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ABSTRACT

This paper is concerned with numerical tests of several rockphysical relationships. The focus is on
effective velocities and scattering attenuation in 3D fractured media. We apply the so-called rotated
staggered finite difference grid (RSG) technique for numerical experiments. Using this modified grid
it is possible to simulate the propagation of elastic waves in a 3D medium containing cracks, pores or
free surfaces without hard-coded boundary conditions. We simulate the propagation of plane waves
through a set of randomly cracked 3D media. In these numerical experiments we vary the number
and the distribution of cracks. The synthetic results are compared with several (most popular) theories
predicting the effective elastic properties of fractured materials. We find that for randomly distributed
and randomly oriented non-intersecting thin penny-shapeddry cracks the numerical simulations ofP-
andS- wave velocities are in good agreement with the predictionsof the self-consistent approxima-
tion. We observe similar results for fluid-filled cracks. Thestandard Gassmann-equation cannot be
applied to our 3D fractured media although we have a very low porosity in our models. This is well
explained by the absence of a connected porosity. There is only a slight difference of effective veloc-
ities between the case of intersecting and non-intersecting cracks. This can be clearly demonstrated
up to a crack density which is close to the connectivity percolation threshold. For crack densities be-
yond this threshold we observe that the differential effective medium (DEM) theory have the best fit
with numerical results for intersecting cracks. Additionally it is shown that the scattering attenuation
coefficient (of the meanfield) predicted by the classical Hudson-approach is in an excellent agreement
with our numerical results.

INTRODUCTION

Discovering accurate relationships between pore structure and elastic properties of porous rocks is a long
standing problem in geophysics, material science, and solid mechanics. Understanding the interaction be-
tween rock, pore space and fluids and how they control rock properties is crucial to a better understanding
of acoustic and seismic data.
A range of different effective-medium theories (see Mavko et al. (1998) and references therein) give ex-
pressions for the overall properties of fractured media if the wavelength is large compared with the size of
inclusions. There is a general agreement of those theories for a dilute concentration of inclusions. How-
ever, there are considerable differences for higher concentrations. Therefore, it is necessary to validate the
different analytical predictions with experimental (e.g.Hudson et al. (2001)) or numerical data.
With this in mind Saenger and Shapiro (2002) presented an efficient and accurate way of finite-difference
(FD) computer simulations of wave propagation and effective elastic properties in 2D fractured media. The
present paper is a continuation of this work to three dimensional fractured media.
Spring network techniques (e.g. Garboczi and Day (1995); Garboczi and Berryman (2001); Ursenbach
(2001)) are an alternative numerical method to study elastic moduli of porous media. All these methods
are currently restricted to isotropic materials where the Poisson ratio cannot be chosen arbitrary. Attenua-
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tion effects also cannot be described with these methods, because they treat the static case.
Finite difference (FD) methods discretize the wave equation on a grid. They replace spatial derivatives by
FD operators using neighboring points. This discretization causes instability problems on a staggered grid
(Virieux, 1986) when the medium contains high contrast discontinuities (strong heterogeneities). These dif-
ficulties can be avoided by using the rotated staggered grid (RSG) technique (Saenger et al., 2000). Since
the FD approach is based on the wave equation without physical approximations, the method accounts not
only for direct waves, primary reflected waves, and multiplyreflected waves, but also for surface waves,
head waves, converted reflected waves, and diffracted wavesobserved in ray-theoretical shadow zones
(Kelly et al., 1976). Additionally, it accounts for the proper relative amplitudes. Consequently, we use this
numerical method for our considerations of 3D fractured materials.
This paper is splitted in two main parts. First, we review several theoretical predictions of effective elastic
properties of fractured media. In the second part we numerically validate the predictions. We explain our
simulation setup with a detailed estimation of sources of errors and discuss the numerical results.

