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ABSTRACT

Finite differences applied to the full 3-D wave equation iather time consuming process. However,
in the 2.5-D situation, we can take advantage of the mediurmsstry. By taking the Fourier trans:
form with respect to the out-of-plane direction (symmeixisy the 3-D problem can be reduced to
repeated 2-D one. The third dimension is taken in to accoyiat$um over the corresponding wav
vector component. A criterion where to end this theordiiaafinite sum derives from stability con-
ditions of the employed FD schemes. In this way, the finittedéihces calculations can be accelerated
by a factor that increases with the size of the model. Evendiatively small models, this procedurg
reduces the computation time by a factor of about ten. Thealiragiresults obtained by this 2.5-0
finite-difference scheme are of comparable quality to adstesh3-D finite-difference scheme.
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INTRODUCTION

Finite Difference (FD) modeling of wave propagation in meteeneous media is a useful technique in a
number of disciplines, including seismology and ocean siicg} among others. However, the size of the
models that can be treated by finite difference methods eethpatial dimensions has been rather limited,
except possibly, on supercomputers.

In other forward modeling schemes, the medium symmetryénstircalled 2.5-D situation has been
made use of in order to reduce the computational costs. Thieust 2.5-D designates a situation where
the medium depends on two spatial coordinates only, andeiseng line is orthogonal to the symmetry
axis.

In Song & Williamson (1995) the authors have shown how a fidifference scheme can be adapted
to the 2.5-D situation. They reduce the full 3-D finite-diface scheme to a repeated 2-D FD scheme by
applying the Fourier transform with respect to the out-lafrRe coordinate to the 3-D wave equation and
using the medium symmetry. The resulting 2-D equation irftbguency domain is then solved by a finite
difference scheme. The full 3-D wavefield is finally reconsted by realizing a inverse Fourier transform
as a sum from 0 to the critical wavenumber. To validate thehodstthey compare the numerical solution
with the analytic solution for a homogeneous medium. Fomdmoimogeneous medium, the comparison
was with the 2.5-D FD solution and the Born approximationiphiis know to underestimate amplitudes).

Zhou & Greenhalgh (1998) presented a similar approachgukimwever, a finite element method in the
frequency domain to compute the numerical solution for #=ilting 2-D equation, with 2.5-D boundary
conditions. The frequency domain solution has a small eérrdhe neighborhood of the source. They
suspected that possible reasons for the error are the fartplsg of the wavenumber and the exclusion
of the evanescent field (post-critical reflection).

An idea similar to Song & Williamson’s was present by Cao & &rhalgh (1998). They compute the
stability condition for the resulting 2-D equation to caitthe size in time. Again, the sum for the inverse
Fourier transform is carried out up to the critical wavenemii he numerical comparison is done only for
homogeneous media.
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In this work, we apply the 2.5-D FD method in the time domatheathan in the frequency domain. In
this way, the numerical errors due to the wrapping of the napg-ourier transform reported by Song &
Williamson (1995) are avoided. Moreover, the inverse Fenuransform is realized by a simple sum over
all 2-D finite-difference results in order to obtain the f8ID wavefield. Of course, it is computationally
impossible to realize an infinite sum. We apply the von Neumaiterion for stability of the 2-D equa-
tion and use the stability condition of the 3-D finite diffaoe scheme of Mufty (1990). In this way, we
obtain a criterion where to stop the summation. We validateapproach for inhomogeneous media by a
comparison with 3-D finite difference modeling.

THE 2.5-D SOLUTION

We assume that the 3-D seismic wave propagation is govesnelacoustic wave equation with constant
density

Ugy + Uyy + Uzz = U%Utt —f)o(x —25)0(y — ys)(z — z5) , Q)

whereu = u(z,y, 2, t) is the acoustic wavefield, = v(z, y, z) is the velocity field,f(¢) is a band-limited
source, andzs, ys, z5) is the source location.

We assume that the velocity field is a functioraoéndz only, i.e.,v = v(z, z), and that the source
is located in the symmetry plang,(= 0). This is the so-called 2.5-D situation. Applying the Feuri
transform in the out-of-plane directio-€oordinate), the 3-D wave equation (1) can be reduced to the
following one

1
Usw — KU + U. = Uy — f(£)0(x — 24)0(2 — 25) 2)
v
where -
U=U(x,k,2,t) = / dy u(z,y, z,t) ey (3)

andk is the wavenumber for the-direction. Solving the 2-D equation (2) using a finite-difince scheme
for a discrete set of equally spaced, x; = jAk, the solution aty = 0 is then obtained by an inverse
Fourier transform, which can be approximated by

1 & ) A
u(z,0,2,t) = 2—/ dr Uz, k, 2,t) €0 ~ 2F U(z,kj,z,t) , 4)

s s
o k;>0

where we have used the fact tHafz, «, z, t) is an even function im. Equation (4) means that the field
u(z, 0, z,t) can be obtained by summing the contributions fowral> 0.

