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ABSTRACT

This paper is concerned with numerical tests of several ptfsical relationships. The focus is on
effective velocities and scattering attenuation in 3D tinaed media. We apply the so-called rotated
staggered finite difference grid (RSG) technique for nuoadexperiments. Using this modified grigl
it is possible to simulate the propagation of elastic wanes 3D medium containing cracks, pores or
free surfaces without hard-coded boundary conditions. Wielate the propagation of plane wave
through a set of randomly cracked 3D media. In these numengreriments we vary the numbey
and the distribution of cracks. The synthetic results aregared with several (most popular) theorigs
predicting the effective elastic properties of fracturegtenials. We find that for randomly distribute
and randomly oriented non-intersecting thin penny-shajpgdracks the numerical simulationsff

andS- wave velocities are in good agreement with the predictifithe self-consistent approximat
tion. We observe similar results for fluid-filled cracks. T$tandard Gassmann-equation cannot |pbe
applied to our 3D fractured media although we have a very lovgity in our models. This is well
explained by the absence of a connected porosity. Therdyisaatight difference of effective veloc-
ities between the case of intersecting and non-interggctiacks. This can be clearly demonstrated
up to a crack density which is close to the connectivity platian threshold. For crack densities be
yond this threshold we observe that the differential effeamedium (DEM) theory have the best fit
with numerical results for intersecting cracks. Additibyé is shown that the scattering attenuatio
coefficient (of the meanfield) predicted by the classical $tudapproach is in an excellent agreement
with our numerical results.
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INTRODUCTION

Discovering accurate relationships between pore strecnd elastic properties of porous rocks is a long
standing problem in geophysics, material science, and sadichanics. Understanding the interaction be-
tween rock, pore space and fluids and how they control rogigsties is crucial to a better understanding
of acoustic and seismic data.

A range of different effective-medium theories (see Mavkale(1998) and references therein) give ex-
pressions for the overall properties of fractured medihéfwavelength is large compared with the size of
inclusions. There is a general agreement of those theanies dilute concentration of inclusions. How-
ever, there are considerable differences for higher caretons. Therefore, it is necessary to validate the
different analytical predictions with experimental (e-idson et al. (2001)) or numerical data.

With this in mind Saenger and Shapiro (2002) presented aniesffiand accurate way of finite-difference
(FD) computer simulations of wave propagation and effeathastic properties in 2D fractured media. The
present paper is a continuation of this work to three din@radifractured media.

Spring network techniques (e.g. Garboczi and Day (1995)b@&=zi and Berryman (2001); Ursenbach
(2001)) are an alternative numerical method to study elastiduli of porous media. All these methods
are currently restricted to isotropic materials where thisgbn ratio cannot be chosen arbitrary. Attenua-
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tion effects also cannot be described with these methodayuse they treat the static case.

Finite difference (FD) methods discretize the wave equatio a grid. They replace spatial derivatives by
FD operators using neighboring points. This discretizatiauses instability problems on a staggered grid
(Virieux, 1986) when the medium contains high contrastatiginuities (strong heterogeneities). These dif-
ficulties can be avoided by using the rotated staggered B&d3) technique (Saenger et al., 2000). Since
the FD approach is based on the wave equation without phygipaoximations, the method accounts not
only for direct waves, primary reflected waves, and multigflected waves, but also for surface waves,
head waves, converted reflected waves, and diffracted wah&srved in ray-theoretical shadow zones
(Kelly et al., 1976). Additionally, it accounts for the praprelative amplitudes. Consequently, we use this
numerical method for our considerations of 3D fracturedamals.

This paper is splitted in two main parts. First, we reviewesal/theoretical predictions of effective elastic
properties of fractured media. In the second part we nuakyigalidate the predictions. We explain our
simulation setup with a detailed estimation of sources afrerand discuss the numerical results.