THEORIES OF EFFECTIVE PROPERTIES IN 3D FRACTURED MEDIA

In this paper we consider wave propagation through a well defined fractured region with thin penny-shaped
cracks of equal form and size. For penny-shaped cracks (ellipsoidals with two major axis of equal size) one
has to distinguish between cracks with non-zero aspect ratio α and an aspect ratio equal zero. The latter
are refered to as disks. The commonly used crack density parameterρ to characterize fractured materials
is (Kachanov, 1992):

ρ =
1

V0
Na3 (1)

whereN is the total number of cracks,V0 is the representative volume element anda is the radius of the
penny-shaped cracks. The porosity is:

φ =
4

3
π

N

V0
a2d (2)

with a andd as major axis (= radius) and minor axis of ellipsoid, respectively. If all cracks have the same
ellipsoidal shape the relation between porosityφ and crack densityρ is (Cheng, 1993):

φ =
4

3
παρ (3)

with α = d/a as the aspect ratio of penny-shaped ellipsoidal cracks.

Effective moduli of 3D fractured media with non-intersecting thin penny-shaped dry cracks

To describe wave propagation in fractured media we considerfour different theories for thin dry penny
shaped cracks in 3D-media, namely, the “Kuster-Toksöz formulation”, the “Self-Consistent approxima-
tion”, the “Differential Effective Medium (DEM) theory” and the “Theory for non-interacting cracks”.
They can be used to predict effective wave velocities in the long wavelength approximation in dependency
on porosityφ or crack densityρ. A detailed review of these rock physical relationships canbe found in
Mavko et al. (1998). Our goal is to investigate their limit ofapplicability for relatively high crack densities.
Therefore, in order to compare our numerical results with these four theories we give here their respective
effective bulk modulusK∗(φ) or effective Young’s modulusE∗(φ) and effective shear modulusµ∗(φ).
For the case of penny-shaped dry cracks with aspect-ratioα one can obtain the following formulae where
Km, Em andµm are the bulk modulus, Young’s modulus and the shear modulus,respectively, of the ho-
mogeneous embedding.
Kuster and Toksöz (1974) derived expressions for effectiveelastic properties using a long wavelength first
order scattering theory. They are formally limited to low porosity:

(K∗(φ) − Km)
Km + 4

3µm

K∗(φ) + 4
3µm

= −φKmPm, (4)

(µ∗(φ) − µm)
µm + ζm

µ∗(φ) + ζm
= −φµmQm. (5)
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with:

Pm =
Km

παβm
, (6)
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5
∗
[
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8µm

πα(µm + 2βm)
+

4µm

3παβm

]
, (7)

and

β = µ
3K + µ

3K + 4µ
, (8)

ζ =
µ

6

9K + 8µ

K + 2µ
. (9)

In the self-consistent approximation (O’Connell and Budiansky, 1974) one still uses the mathematical
solution for the deformation of isolated inclusions, but the interaction of inclusions is approximated by
replacing the background medium with the a priori unknown effective medium (P andQ are given above):

K∗(φ) = Km (1 − φP ∗), (10)

µ∗(φ) = µm (1 − φQ∗), (11)

Note, the self-consistent approximation for randomly oriented inclusions agrees with the first order correc-
tions predicted by Hudson (1981).
The differential effective medium (DEM) theory models two-phase composites by incrementally adding
inclusions of one phase to the matrix phase. The predictionscan be expressed by two coupled linear dif-
ferential equations with initial conditionsK∗(0) = Km andµ∗(0) = µm which can be solved numerically
(Berryman, 1992):

(1 − φ)
d

dφ
[K∗(φ)] = −K∗(φ)P ∗, (12)

(1 − φ)
d

dφ
[µ∗(φ)] = −µ∗(φ)Q∗. (13)

Norris (1985) have shown that the DEM is realizable and therefore is always consistent with the Hashin-
Shtrikman upper and lower bounds (Hashin and Shtrikman, 1963).
The low aspect ratio of ellipsoidal cracks we used in our considerations makes it possible to compare the
results with effective medium theories constructed only for (flat) disks. The difference between low aspect
ratio ellipsoidal inclusions and disks does not significantly influence the predictions of the three theories
discussed above (compare with Douma (1988)). Hence, we include in our comparison of theories the
theory of non-interacting cracks (disks) of Kachanov (1992):

E∗(ρ) = Em

[
1 +

16(1 − ν2
m)(1 − 3νm/10)

9(1 − νm/2)
ρ

]−1

, (14)

µ∗(ρ) = µm

[
1 +

16(1 − νm)(1 − νm/5)

9(1 − νm/2)
ρ

]−1

, (15)

whereνm is the Poisson ratio of the background material.