FINITE-DIFFERENCE FORMULAS

A set of indicesn, n andi is chosen to establish a finite-difference scheme with umifgrid spacingA«z,
Az andAt in z, z andt, respectivelyx,, = Tmin + m Az, 2, = Zmin + 1 Az andt; = tyin + 1 At
Consequently, we denote, for a fixedU (z,,,, &, zn, t;) = UL, ..

The finite-difference scheme for solving equation (2) wasse to be fourth-orderin space and second-
order in time (Strikwerda, 1989), and is given by

le;rrlz = —Qmn [Urln—z,n + U7ln+2.,n —16 (Ufn—Ln + Urln+1,n) + 30U7ln.,n]
B (Ul e + Ubypga = 16 (UL, oy + ULy ia) + 30U}, ]
—0’ACRUL L+ 20, — UL+ fh (5)
where 2 A 2 A
G =y A P =T A ©

vm.n, denotes the velocity &t:,,,, z,,), and

l _ f(tl) y T = Ts andz, = Zs, (7)
mn 0, otherwise.
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For initiating the propagation process, we set
Uy =0, forallm,n, (8)
and define the boundary conditions
Ul o=U, =0, forallm,n,l. (9)

We will consider a uniform grid spacing, i.eAx = Az = h. For the scheme (5) to be stable (see
Appendix A), we should have

32 2 \?
2
“+3m§<vm>’ (10)

and, since: must be real, equation (10) provides a condition betw&eandh, viz.,

mg¢§h, (11)
8 Umax

wherevy,., represents the maximum value of the velocity field.

We compare the numerical solution obtained by the proceswithed above with the one obtained by
a scheme of fourth-order in space and second-order in timteédull wave 3-D equation (1). For the 3-D
scheme, we have that the maximum valué:pthat can be used without causing excessive dispersion of
energy, is determined by the following condition (Mufti,a®

s
h S min ) (12)
ﬁfmax
Here, vy, is the minimum value of the velocity field,,.. is the maximum frequency of the source pulse,
andd is the number of samples per minimum wavelength (to be chodéareover, for a given value of
the grid spacing, the process becomes numerically unstiaidss the time sampling interval satisfies the
condition

h
A< 12 (13)

Um ax

where~ is a constant. According to Mulfti et al. (1996), the optimalues for the above parameters for
3-D FD arey = 0.5 and?y = 3.5.
Now, if we use the 3-D condition (13), which is slightly stger than the 2.5-D condition (11), in
equation (10), we obtain
43

RKmax S W (14)

Condition (14) can be used as a stop criterion for the sunométi equation (4). Note that condition (14)

is stronger than a condition based on the Nyquist critersee (e.g., Brigham, 1988) that would require
Kkmax < 7/h. To determine the sampling rate for the wavenumbBet)( we have used the property of the
discrete Fourier transform th&tx = 7/(Ymax — Ymin ), Where[ymin, ¥max| is the range in the out-of-plane

direction to be covered.

NUMERICAL EXPERIMENTS

We illustrate the 2.5-D finite-difference process discdssaove by means of two numerical experiments.
The first model consists of a homogeneous layer between twmbeneous half-spaces (see Figure 1).
The velocities, from top to bottom, are 3 m/ms, 3.5 m/ms, anu/ds, respectively. For this model, we
have simulated a split-spread experiment with a omnidoeat point source located at= 800 m and 41
receivers equally spaced at every 40 m between0 m andz = 1600 m.

Figure 2 shows the simulated seismic common-shot sectguitieg from the 2.5-D finite-difference
scheme, together with the corresponding section obtaised)wa 3-D finite-difference scheme. In both
schemes we have used a uniform spatial giid, = Ay = Az = 10 m, with time sampling interval
At = 1 ms. The source wavelet was chosen to be a Kipper wavelet gFarch Miller, 1971) with
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Figure 1: First model: Two interfaces, separating three homogenlagess

fmax =35 Hz. For the summation indicated in equation (4) for theeise Fourier transform, we take
Ak = 0.0005 m~! andkmax = 0.22 m~!L. All parameters used are clearly in accordance with therait
described in the previous section. We observe in Figure 2hblh FD schemes yield the expected two
reflection events with apparently identical kinematicsivaf time) and dynamics (amplitude). Note that
the numerical noise reported by Song and Williamson (198bjieir frequency-domain scheme cannot
be observed in the data in Figure 2, modeled by our time-dostieme.

Since the two modeled sections in Figure 2 obtained by thé&2ahd 3-D schemes look almost iden-
tical, we proceed with a comparison of some selected trabege to the symmetry of the model, the
simulated seismic section is symmetric with respect to thece position. Therefore, we choose only
traces recorded to the left of the source, at the positioas) m, z = 250 m, z = 550 m, andz = 800 m.

In the trace-by-trace comparison depicted in Figure 3, &@msost impossible to distinguish between the
two modeling results. In Figure 4 we show the differences/ben the respective traces. Observe that the
percentage error is smaller than 2.5%. So, for all practiogboses, the 2.5-D FD scheme is as accurate as
the 3-D scheme.

The second model has also two interfaces (see Figure 5) hanektocities of the layers, from top to
bottom, are 2.5 m/ms, 3 m/ms, and 3.5 m/ms, respectively.