THEORIES OF EFFECTIVE PROPERTIES IN 3D FRACTURED MEDIA

In this paper we consider wave propagation through a welhddfiractured region with thin penny-shaped
cracks of equal form and size. For penny-shaped crackpgeitials with two major axis of equal size) one
has to distinguish between cracks with non-zero aspec diaéind an aspect ratio equal zero. The latter
are refered to as disks. The commonly used crack densityredesp to characterize fractured materials
is (Kachanov, 1992): .
3
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whereN is the total number of crack$) is the representative volume element and the radius of the
penny-shaped cracks. The porosity is:

— 4 N 2
= 37TV0(1 d (2)
with ¢ andd as major axis (= radius) and minor axis of ellipsoid, respebt. If all cracks have the same
ellipsoidal shape the relation between porositgnd crack density is (Cheng, 1993):

6= smap 3)

with a = d/a as the aspect ratio of penny-shaped ellipsoidal cracks.

Effective moduli of 3D fractured media with non-intersecting thin penny-shaped dry cracks

To describe wave propagation in fractured media we condaierdifferent theories for thin dry penny
shaped cracks in 3D-media, namely, the “Kuster-Toksdz @ibation”, the “Self-Consistent approxima-
tion”, the “Differential Effective Medium (DEM) theory” ahthe “Theory for non-interacting cracks”.
They can be used to predict effective wave velocities in ding lwavelength approximation in dependency
on porosity¢ or crack density. A detailed review of these rock physical relationships barfound in
Mavko et al. (1998). Our goal is to investigate their limitagdplicability for relatively high crack densities.
Therefore, in order to compare our numerical results wids#four theories we give here their respective
effective bulk modulug<*(¢) or effective Young’s modulu€*(¢) and effective shear modulus'(¢).

For the case of penny-shaped dry cracks with aspectdatioe can obtain the following formulae where
K,,, E,, andu,, are the bulk modulus, Young’s modulus and the shear modrdapgctively, of the ho-
mogeneous embedding.

Kuster and Toksdz (1974) derived expressions for effeeiastic properties using a long wavelength first
order scattering theory. They are formally limited to low @sity:
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In the self-consistent approximation (O’Connell and Budlgy, 1974) one still uses the mathematical
solution for the deformation of isolated inclusions, but ihteraction of inclusions is approximated by
replacing the background medium with the a priori unknowaative medium P and@ are given above):

K*(¢) = Ky, (1 - ¢P*)a (10)
(@) = pm (1—0Q7), (11)

Note, the self-consistent approximation for randomly iéel inclusions agrees with the first order correc-
tions predicted by Hudson (1981).

The differential effective medium (DEM) theory models twhase composites by incrementally adding
inclusions of one phase to the matrix phase. The predictiansde expressed by two coupled linear dif-
ferential equations with initial conditior’s*(0) = K,,, andp*(0) = ., Which can be solved numerically
(Berryman, 1992):

(-0 @) = ~K'OP" (12)
<1—¢>%[u*<¢>] - QT (13)

Norris (1985) have shown that the DEM is realizable and floeeds always consistent with the Hashin-

Shtrikman upper and lower bounds (Hashin and Shtrikmar3)L96

The low aspect ratio of ellipsoidal cracks we used in our mBrations makes it possible to compare the
results with effective medium theories constructed onty(flat) disks. The difference between low aspect
ratio ellipsoidal inclusions and disks does not signifibaimtfluence the predictions of the three theories
discussed above (compare with Douma (1988)). Hence, wadadh our comparison of theories the

theory of non-interacting cracks (disks) of Kachanov (1992

E'(p) = Em [1+ 161 ‘Q?T)(i;gjm/ 1) ] , (14)
wp) = pm {1+ s ;(fm)i;gmm ]_ ) (15)

wherev,, is the Poisson ratio of the background material.

Intersecting cracks

In the effective medium theories presented above the frastare modeled as ellipsoidal cavities. As
mentioned by Schoenberg and Sayers (1995) real fractunestadesemble isolated voids in a solid matrix.
Borehole pictures, examination of outcrops, and rock €naxt in the laboratory all indicate that fractures
have many points of contact along their length. Thereforeewtend our numerical considerations to
intersecting cracks. This is beyond the validity of moseefifive media theories.
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For a random array of overlapping cracks it is possible tongedi connectivity percolation threshqig.