Intersecting cracks

In the effective medium theories presented above the fractures are modeled as ellipsoidal cavities. As
mentioned by Schoenberg and Sayers (1995) real fractures donot resemble isolated voids in a solid matrix.
Borehole pictures, examination of outcrops, and rock fractured in the laboratory all indicate that fractures
have many points of contact along their length. Therefore weextend our numerical considerations to
intersecting cracks. This is beyond the validity of most effective media theories.
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For a random array of overlapping cracks it is possible to define a connectivity percolation thresholdρp.
At this crack density the crack-network allows fluid flow through the fractured rock. In the literature we
found two approaches with two substantially different predictions of this value for thin penny shaped cracks
(disks):

ρp = 1.8/π2 = 0.182 (Charlaix, 1986), (16)

ρp = 3.0/π2 = 0.304 (Garboczi et al., 1995). (17)

The authors of the later paper are puzzled by the reason for this disagreement because the study of Charlaix
(1986) does not reveal any obvious mistakes.
It is important to distinguish between the connectivity percolation threshold described above and the critical
porosity (e.g. Nur (1992); Mukerji et al. (1995); Saenger and Shapiro (2002)) at which rocks lose rigidity
and fall apart. The determination of the critical porosity (or critical crack densityρr) for randomly oriented
and randomly distributed thin penny-shaped cracks has not been documented in the literature so far to our
knowledge. But it is clear that the rigidity threshold characterized byρr is much larger than the connectivity
threshold (ρr >> ρp).

Fluid filled cracks

The “Kuster-Tuksöz formulation”, the “Self-Consistent approximation” and the “Differential Effective
Medium (DEM) theory” can be used also for fluid-filled cracks.For the exact analytical expressions we
refer to the references given in the previous sections. Note, since the cavities are isolated with respect to
flow, these approaches simulate the high frequency behaviorof saturated rocks (the high frequency limit
of the squirt model). This should not be confused with the fact that these theories are often termed low
frequency theories as inclusions dimensions are assumed tobe much smaller than a wavelength (Mavko
et al., 1998).
If all cracks were connected an alternative method to predict effective moduli of fluid-filled fractured media
would be the application of the Gassmann-equation (Gassmann, 1951):

Ksat
K0 − Ksat

=
Kdry

K0 − Kdry
+

Kfl
φ(K0 − Kfl)

(18)

µsat = µdry (19)

where

Kdry effective bulk modulus of dry rock

Ksat effective bulk modulus of the rock with pore fluid

K0 bulk modulus of mineral making up rock

Kfl effective bulk modulus of pore fluid

φ porosity

µdry effective shear modulus of dry rock

µsat effective shear modulus of rock with pore fluid

Again, in this equation both phases, the fluid and the mineral, are assumed to be continuous. This is not the
case for isolated penny-shaped cracks. However, we want to numerically clarify if the Gassmann-equation
can be used for such cracks in the low-porosity limit.

Scattering attenuation

Among other theories Hudson (1981) presents the attenuation coefficient (γp = ωQ−1/2vp, Q := quality
factor) for the mean field of elastic waves in fractured media. For randomly oriented cracks (isotropic
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distribution) the P-wave attenuation coefficient is given as:

γp =
ω
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ρ
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U1 =
16(λ + 2µ)

3(3λ + 4µ)
(23)

U3 =
4(λ + 2µ)

3(λ + µ)
(24)

The isotropic background elastic moduli areλ andµ (Lamé parameters) whilevp andvs denote the P- and
S-wave velocity, respectively. The fourth power dependence on angular frequencyω is characteristic of
Rayleigh scattering, which can only be observed if the wavelength is large compared to the dimension of
the scatterers.