As before, we have simulated a split-spread experimentavidmnidirectional point source located at
2 = 0 m and 61 receivers equally spaced at every 25 m between-750 m andxz = 750 m. We have
used the same discretization and wavelet as in the firstiemget. In this situation, the recorded wavefield
has encountered a caustic and a diffraction. In Figure 6 \wwe& $he common-shot section for both finite-
difference schemes (2.5-D and 3-D). As for the first mode, dimulated seismic sections are practically
identical (kinematics and dynamicly).

For a better visualization, we compare in Figures 7 and 8 thdeted traces at = —750m, x =
—550m, z = —350m,z = —150m, z = 75m, z = 300m, z = 525m, andz = 750m. From this trace-by-
trace comparison, we can observe that both the 2.5-D and B-Bchemes yield almost the same results
for both the reflection and diffraction events (see, e.@ tthce at: = 300 m). Figures 9 and 10 show the
differences between traces, where we observe that, abaipgrcentage error is always less the 2.5%.

CONCLUSIONS

We have used a similar approach of Song and Williamson (1@98ke advantage of the medium symme-
try in the 2.5-D situation to accelerate the finite-differertomputation of 3-D wave propagation. The full
3-D solution can be recovered as a summation of 2-D solutd@sD differential equations that are ob-
tained from the original 3-D wave equation after the appiicaof the Fourier transform in the-direction.
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Figure 2: Synthetic seismograms (First Model): (a) 2.5-D FD. (b) 31D F

In this way, the finite differences calculations can be aregéd by a factor that increases with the size of
the model.

The numerical solutions of the wave equation have been ctedpwy finite difference schemes of
fourth-order in space and second-order in time. Our appréadeveloped in the time domain, unlike
Song and Williamson (1995) who work in the frequency domain.

For simple models consisting of smooth reflectors betweendgeneous acoustic media, we have
compared the developed 2.5-D finite-difference schemetiéltorresponding solution using a 3-D finite-
difference scheme. We observed in all cases (two typicaheles are shown in this paper) that the wave-
field modeled by 2.5-D finite differences agrees very welhwtiite 3-D results.

We have also derived a criterion about where to terminatevéhveenumber summation that realizes the
inverse Fourier transform of the modeled wavefield.
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APPENDIX A
STABILITY CONDITIONS

In a similar way to Mufti (1990), we use the von Neumann cidterto obtain the stability condition for
the FD scheme given by equation (5). That is, we substitistg, = ¢'e? ®= A% %v A in equation (5)
and obtain the amplification factgr= ¢(x,Ax, k. Az), which is given by the solution of the following
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Figure 4: First model: Differences of traces modeled by 2.5-D FD (eéddme) and 3-D FD (dotted line).
Trace at (a) = Om, (b)z = 250m, (c)z = 550m and (d)z = 800m.

guadratic equation

€2 _ _6 {Oé [(e—QinmAz + eQinmAw) _ 16(e—ir€mAz + eiﬁmAI) + 30}
+ﬁ [(e—QinzAz + eQiFizAz) _ 16(6—1'HZAZ + einzAz) + 30]}
+(vr A)ZEF26 1. (15)

Here, for simplicity, o = v, 8 = Bm,n andv = v,, ,,. The solution is easily computed as

E=v£V7 -1, (16)

where

At 2 IAI IAI ZAZ ZAZ
yo1 o WRADT o n2 el (g G ale ) gpo o fels (o @ aReB2) g
2 2 2 2 2
For stability, we must havg| < 1 (Strikwerda, 1989), which implielsy| < 1. If we use a uniform
grid, i.e.,Az = Az = h, this condition reduces to

(v Kk At)? 21}2 At?

5 37 [(3 +sin? ) sin® @ + (3 + sin® ¢) sin® ¢] < 2, (18)

0<

where A A
9:'“25‘“', and ¢='€22Z. (19)

The left-hand side of inequality (18) is clearly satisfiecheTmaximum of the above expression occurs

whensin?# = sin? ¢ = 1. Using these values in the right-hand-side of inequali)(ive obtain the

following condition forx, At andh,
2 2 \?
K24 52 ( ) . (20)

3n2 — \wAt



Annual WIT report 2002 259

Ok

200 B

v1=2500 m/s
400+ B

600 -

800*\,2:3000 m/s /\/4
1000 B

Depth [m]

—1500 —1000 -500 (@] 500 1000 1500
Distance [m]
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Figure 8: Second model: Comparison of traces modeled by 2.5-D FD é&iblshe)and 3-D FD (dotted
line). Trace at (&) = 75m, (b)z = 300m, (c)z = 525m and (d)z = 750m.
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Figure 9: Second model: Difference of traces modeled by 2.5-D FD abd=B. Trace at (ay = —750m,
(b) x = —550m, (¢)x = —350m and (d)x = —150m.
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Figure 10: Second model: Difference of traces modeled by 2.5-D FD aBdRD. Trace at (ax = 75m,
(b) 2 = 300m, (c)xz = 525m and (d)z = 750m.



