocities in fractured media (Sgemnand Shapiro, 2002; Saenger et al., 2002).
The RSG has been so far applied to displacement-stresslations of the wave equations (Saenger et al.
2000). The first objective of this paper is to show that the R&Bnique can also be adopted to velocity-
stress formulations of the wave equations. Velocity-stfesmulations are advantageous to model seismic
wave absorption (Carcione et al., 1988; Robertsson et@94;1Bohlen, 2002). By applying the RSG to
the 3-D viscoelastic wave equation it becomes possiblentalsite the propagation of seismic waves in a
viscoelastic medium containing voids or free surface topplgy without applying explicit boundary con-
ditions.

The second objective of this paper is the application of t8&Rechnique to the anisotropic elastic wave
equation. Many papers (e.g. (Komatitsch et al., 2000; Gaecet al., 2002)) report that there is a dis-
advantage in using standard staggered grids for anisotroedia of symmetry lower than orthorhombic.
Standard staggering implies that off-diagonal stress tmathscomponents are not defined at the same lo-
cation. When evaluating the stress-strain relation, iteisassary to sum over a linear combination of the
elastic constants multiplied by the strain components.ddeome terms of the stress components have to
be interpolated to the locations where the diagonal compisrege defined. This fact leads to an additional
error in the dispersion analysis (Igel et al., 1995). Forrtftated staggered grid such an interpolation is
not necessary. We show with an accuracy analysis that the d@B8®e advantageous for modeling gen-
eral anisotropic media. The modeling of anisotropic etastives using the RSG is demonstrated with a
simulation example.
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Figure 1: Elementary cells of different staggered grids. Locatiohgke strains, displacements, velocities
and elastic parameters are definéal) velocity-stress FD technique using a standard staggerdd ()
velocity-stress FD technique using the rotated staggeiidd @) displacement-stress FD technique using
a standard staggered gri¢tl) displacement-stress FD technique using the rotated sedjgeid. Please
note that for the RSG all components of one physical progegyplaced only at one locatiotb] and(d)).
This fact is the main reason for the enhanced (high-contstesility.

THE PRINCIPLE OF THE ROTATED STAGGERED GRID: DISCRETIZATIO N

The differential equations and the basic numerical proesifor displacement-stress and velocity-stress
FD schemes are well known and can be found in the papers medtabove. Viscoelasticity can be imple-
mented in velocity-stress schemes in a very efficient wag. fdrameters,;, 77 andr* can be optimized
for the desired frequency independent Q (Blanch et al., 1B8Blen, 2002). The differential equations for
the velocity-stress and the displacement-stress FD schareerecast into discretized equivalents using
staggered-grid approaches. As a result all modeling pasamare distributed at different (staggered and
non-staggered) positions within the FD grid. The main idethe rotated staggered grid is to change the
directions of the derivatives to obtain a new distributiémodeling parameters. The necessary FD opera-
tors for the rotated and the standard staggered grid aresdied in detail in (Saenger et al., 2000).

For the sake of simplicity, we consider here an isotropistalanedium in two dimensions with equal grid
spacing inz- andx-direction. However, the results shown in Fig. 1 are alsodferable to rectangular cells
in three dimensions and all kinds of anisotropic elastic imed

The most important point is that for the RSG all componentsra physical property are placed only at
one single location (Fig. 1(b) and (d)). This fact is e.g. ith&in reason for the enhanced (high-contrast)
stability. For the viscoelastic case in Fig. 1(b) the par@mse,;, 77 andr® have the same position ag;.