NUMERICAL EXPERIMENTS

The propagation of elastic waves is described by the elastodynamic wave equation (e.g. Aki and Richards
(1980)):

ρg(r)üi(r) = (cijkl(r)uk,l(r)),j + fi(r). (25)

For modeling elastic waves at the positionr with finite-differences, it is necessary to discretize the stiffness
tensorcijkl, the (gravitational) densityρg, the displacement wave fieldui and the body forcefi on a grid.

Numerical setup

In order to test the different effective medium theories mentioned above we apply the so-called rotated stag-
gered FD scheme to model wave propagation in fractured media(Saenger et al., 2000). Before comparing
analytical predictions with numerical data it is necessaryto clarify how accurate the numerical calculations
are. After a detailed description of our modeling procedurewe will consider possible sources of numerical
errors.
We design a number of numerical elastic models (details can be found in Table 1) which include a re-
gion with a well known number of cracks and porosity. This fractured region (always from a depth of 173
gridpoints in the model) was filled at random with randomly oriented thin penny-shaped cracks. The imple-
mentation of the cracks on the 3D cubic FD grid is carried out by assigning crack properties to single neigh-
boring gridpoints. The best possible representation of a 3Dthin penny-shaped crack gives a rough disk-like
inclusion (due to discretization) with a thickness of one gridpoint. For models with non-intersecting cracks
the same procedure as in Davis and Knopoff (1995) and in Dahm and Becker (1998) is used: If two cracks
intersected during random selection, the more recent crackwas eliminated and a random choice was made
again. In Figure 1 we can see a typical model. All models are always discretized with an interval of
0.0002m. In the homogeneous regions we setvp = 5100 m/s, vs = 2944 m/s andρg = 2540 kg/m3.
For the dry penny-shaped cracks we setvp = 0 m/s, vs = 0 m/s andρg = 0.0001 kg/m3 which ap-
proximates vacuum. For the case of fluid-filled penny-shapedcracks we setvp = 1485 m/s, vs = 0 m/s
andρg = 1000 kg/m3 which approximates water. It is important to note that we perform our modeling
experiments with periodic boundary conditions in the two horizontal directions. For this reason our elastic
models are generated also with this periodicity. Hence, it is possible for a single crack to start at the right
side of the model and to end at its left side.

To obtain effective velocities in different models (with a different number of cracks) we apply a body
force plane source at the top of the model. The plane wave generated in this way propagates through the
fractured medium (see Figure 1). With two horizontal planesof receivers at the top and at the bottom,
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No. number crack size total porosity crack N
(allocation of radius of height φ density

number) cracks a cracked of of the ρ
[0.0002m] region model crack

[(0.0002m)3] [0.0002m] region

1 20 31.5 4003 805 0.0011 0.0098 1
2.1 - 2.3 40 31.5 4003 805 0.0023 0.0195 3
3.1 - 3.3 80 31.5 4003 805 0.0045 0.039 3
4.1 - 4.3 160 31.5 4003 805 0.0090 0.078 3

5 240 31.5 4003 805 0.0135 0.117 1
6.1 - 6.3 320 31.5 4003 805 0.0180 0.156 3
7.1 - 7.3 60 31.5 3002 × 400 1305 0.0060 0.052 3
8.1 - 8.3 30 41.5 2502 × 500 1305 0.0060 0.069 3

9.1x - 9.3x 40 31.5 4003 805 0.0023 0.0195 3
10.1x - 10.3x 80 31.5 4003 805 0.0044 0.039 3
11.1x - 11.3x 160 31.5 4003 805 0.0089 0.078 3
12.1x - 12.3x 320 31.5 4003 805 0.0179 0.156 3