At this crack density the crack-network allows fluid flow thgh the fractured rock. In the literature we
found two approaches with two substantially different jicgdns of this value for thin penny shaped cracks
(disks):

pp =18/m?= 0.182 (Charlaix, 1986) (16)
pp =3.0/m>= 0.304 (Garboczietal., 1995) (17)

The authors of the later paper are puzzled by the reasonisadidagreement because the study of Charlaix
(1986) does not reveal any obvious mistakes.

Itis important to distinguish between the connectivityqueation threshold described above and the critical
porosity (e.g. Nur (1992); Mukerji et al. (1995); Saenged &hapiro (2002)) at which rocks lose rigidity
and fall apart. The determination of the critical porosay¢ritical crack density,.) for randomly oriented
and randomly distributed thin penny-shaped cracks haseert Hocumented in the literature so far to our
knowledge. But it is clear that the rigidity threshold claesized byp,. is much larger than the connectivity
threshold p, >> p,).

Fluid filled cracks

The “Kuster-Tuksdz formulation”, the “Self-Consistentpapximation” and the “Differential Effective
Medium (DEM) theory” can be used also for fluid-filled cracksor the exact analytical expressions we
refer to the references given in the previous sections. Nirtee the cavities are isolated with respect to
flow, these approaches simulate the high frequency behal/gaturated rocks (the high frequency limit
of the squirt model). This should not be confused with the faat these theories are often termed low
frequency theories as inclusions dimensions are assumiae nouch smaller than a wavelength (Mavko
etal., 1998).

If all cracks were connected an alternative method to ptedfiective moduli of fluid-filled fractured media
would be the application of the Gassmann-equation (Gassmas1):

Ksat ~_ _Mdry Ky (18)
Ko — Ksat Ko— Kgry  ¢(Kg—Ky)
fsat = Hdry (19)
where
Kdry effective bulk modulus of dry rock
Ksat effective bulk modulus of the rock with pore fluid
Ky bulk modulus of mineral making up rock
Ky effective bulk modulus of pore fluid
1) porosity
Idry effective shear modulus of dry rock
Itsat effective shear modulus of rock with pore fluid

Again, in this equation both phases, the fluid and the minaralassumed to be continuous. This is not the
case for isolated penny-shaped cracks. However, we waninterically clarify if the Gassmann-equation
can be used for such cracks in the low-porosity limit.

Scattering attenuation

Among other theories Hudson (1981) presents the attemuatiefficient {, = w@~!/2v,, Q := quality
factor) for the mean field of elastic waves in fractured medtar randomly oriented cracks (isotropic
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distribution) the P-wave attenuation coefficient is given a

_ w 1 g 2
3 vj:’
4= T+ 1)
Yp
1 R 3 5
B = 2+—50—7105+8S (22)
4 vy v3 vy
16(A +2p)
_ 23
0 3(3)\ + 4p1) (23)
4N +2p)
Uy = —AT2H 24

The isotropic background elastic moduli arandy (Lamé parameters) whilg, andv, denote the P- and
S-wave velocity, respectively. The fourth power dependemt angular frequency is characteristic of
Rayleigh scattering, which can only be observed if the wawgth is large compared to the dimension of
the scatterers.

NUMERICAL EXPERIMENTS

The propagation of elastic waves is described by the elgstodic wave equation (e.g. Aki and Richards
(1980)):

pg(r)iis(r) = (cijr (r)ur,(r)),; + filr). (25)
For modeling elastic waves at the positiowith finite-differences, it is necessary to discretize tiftress
tensorc;;1;, the (gravitational) density,, the displacement wave field and the body forcg; on a grid.