For the rotated staggered grid in the case of anisotropgtielmedia all elements of the elastic stiffness
tensorc;; have the same position as for the isotropic casend ;. (see Fig. 1(b) and (d)). Therefore,
the new distribution of elastic parameters is also advaaag for modeling in general anisotropic media,
because no interpolation is necessary to calculate the slamkin the modeling algorithm.
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NUMERICAL STABILITY AND DISPERSION

In Saenger et al. (2000) numerical stability and grid disjger of the RSG for isotropic elastic media are
investigated. Though only the displacement-stress sclieelicitly treated in this paper, all results also
apply to the velocity-stress scheme (see also Moczo et@DO)2. This can be reviewed by taking the dif-
ference of the finite-difference solution for the velocipngponents of the velocity-stress scheme at times
[ 4+ 1 and! and substituting the constitutive laws into the equatiomofion. This provides a second-order
system of difference equations in velocities only (Eq.([@)evander (1988)). The analogous equation of
displacement-stress schemes for the derivation of thedigm relation is Eq.(34) of Saenger et al. (2000).
In this paper we extend the dispersion relation found byégal. (1995) for general anisotropic 3D media
using aO(AtNeme  AxNsrece) standard staggered grid to the rotated staggered grid. rAkédsotropic
case the results are valid for displacement-stress andityektress FD schemes. A general recipe how to
extend the elastic dispersion analysis to the viscoelaatie can be found in Robertsson et al. (1994).
The general dispersion equation for the RSG and the starstizgdered grid FD scheme express the fre-
quency® as a function of the numerical wavenumkethe eigenvalues; (k Cry, P, da d&) of the matrix

M (I = 1,2, 3 for gP-, gS1- and qS2-waves), and the order of the time er»d!iuapnNtme as (Eq.(45) of
Igel et al. (1995)):

R 2 ) 1 NMWL&/Q _ Ath
all, A0 = aresing =3 >, (1N (s ersp g, d) o (1)

whereAt is the time increment of the used FD schemsg,are the elements of the elastic stiffness tensor,
p denotes the density, araleL d- are interpolation operators. The definition of the malvixs given with
Ji

Eq.(44) of Igel et al. (1995)

For the standard staggered grid one has to use (in Eq.(1fgitbering numerical Wavenumbé?j and the

interpolation operator& andd—:
Jt
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(Eq.(5) of Crase (1990) and Eq.(35) of Igel et al. (1995)),
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(Eq.(22) of Igel et al. (1995) and text below), wheke;; is the grid spacing in thg-direction,k; is the
jth component of the wavenumbley p,,, are the finite-difference coefficients (e.g. (Holberg, 19&nd
d,, are the coefficients of the interpolation operator.

For the rotated staggered grid one has to use (in Eq.(1)uimerical wavenumbek? "' The interpolation
operatorsl—."" andd "o are simply equal one because this kind of mterpolatlon taecessary for the

ij
RSG:
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The stability criterion for aD(AtNtime AxNsvace) FD scheme can be found by analyzing the following
inequality (Crase, 1990):
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relative  error

Figure 2: A comparison of the relative error of the phase velocityf = |w(k)/(vpn (k)|k|) — 1|) of the
gS2-wave in the xz-plane between the standard staggekdrytithe rotated staggered grid is shown. The
medium has triclinic symmetry. The dashed line represémtsedsults for the standard staggered grid, and
the solid line shows the results for the rotated staggereldvwgth exactly the same modeling parameters.
The dotted line is obtained for the rotated staggered gril an increased timestep by a factords (The
RSG is in general more stable than the standard stagged gri

For a general anisotropic medium this is not easily caledlatiowever, the stability criterion for velocity-
stress and displacement-stress RSG schemes (2nd order.&imeg,;,,. = 2) for isotropic media can be
found in Saenger et al. (2000):

Nspace
Atv,

A < U ; [pl)- Y]

In this equatiorw,, denotes the compressional wave velocity @xfd the grid spacing. For the 3D case
this is more stable by a factor af3 than for the standard staggered grid (Saenger et al., 200ahe
anisotropic case, a good first approximation can be madeggaiegv,, in Eq.(7) by the maximum phase
velocity of the anisotropic media (lgel et al., 1995).