13x 700 31.5 4003 805 0.038 0.342 1
14x 1000 31.5 4003 805 0.054 0.488 1
15x 1200 31.5 4003 805 0.065 0.585 1
16x 2000 31.5 4003 805 0.106 0.977 1

Table 1: Crack models for numerical calculations. The models with anx attached to its number have inter-
secting cracks. Note,0.0002m is the size of grid spacing and N denotes the number of model realizations.
The cracks can be fluid-filled or empty.

it is possible to measure the time-delay of the mean peak amplitude of the plane wave caused by the
inhomogeneous region. With the time-delay one can estimatethe effective velocity. Additionally, the
attenuation of the plane wave can be studied. The source wavelet in our experiments is always the first
derivative of a Gaussian with a dominant frequency of8 ∗ 105 1/s and with a time increment of∆t =
2.1 ∗ 10−8s. The resulting power spectrum of the plane P-wave is shown inFigure 8. Due to the size
of the models we have to use large-scale computers (e.g. CRAYT3E) with a MPI implementation of our
modeling software. In fact, the size-restriction of our models is mainly due to computational restrictions in
memory and CPU-time.
Similar to Garboczi and Berryman (2001), Ursenbach (2001) and Arns (2002) we detect three main sources
of error in our numerical calculations: (1) finite size effect, (2) digital resolution and (3) statistical variation.
Two other sources of error, specific for finite-difference solutions of the elastodynamic wave equation, are:
(4) numerical dispersion and (5) the general modeling accuracy for high-contrast inclusions.

(1) Finite size errors result from having a sample (fractured region) of finite size, where the largest
length scales of inclusions are of the order of the sample size. Samples at this scale can be not representative
any more, and the numerical data becomes noisy. Experience with many previous results (Garboczi and
Berryman, 2001; Saenger and Shapiro, 2002) has shown that having the ratio of the sample size to the
diameter of the penny-shaped crack to be about 7 makes finite size errors negligible.

(2) The digital resolution error comes from using a rectangular finite-difference grid. The crack geome-
tries have to be represented on this given grid-structure. We observe only very small variations among the
different crack sizes we have used (shown below). An important argument, that the digital resolution error
is below an acceptable level, is the fact that for low crack densities all theories and numerical results are in
a good agreement. However, this error is the most critical error in our numerical measurements (and in the
similar studies of Garboczi and Berryman (2001), Ursenbach(2001) and Arns (2002)).

(3) The statistical variation error comes about because themodels under consideration are random
ones. For a given crack density, there are many ways in which the cracks might be randomly arranged.
Each arrangement will have somewhat different effective elastic moduli, in general. The error bar in our
numerical results denotes the standard deviation for different model realizations. It can be observed that
this deviation is always very small.

(4) In order to reduce the dispersion error of the FD simulations we use only 54% of the allowed
maximum time increment (γ = 0.54 γmax; see Saenger et al. (2000)). All computations are performed
with second order spatial FD operators and with a second order time update. The number of grid points
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Figure 1: Left : A typical 3D fractured model with non-intersecting penny-shaped cracks (with radiusr =
31.5 grid points) used for the numerical experiments. We introduce a cracked region (400× 400× 400 grid
points) in a homogeneous material. At the top we place a smallstrip of vacuum. This is advantageous for
applying a body force plane source with the rotated staggered grid. Right: A z-displacement-snapshot of
a planeP-wave propagating through the fractured 3D model. We use a non-linear color scale to emphasize
the scattered wavefield. The visible discontinuities of thewavefield correspond to the crack locations
(compare with Figure on the left).

per wavelengthNλ is equal or greater than 100. Therefore, with this configuration our measurements are
for a homogeneous model with a crack density ofρ = 0 a velocity ofvp = 5102.91ms−1 (relative error:
0.057%) andvs = 2943.62ms−1 (relative error: 0.004%).