Numerical setup

In order to test the different effective medium theories titered above we apply the so-called rotated stag-
gered FD scheme to model wave propagation in fractured n{8dianger et al., 2000). Before comparing
analytical predictions with numerical data it is necessamlarify how accurate the numerical calculations
are. After a detailed description of our modeling procedueevill consider possible sources of numerical
errors.

We design a number of numerical elastic models (details eafobnd in Table 1) which include a re-
gion with a well known number of cracks and porosity. Thicfueed region (always from a depth of 173
gridpoints in the model) was filled at random with randomligoted thin penny-shaped cracks. The imple-
mentation of the cracks on the 3D cubic FD grid is carried guadsigning crack properties to single neigh-
boring gridpoints. The best possible representation of th@#penny-shaped crack gives a rough disk-like
inclusion (due to discretization) with a thickness of onidgoint. For models with non-intersecting cracks
the same procedure as in Davis and Knopoff (1995) and in DatthBacker (1998) is used: If two cracks
intersected during random selection, the more recent avaskeliminated and a random choice was made
again. In Figure 1 we can see a typical model. All models aneyd discretized with an interval of
0.0002m. In the homogeneous regions wewvset 5100 m/s, vs = 2944 m/s andp, = 2540 kg/m3.
For the dry penny-shaped cracks we get= 0 m/s, vs = 0 m/s andp, = 0.0001 kg/m?3 which ap-
proximates vacuum. For the case of fluid-filled penny-shapacks we set,, = 1485 m/s, vs = 0 m/s
andp, = 1000 kg/m? which approximates water. It is important to note that wefqren our modeling
experiments with periodic boundary conditions in the twoizantal directions. For this reason our elastic
models are generated also with this periodicity. Hencs, finissible for a single crack to start at the right
side of the model and to end at its left side.

To obtain effective velocities in different models (with éferent number of cracks) we apply a body
force plane source at the top of the model. The plane wavergekin this way propagates through the
fractured medium (see Figure 1). With two horizontal plaokseceivers at the top and at the bottom,
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No. | number crack size total porosity crack N
(allocation of radius of height ¢ density
number) | cracks a cracked of of the p
[0.0002m] region model crack
[(0.0002m)3] | [0.0002m] | region

1 20 31.5 400° 805 0.0011 0.0098 | 1
21-23 40 31.5 400° 805 0.0023 | 0.0195 | 3
3.1-33 80 31.5 400° 805 0.0045 0.039 3
4.1-4.3 160 31.5 400° 805 0.0090 0.078 3
5 240 315 400° 805 00135 | 0117 | 1
6.1-6.3 320 31.5 400° 805 0.0180 0.156 3
7.1-7.3 60 31.5 3002 x 400 1305 0.0060 0.052 3
8.1-8.3 30 41.5 2502 x 500 1305 0.0060 0.069 3
9.1x - 9.3x 40 31.5 4003 805 0.0023 | 0.0195 | 3
10.1x - 10.3x 80 31.5 400° 805 0.0044 0.039 3
11.1x-11.3x 160 315 400° 805 0.0089 0.078 3
12.1x - 12.3x 320 31.5 400° 805 0.0179 0.156 3
13x 700 31.5 4003 805 0.038 0.342 1
14x 1000 31.5 400° 805 0.054 0.488 1
15x 1200 31.5 4003 805 0.065 0.585 1
16x 2000 31.5 400° 805 0.106 0.977 1

Table 1: Crack models for numerical calculations. The models witk attached to its number have inter-
secting cracks. Not®,0002m is the size of grid spacing and N denotes the number of modktations.
The cracks can be fluid-filled or empty.

it is possible to measure the time-delay of the mean peakitmdelof the plane wave caused by the
inhomogeneous region. With the time-delay one can estitiateeffective velocity. Additionally, the
attenuation of the plane wave can be studied. The sourceletameour experiments is always the first
derivative of a Gaussian with a dominant frequencyg ef10> 1/s and with a time increment ot =

2.1 * 10~8s. The resulting power spectrum of the plane P-wave is showfigare 8. Due to the size
of the models we have to use large-scale computers (e.g. CR&Y with a MPI implementation of our
modeling software. In fact, the size-restriction of our ralsds mainly due to computational restrictions in
memory and CPU-time.