For a comparison of both finite-difference schemes (i.e. RB& and the standard staggered grid) we
consider exactly the same triclinic media as defined in EQ.¢41gel et al. (1995). We focus on the qS2-
wave case because there one can observe the maximum relativef the phase velocity (see e.g. Fig. 6
of Igel et al. (1995)). Here we compare both schemes withativel accuracy of)(At?, Az?) at 20%
Nyquist (dispersion parametéf = |k|Ah/(27) = 0.1) with At = 0.146(s/m)Az. This is about 20%
of the stability limit for the standard staggered grid. Tised coefficients of the FD and the interpolation
operators ar@; = 1 andd; = 0.5, respectively. The results in Fig. 3 can qualitatively cangal with the
gS2-case of Fig. 7 of Igel et al. (1995). The conclusion ofdispersion analysis between the two different
FD schemes is obvious: For this specific triclinic mediumabpelication of the rotated staggered grid is
advantageous. However, for any triclinic medium one hagpeat the analysis described above because:
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e The error of the wave properties in the general anisotrogpée dor staggered finite difference grids
depends on the length of the used operators, the symmetgnsys the anisotropic medium, the
orientation of the symmetry axis with respect to the coaxtbraxis and, this is very important, the
degree of anisotropy (lgel et al., 1995).

e The ratio of the maximum relative error of the phase velobigyween the RSG and the standard
staggered grid depends for general anisotropic media adispersion parametéf = |k|Ah/(27).

ANISOTROPIC MODELING EXAMPLE

The RSG has been applied to a displacement-stress forowlatithe 2D elastic wave equation for
anisotropic media. In the example we demonstrate that tii@dlSws for modeling anisotropic wave prop-
agation in media with a strong contrast in elastic pararse#e built a 2D-model with two different half-
spaces surrounded by a thingem) vacuum layerd;; = 0, p = 0.00001kg/m?). The two half-spaces
have a total size o68cm x 64cm using a grid spacing di.5mm. The left-hand side is a transversely
isotropic zinc crystal which is characterizeddy = 16.5 x 1010 N/m?, ¢13 = 5 x 10 N/m?, ¢33 =

6.2 x 1019 N/m?, c55 = 3.96 x 10'° N/m? and a density op = 7100 kg/m?>. For the isotropic
media (an 'isotropic’ version of zinc) on the right-handeside usec;; = 16.5 x 101 N/m?, c55 =
3.96 x 10*° N/m? andp = 7100kg/m?>. The source is a vertical point force (with a Gaussian taper)
located2cm to the left of the interface in the anisotropic half-spacbke Bource time function is a Ricker
wavelet with dominant frequencfy = 170K H z. The simulation uses 4000 timestepsXf = 25ns. To
interpret the different phases in the first snapshot showkign3 we refer to Carcione et al. (1992) and
Komatitsch et al. (2000). They have studied previously ayv&milar problem.

As mentioned by Hestholm (2002) high-order FD methods vall decrease the numerical dispersion of
Rg (fundamental mode Rayleigh) waves, only closer spaaialpding will, so second-order FDs may as
well be used along a free surface topography. Consequbettyy the vacuum (the three 'free’ surfaces of
our model), the FD order is gradually increased via 4 and &) which is the order in the interior of the
medium. In the second snapshot of the simulation (Fig. 3)rttezaction of the different waves with the
'free’ surfaces is shown.

CONCLUSIONS

We have shown that the rotated staggered grid can be appliftktvelocity-stress formulation of the
viscoelastic wave equation and to the displacement-stoegsulation of the elastic wave equation for
anisotropic media. In both cases implementation of the R§famrds the range of applications. The new
FD algorithm allows modeling of absorbing media with higimtast in material properties. Additionally,
wave propagation in 3D anisotropic media can be modeleda@yrately, because in contrast to standard
staggered grid schemes no interpolation is necessary ¢alatd the Hook sum. The method is efficient
and flexible and has a broad range of practical use, for exampteling of small-scale cracks (e.g. filled
with viscous fluid) or topography of the earth surface.
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Figure 3: Two snapshots (vertical displacement) of an anisotropiekperiment using the rotated stag-
gered grid at two different timesteps. The model is compadedo half-spaces: a transversely isotropic
zinc crystal with vertical symmetry axis on the left, and sotiopic material on the right. The two halfs-

paces are surrounded at three sides by a thin vacuum lay@émil&rsproblem was previously studied by
Carcione et al. (1992) and Komatitsch et al. (2000).
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