(5) Krüger et al. (2002) studied the numerical accuracy of the rotated staggered grid (RSG) for high con-
trast inclusions. They compared the analytically and numerically derived power spectra and seismograms
of SH-wave diffraction by a finite plane crack. Both approaches, the analytical solution of Sánchez-Sesma
and Iturrarán-Viveros (2001) and the numerical solution using the RSG, show an excellent correspondence.
A remarkable aspect is that for inclined cracks the numerical solution is still correct, even though the crack
is discretisized on a grid and does not have a perfect plane surface.

Numerical results for effectiveP- and S-wave velocities for non-intersecting dry penny-shaped cracks

Our numerical results for penny-shaped dry cracks are depicted by dots in Figure 2 and Figure 3. We
show the relative decrease of the normalized effectiveP- andS-wave velocity in dependence of the crack
densityρ. For the case of non-intersecting cracks we use models No. 1,2.1-2.3, 3.1-3.3, 4.1-4.3, 6.1-6.3,
7.1-7.3, 8.1-8.3 forP-waves and models No. 3.1, 4.1, 5, 6.1-6.2 forS-waves (Table 1). For comparison,
the predictions of the four theories described in previous Section are also shown. Note, it is not useful to
study higher crack densities than the connectivity percolation threshold (Eq. 16 and 17) for non-intersecting
cracks. For those high crack densities it is problematic to generate high order statistical independent crack
models (one has to remove too many cracks in the model build-up process).
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Figure 2: Normalized effective velocity of compressional (P-) waves versus crack densityρ of penny-
shaped cracks. Dots: Numerical results of this study. The error bars denote the standard deviation for
different model realizations (see Table 1). The dotted and the dashed-dotted line are predicted by the
theory of non-interacting cracks and the differential effective medium (DEM) theory, respectively. The
solid line is the prediction by the Kuster-Toksöz approach and the dashed line is due to the self consistent
approximation.
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Figure 3: Same as Fig. 2 for shear (S-) waves

The first conclusion is that none of the theories provides precise results for relatively high crack den-
sities. Overall, they tend to underestimate the effect of velocity-reduction by empty cracks. This can be
particularly observed for the theory of non-interacting cracks by Kachanov (1992). The best match to
the numerical estimates gives the self-consistent approximation (O’Connell and Budiansky, 1974). This is
most significant for the effectiveP-wave velocities. A comparison with experimental data described in a
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recent review of Hudson’s model for cracked media (Hudson etal., 2001) provides a similar conclusion.
As mentioned above the self-consistent approximation for randomly oriented inclusions agrees with the
first order corrections predicted by Hudson (1981).
At a first glance our 3D results seem to be in conflict with the numerical results of 2D fractured media
presented in Saenger and Shapiro (2002). They support in contrast to the 3D results themodified self-
consistent theory(similar to DEM) for relative high crack densities. However, a closer look to the 2D
results (Fig. 2 of Saenger and Shapiro (2002)) shows that at slightly higher crack densities (in a middle
range) the self-consistent theory and the numerical results have also a good agreement. A general underes-
timation of velocity-reduction by empty cracks by the 2D theory for non-interacting cracks by Kachanov
(1992) can be observed, too. Therefore, we assert that the 2Dand 3D results complement each other.

Numerical results for effectiveP-wave velocities for intersecting dry penny-shaped cracks

For intersecting cracks it is unproblematic to generate statistically independent models with high crack
densities because it is not necessary to eliminate intersecting cracks in the random generation process. The
details of the used models No. 9.1x-9.3x, 10.1x-10.3x, 11.1x-11.3x, 12.1x-12.3x, 13x, 14x, 15x, 16x with
intersecting cracks can be found in Table 1. The 3D numericalresults for the normalized effectiveP-wave
velocities for thin penny-shaped dry cracks are shown in Figure 4.
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num. res. non− intersecting cracks

P−waves
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range of connectivity percolation threshold

cut−off crack densities

Figure 4: Normalized effective velocity of compressional (P-) waves versus crack densityρ of intersect-
ing and non-intersecting penny-shaped cracks.Dots: Numerical results forintersecting cracks. Crosses:
Numerical results for non-intersecting cracks. The dottedand the dashed-dotted lines are predicted by the
theory of non-interacting cracks and the differential effective medium (DEM) theory, respectively. The
solid line is the prediction by the Kuster-Toksöz approach and the dashed line represents the self consis-
tent approximation. The cut-off crack density of the self-consistent approximation and the Kuster-Toksöz
approach isρcf = 0.56 andρcf = 0.93, respectively. The arrow displays the range of the connectivity
percolation threshold (see Section II).