Similar to Garboczi and Berryman (2001), Ursenbach (206d)erns (2002) we detect three main sources
of error in our numerical calculations: (1) finite size eff¢2) digital resolution and (3) statistical variation.
Two other sources of error, specific for finite-differenckiions of the elastodynamic wave equation, are:
(4) numerical dispersion and (5) the general modeling amyuior high-contrast inclusions.

(1) Finite size errors result from having a sample (fraauregion) of finite size, where the largest
length scales of inclusions are of the order of the sampée Samples at this scale can be not representative
any more, and the numerical data becomes noisy. Experieiticeanany previous results (Garboczi and
Berryman, 2001; Saenger and Shapiro, 2002) has shown thimghthe ratio of the sample size to the
diameter of the penny-shaped crack to be about 7 makes finite@ors negligible.

(2) The digital resolution error comes from using a rectdagiinite-difference grid. The crack geome-
tries have to be represented on this given grid-structueeoldéerve only very small variations among the
different crack sizes we have used (shown below). An immbaegument, that the digital resolution error
is below an acceptable level, is the fact that for low craaksitees all theories and numerical results are in
a good agreement. However, this error is the most criticakén our numerical measurements (and in the
similar studies of Garboczi and Berryman (2001), Ursenl§2adf1) and Arns (2002)).

(3) The statistical variation error comes about becausertbéels under consideration are random
ones. For a given crack density, there are many ways in whietctacks might be randomly arranged.
Each arrangement will have somewhat different effectiastet moduli, in general. The error bar in our
numerical results denotes the standard deviation forreiffiemodel realizations. It can be observed that
this deviation is always very small.

(4) In order to reduce the dispersion error of the FD simatetiwe use only 54% of the allowed
maximum time increment( = 0.54 v,...; S€€ Saenger et al. (2000)). All computations are performed
with second order spatial FD operators and with a second ¢irde update. The number of grid points
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Figure 1: Left: A typical 3D fractured model with non-intersecting perstyaped cracks (with radius=
31.5 grid points) used for the numerical experiments. We intedicracked region (400400 x 400 grid
points) in a homogeneous material. At the top we place a strgll of vacuum. This is advantageous for
applying a body force plane source with the rotated stagpgrie. Right: A z-displacement-snapshot of
a planeP-wave propagating through the fractured 3D model. We usendinear color scale to emphasize
the scattered wavefield. The visible discontinuities of wWavefield correspond to the crack locations
(compare with Figure on the left).

per wavelengthV,, is equal or greater than 100. Therefore, with this configomadur measurements are
for a homogeneous model with a crack density of 0 a velocity ofv, = 5102.91ms~* (relative error:
0.057%) and)s = 2943.62ms~! (relative error: 0.004%).

(5) Kriiger et al. (2002) studied the numerical accuracy efthated staggered grid (RSG) for high con-
trast inclusions. They compared the analytically and nicaby derived power spectra and seismograms
of SHwave diffraction by a finite plane crack. Both approachies a@nalytical solution of SAnchez-Sesma
and lturraran-Viveros (2001) and the numerical solutiangithe RSG, show an excellent correspondence.
A remarkable aspect is that for inclined cracks the numks@ation is still correct, even though the crack
is discretisized on a grid and does not have a perfect plaifecsu

Numerical results for effectiveP- and S-wave velocities for non-intersecting dry penny-shaped ercks