It is interesting to observe that the connectivity percolation threshold (Eq. 16 and 17) cannot be clearly
detected in the seismic signatures of the numerical experiments. The difference of effective velocities for
intersecting or non-intersecting cracks is not significantfor crack densities below this range. Although the
effective medium theories described above are not derived for intersecting cracks we test their applicability
for such media. Therefore, for comparison the predictions of this theories are also depicted in Figure 4. For
the self-consistent approximation and the Kuster-Toksöz approach one can estimate an unphysical cut-off
crack densityρcf . At this crack density the theories predict an effective velocity of zero forP- andS-waves.
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This cut-off crack density is not related to the rigidity percolation thresholdρr.
Again, as for non-intersecting cracks, none of the theoriesprovide precise results for high crack densities.
However, the best fit between numerical results for high crack densities and the theoretical predictions
gives the DEM theory. Along with the assumptionρr >> ρp this is again consistent with the findings of
Saenger and Shapiro (2002).

Numerical results for effectiveP- and S-wave velocities for non-intersecting fluid-filled penny-shaped
cracks

For the calculations of effects of penny-shaped fluid-filledcracks we have used models No. 3.1-3.3, 4.1,
6.1-6.3 forP-waves and No. 3.1, 4.1, 5, 6.1-6.2 forS-waves (Table 1). The relative decrease of the normal-
ized effectiveP- andS-wave velocity in dependence of the crack densityρ is shown in Figure 5 and 6. For
comparison, the three effective medium theories for isolated fluid-filled cracks discussed in Section II are
also displayed.
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Figure 5: Normalized effective velocity of compressional (P-) waves versus crack densityρ of fluid-filled
non-intersecting penny-shaped cracks. Dots: Numerical results of this study. The error bar denotes the
standard deviation for different model realizations (see Table 1). The dashed-dotted line is predicted by
the differential effective medium (DEM) theory. The solid line is the prediction by the Kuster-Toksöz
approach and the dashed line is due to the self consistent approximation. The dotted line is found by taking
the self-consistent effective moduli for dry cracks, and saturating them with the Gassman-equation.

From the numerical point of view it is not possible to distinguish non-ambiguous which effective medium
theory gives the best prediction. The differences of the theoretical approaches for the investigated crack
densities are very low. Once again, as for empty cracks, one can detect the trend that the theories underes-
timate the effect of velocity-reduction caused by the inclusions. There is only a slight indication that the
self-consistent approach is superior to other theories.
Additionally, another interesting fact can be observed: Ifone combines the self-consistent theory to esti-
mate the dry rock moduli with the Gassmann-equation it is possible to predict the low-frequency behavior
of the Squirt-model for fluid saturated rocks (Mavko et al., 1998). As discussed in section II this is not
a valid assumption for our models used for the numerical considerations. This mismatch can clearly be
detected in the numericalS-wave data (Figure 6). This is an additional indication for the sensitivity of our
numerical validation of effective medium theories.
Our numerical setup enables us to study 3D fractured media with exact the same crack positions for fluid-
filled and for empty cracks (i.e. the dry rock frame is exactlythe same in both simulations). Therefore we



188 Annual WIT report 2002

0.025 0.05 0.075 0.1 0.125 0.15 0.175
Crack density ρ

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

V
ef

f/
V

S−waves

fluid− filled cracks
thin penny−shaped

Gassmann+ self- con..

Kuster−Toksoez

self- consistent

differential approx.

numerical results

Figure 6: Same as Fig. 5 for shear (S-) waves.

can test the applicability of the Gassmann-equation for our3D fractured materials without any additional
effective medium theory. The calculated normalized effective shear moduliµ∗ for fluid-filled and for empty
cracks are compared in Figure 7. There is a significant difference between both moduli below the range of
the connectivity percolation threshold. This bring us to the conclusion that the Gassmann-equation cannot
be applied to isolated fluid-filled cracks even with a low porosity in the used models. From a practical point
of view this has the following consequence: If one applies the Gassmann-equation one has to distinguish
between the isolated fraction and the continuous fraction of the fluid. The isolated fluid fraction should be
considered as a part of the ’dry’ rock frame.
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Figure 7: Normalized effective shear moduliµ∗ calculated from the effective shear wave velocities de-
picted in Figure 3 and Figure 6. The dry rock frame is exactly the same for the used models with empty
(depicted with dots) and fluid-filled cracks (depicted with crosses).
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Scattering attenuation for non-intersecting dry penny-shaped cracks

In this section we consider the scattering attenuation coefficient (Eq. 20) predicted by Hudson (1981). In
contrast to the velocity considerations we are interested to record the complete transmitted plane wave.
From the numerical point of view it is necessary to modify thestandard model size used so far. Therefore
we use the models 7.1-7.3 with an extended total height (Table 1).
The frequency-depended relative attenuationA is calculated by dividing the Fourier transform of the trans-
mitted meanfield of the plane wave through the power spectrumof the incident plane wave. Additionally,
the attenuation coefficientγ is estimated by usingγ = −(lnA)/L (L denotes the length of the travel path).
A comparison of the results of the Hudson-approach and our numerical results is shown in Figure 8. We
observe a very good agreement. The systematic oscillationsin the numerical results can be explained with
the relatively short travel path through the fractured media and internal oscillations. Note, the observed
typical Rayleigh scattering is an additional indication that our simulations represent the long wavelength
limit.
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Figure 8: Top: The solid line displays the relation between power spectra of transmitted (through the
region with empty penny-shaped cracks) and incident signalof the P-wave. The dashed line shows the
same quantity predicted by Hudson (1981) using Eq. 20. The dotted line is the normalized power spectrum
of the generated plane P-wave of the simulation. The frequency corresponding to the diameter of the cracks
is f = vp/(2a) = 425000Hz. The crack density of the corresponding three models isρ = 0.045. Bottom:
Same as Top, but now the attenuation coefficientγp is depicted. The fourth power dependence on frequency
f of Rayleigh scattering can be clearly observed.
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CONCLUSIONS

Finite-difference modeling of the elastodynamic wave equation is very fast and accurate. We use the ro-
tated staggered FD grid to calculate elastic wave propagation in fractured media. Our numerical modeling
of elastic properties of dry and fluid-saturated rock skeletons can be considered as an efficient and well
controlled computer experiment. In this paper we consider 3D isotropic fractured media with ellipsoidal
inclusions.
We have numerically tested effective velocity predictionsof different theoretical approaches: The theory
for non-interacting cracks, the Kuster-Toksöz approach, the self-consistent theory, the differential effec-
tive medium (DEM) theory and the Gassmann-equation. For non-intersecting dry and fluid-filled penny-
shaped cracks at slightly higher crack densities (below theconnectivity percolation threshold for inter-
secting cracks) the self consistent theory is most successful in predicting effective velocities forP- and
S-waves. The Gassmann-equation cannot be applied to isolated fluid-filled cracks, even not in the case of
a low porosity.
The more realistic assumption (with respect to natural rocks) of intersecting cracks is not included in the
effective medium theories described above. However, belowthe range of the connectivity percolation
threshold the difference of effective velocities for intersecting and non-intersecting cracks is negligible.
For crack densities beyond this range the DEM (not derived for intersecting cracks) is superior to apply.
Additionally, we have studied scattering attenuation of the meanfield. The attenuation coefficient predicted
by Hudson (1981) can be used for ellipsoidal high contrast inclusions.
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