Our numerical results for penny-shaped dry cracks are thpigy dots in Figure 2 and Figure 3. We
show the relative decrease of the normalized effedivand S-wave velocity in dependence of the crack
densityp. For the case of non-intersecting cracks we use models Nb142.3, 3.1-3.3, 4.1-4.3, 6.1-6.3,
7.1-7.3, 8.1-8.3 foP-waves and models No. 3.1, 4.1, 5, 6.1-6.2$swaves (Table 1). For comparison,
the predictions of the four theories described in previoetiBn are also shown. Note, it is not useful to
study higher crack densities than the connectivity petwidhreshold (Eg. 16 and 17) for non-intersecting
cracks. For those high crack densities it is problematictoegate high order statistical independent crack
models (one has to remove too many cracks in the model bpilorocess).
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Figure 2: Normalized effective velocity of compression&l-{ waves versus crack densityof penny-
shaped cracks. Dots: Numerical results of this study. Ther érars denote the standard deviation for
different model realizations (see Table 1). The dotted &eddashed-dotted line are predicted by the
theory of non-interacting cracks and the differential efifee medium (DEM) theory, respectively. The
solid line is the prediction by the Kuster-Tokstz approacth the dashed line is due to the self consistent
approximation.

1
S-waves
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. numerical results ~
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Figure 3: Same as Fig. 2 for shed®-§ waves

The first conclusion is that none of the theories providesipeeresults for relatively high crack den-
sities. Overall, they tend to underestimate the effect tdaity-reduction by empty cracks. This can be
particularly observed for the theory of non-interactingas by Kachanov (1992). The best match to
the numerical estimates gives the self-consistent apmation (O’Connell and Budiansky, 1974). This is
most significant for the effective-wave velocities. A comparison with experimental data dbed in a
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recent review of Hudson’s model for cracked media (Hudsaal.eP001) provides a similar conclusion.
As mentioned above the self-consistent approximationdadomly oriented inclusions agrees with the
first order corrections predicted by Hudson (1981).

At a first glance our 3D results seem to be in conflict with thenetical results of 2D fractured media
presented in Saenger and Shapiro (2002). They support imasbrio the 3D results themodified self-
consistent theorysimilar to DEM) for relative high crack densities. Howeyvarcloser look to the 2D
results (Fig. 2 of Saenger and Shapiro (2002)) shows thdigatlg higher crack densities (in a middle
range) the self-consistent theory and the numerical i£balte also a good agreement. A general underes-
timation of velocity-reduction by empty cracks by the 2Ddhefor non-interacting cracks by Kachanov
(1992) can be observed, too. Therefore, we assert that tlem@3D results complement each other.

Numerical results for effective P-wave velocities for intersecting dry penny-shaped cracks

For intersecting cracks it is unproblematic to generatassizally independent models with high crack
densities because it is not necessary to eliminate intimgesracks in the random generation process. The
details of the used models No. 9.1x-9.3x, 10.1x-10.3x,4-11.3x, 12.1x-12.3x, 13x, 14x, 15x, 16x with
intersecting cracks can be found in Table 1. The 3D numergsailts for the normalized effectirewave
velocities for thin penny-shaped dry cracks are shown inifeig.

RN M range of connectivity percolation threshold
3 ‘ ‘ P-waves
[ ! thin penny-shaped
08 - | dry cracks b
06 - i
> L
g
04 - non-interacting B
[| ——— KusterToksoez
[| — — self- consistent
02 L differential approx. \ i
num. res. intersecting cracks \
X num. res. nonintersecting cracks \ N
cut-off crack densities
‘ ‘ N ‘ ‘
0.2 0.4 0.6 0.8 1

Crack density p

Figure 4: Normalized effective velocity of compression&) waves versus crack densjyof intersect-

ing and non-intersecting penny-shaped cradhsts: Numerical results fomtersecting cracks. Crosses:
Numerical results for non-intersecting cracks. The dotted the dashed-dotted lines are predicted by the
theory of non-interacting cracks and the differential efffee medium (DEM) theory, respectively. The
solid line is the prediction by the Kuster-Toks6z approawti the dashed line represents the self consis-
tent approximation. The cut-off crack density of the selfisistent approximation and the Kuster-Toks6z
approach ig.y = 0.56 andp.s = 0.93, respectively. The arrow displays the range of the conviecti
percolation threshold (see Section ).

It is interesting to observe that the connectivity perdotathreshold (Eq. 16 and 17) cannot be clearly
detected in the seismic signatures of the numerical expartisn The difference of effective velocities for
intersecting or non-intersecting cracks is not signifidantrack densities below this range. Although the
effective medium theories described above are not derimeidfersecting cracks we test their applicability
for such media. Therefore, for comparison the predictiditisie theories are also depicted in Figure 4. For
the self-consistent approximation and the Kuster-Tokgiz@ach one can estimate an unphysical cut-off
crack density. ;. Atthis crack density the theories predict an effectiveei of zero forP- andS-waves.
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This cut-off crack density is not related to the rigidity pelation thresholg,..

Again, as for non-intersecting cracks, none of the thegmieside precise results for high crack densities.
However, the best fit between numerical results for highlcdensities and the theoretical predictions
gives the DEM theory. Along with the assumptipn >> p, this is again consistent with the findings of
Saenger and Shapiro (2002).

Numerical results for effectiveP- and Swave velocities for non-intersecting fluid-filled penny-saped
cracks

For the calculations of effects of penny-shaped fluid-fibeaicks we have used models No. 3.1-3.3, 4.1,
6.1-6.3 forP-waves and No. 3.1, 4.1, 5, 6.1-6.2 fBwaves (Table 1). The relative decrease of the normal-
ized effectiveP- andS-wave velocity in dependence of the crack dengity shown in Figure 5 and 6. For
comparison, the three effective medium theories for isdldfuid-filled cracks discussed in Section Il are
also displayed.

P-wav
0.98 | aves 1
thin penny-shaped
0.96 | fluid—filled cracks -
0.94 |
>
5 092 |
>
09 L| Gassmanrm self- con.
' Kuster-Toksoez
— — —  self- consistent
0.88 . .
differential approx.
. numerical results
0.86

0.025 0.05 0.075 0.1 0.125 0.15 0.175
Crack density p

Figure 5: Normalized effective velocity of compressionBH) waves versus crack densjyof fluid-filled
non-intersecting penny-shaped cracks. Dots: Numericailt® of this study. The error bar denotes the
standard deviation for different model realizations (sebl@ 1). The dashed-dotted line is predicted by
the differential effective medium (DEM) theory. The solidd is the prediction by the Kuster-Toks6z
approach and the dashed line is due to the self consistertdapyation. The dotted line is found by taking
the self-consistent effective moduli for dry cracks, anissting them with the Gassman-equation.

From the numerical point of view it is not possible to distiigh non-ambiguous which effective medium
theory gives the best prediction. The differences of therttical approaches for the investigated crack
densities are very low. Once again, as for empty cracks, aneletect the trend that the theories underes-
timate the effect of velocity-reduction caused by the isas. There is only a slight indication that the
self-consistent approach is superior to other theories.

Additionally, another interesting fact can be observedré combines the self-consistent theory to esti-
mate the dry rock moduli with the Gassmann-equation it isipbs to predict the low-frequency behavior
of the Squirt-model for fluid saturated rocks (Mavko et a@98). As discussed in section Il this is not
a valid assumption for our models used for the numericalidenations. This mismatch can clearly be
detected in the numeric&wave data (Figure 6). This is an additional indication fog sensitivity of our
numerical validation of effective medium theories.

Our numerical setup enables us to study 3D fractured mediaaxiact the same crack positions for fluid-
filled and for empty cracks (i.e. the dry rock frame is exatitly same in both simulations). Therefore we
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Figure 6: Same as Fig. 5 for shed®-§ waves.

can test the applicability of the Gassmann-equation for3@ufractured materials without any additional
effective medium theory. The calculated normalized effecthear moduli.* for fluid-filled and for empty
cracks are compared in Figure 7. There is a significant eiffee between both moduli below the range of
the connectivity percolation threshold. This bring us te tonclusion that the Gassmann-equation cannot
be applied to isolated fluid-filled cracks even with a low psityin the used models. From a practical point
of view this has the following consequence: If one applies@assmann-equation one has to distinguish
between the isolated fraction and the continuous fractidghefluid. The isolated fluid fraction should be
considered as a part of the 'dry’ rock frame.

1
S-waves
0.95 | § thin pgnnyshaped
. fluid—filled cracks
g 09t X
:S' L]
%
= 0.85 x
0.8 x num. res. fluid filled cracks x
o num. res. empty cracks —

0.025 0.05 0.075 0.1 0.125 0.15 0.175
Crack density p

Figure 7: Normalized effective shear moduli* calculated from the effective shear wave velocities de-
picted in Figure 3 and Figure 6. The dry rock frame is exadtly same for the used models with empty
(depicted with dots) and fluid-filled cracks (depicted withsses).
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Scattering attenuation for non-intersecting dry penny-staped cracks

In this section we consider the scattering attenuationficteft (Eq. 20) predicted by Hudson (1981). In
contrast to the velocity considerations we are intereste@¢ord the complete transmitted plane wave.
From the numerical point of view it is necessary to modify stendard model size used so far. Therefore
we use the models 7.1-7.3 with an extended total height €THpl

The frequency-depended relative attenuatias calculated by dividing the Fourier transform of the trans
mitted meanfield of the plane wave through the power spectrfutime incident plane wave. Additionally,
the attenuation coefficientis estimated by using = —(In A)/L (L denotes the length of the travel path).
A comparison of the results of the Hudson-approach and omnenigal results is shown in Figure 8. We
observe a very good agreement. The systematic oscillatidhe numerical results can be explained with
the relatively short travel path through the fractured raethd internal oscillations. Note, the observed
typical Rayleigh scattering is an additional indicatioattbur simulations represent the long wavelength
limit.

numerical result
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~ — — —  Hudson
power spectrum
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Figure 8: Top: The solid line displays the relation between power spedttaamsmitted (through the
region with empty penny-shaped cracks) and incident sighttie P-wave. The dashed line shows the
same quantity predicted by Hudson (1981) using Eq. 20. Tttedibne is the normalized power spectrum
of the generated plane P-wave of the simulation. The frecquenrresponding to the diameter of the cracks
is f = v,/ (2a) = 425000H 2. The crack density of the corresponding three models=s0.045. Bottom:
Same as Top, but now the attenuation coefficigns depicted. The fourth power dependence on frequency
f of Rayleigh scattering can be clearly observed.
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CONCLUSIONS

Finite-difference modeling of the elastodynamic wave ¢iguas very fast and accurate. We use the ro-
tated staggered FD grid to calculate elastic wave propagatifractured media. Our numerical modeling
of elastic properties of dry and fluid-saturated rock skeletcan be considered as an efficient and well
controlled computer experiment. In this paper we consideisdtropic fractured media with ellipsoidal
inclusions.

We have numerically tested effective velocity predictiofiglifferent theoretical approaches: The theory
for non-interacting cracks, the Kuster-Toks6z approale,self-consistent theory, the differential effec-
tive medium (DEM) theory and the Gassmann-equation. Forinmsecting dry and fluid-filled penny-
shaped cracks at slightly higher crack densities (belowctimnectivity percolation threshold for inter-
secting cracks) the self consistent theory is most suadesspredicting effective velocities folP- and
Swaves. The Gassmann-equation cannot be applied to iddlaté-filled cracks, even not in the case of
a low porosity.

The more realistic assumption (with respect to natural spok intersecting cracks is not included in the
effective medium theories described above. However, béf@wrange of the connectivity percolation
threshold the difference of effective velocities for irgecting and non-intersecting cracks is negligible.
For crack densities beyond this range the DEM (not deriveihtersecting cracks) is superior to apply.
Additionally, we have studied scattering attenuation efriteanfield. The attenuation coefficient predicted
by Hudson (1981) can be used for ellipsoidal high contrasdugions.
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