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ABSTRACT

Finite differences applied to the full 3-D wave equation is arather time consuming process. However,
in the 2.5-D situation, we can take advantage of the medium symmetry. By taking the Fourier trans-
form with respect to the out-of-plane direction (symmetry axis), the 3-D problem can be reduced to a
repeated 2-D one. The third dimension is taken in to account by a sum over the corresponding wave
vector component. A criterion where to end this theoretically infinite sum derives from stability con-
ditions of the employed FD schemes. In this way, the finite differences calculations can be accelerated
by a factor that increases with the size of the model. Even forrelatively small models, this procedure
reduces the computation time by a factor of about ten. The modeling results obtained by this 2.5-D
finite-difference scheme are of comparable quality to a standard 3-D finite-difference scheme.

INTRODUCTION

Finite Difference (FD) modeling of wave propagation in heterogeneous media is a useful technique in a
number of disciplines, including seismology and ocean acoustics, among others. However, the size of the
models that can be treated by finite difference methods in three spatial dimensions has been rather limited,
except possibly, on supercomputers.

In other forward modeling schemes, the medium symmetry in the so-called 2.5-D situation has been
made use of in order to reduce the computational costs. The attribute 2.5-D designates a situation where
the medium depends on two spatial coordinates only, and the seismic line is orthogonal to the symmetry
axis.

In Song & Williamson (1995) the authors have shown how a finitedifference scheme can be adapted
to the 2.5-D situation. They reduce the full 3-D finite-difference scheme to a repeated 2-D FD scheme by
applying the Fourier transform with respect to the out-of-plane coordinate to the 3-D wave equation and
using the medium symmetry. The resulting 2-D equation in thefrequency domain is then solved by a finite
difference scheme. The full 3-D wavefield is finally reconstructed by realizing a inverse Fourier transform
as a sum from 0 to the critical wavenumber. To validate the method, they compare the numerical solution
with the analytic solution for a homogeneous medium. For an inhomogeneous medium, the comparison
was with the 2.5-D FD solution and the Born approximation (which is know to underestimate amplitudes).

Zhou & Greenhalgh (1998) presented a similar approach, using, however, a finite element method in the
frequency domain to compute the numerical solution for the resulting 2-D equation, with 2.5-D boundary
conditions. The frequency domain solution has a small errorin the neighborhood of the source. They
suspected that possible reasons for the error are the finite sampling of the wavenumber and the exclusion
of the evanescent field (post-critical reflection).

An idea similar to Song & Williamson’s was present by Cao & Greenhalgh (1998). They compute the
stability condition for the resulting 2-D equation to control the size in time. Again, the sum for the inverse
Fourier transform is carried out up to the critical wavenumber. The numerical comparison is done only for
homogeneous media.
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In this work, we apply the 2.5-D FD method in the time domain rather than in the frequency domain. In
this way, the numerical errors due to the wrapping of the temporal Fourier transform reported by Song &
Williamson (1995) are avoided. Moreover, the inverse Fourier transform is realized by a simple sum over
all 2-D finite-difference results in order to obtain the full3-D wavefield. Of course, it is computationally
impossible to realize an infinite sum. We apply the von Neumann criterion for stability of the 2-D equa-
tion and use the stability condition of the 3-D finite difference scheme of Mufty (1990). In this way, we
obtain a criterion where to stop the summation. We validate our approach for inhomogeneous media by a
comparison with 3-D finite difference modeling.

THE 2.5-D SOLUTION

We assume that the 3-D seismic wave propagation is governed by the acoustic wave equation with constant
density

uxx + uyy + uzz =
1

v2
utt − f(t)δ(x − xs)δ(y − ys)δ(z − zs) , (1)

whereu ≡ u(x, y, z, t) is the acoustic wavefield,v ≡ v(x, y, z) is the velocity field,f(t) is a band-limited
source, and(xs, ys, zs) is the source location.

We assume that the velocity field is a function ofx andz only, i.e.,v ≡ v(x, z), and that the source
is located in the symmetry plane (ys = 0). This is the so-called 2.5-D situation. Applying the Fourier
transform in the out-of-plane direction (y-coordinate), the 3-D wave equation (1) can be reduced to the
following one

Uxx − κ2U + Uzz =
1

v2
Utt − f(t)δ(x − xs)δ(z − zs) , (2)

where

U ≡ U(x, κ, z, t) =

∫ ∞

−∞
dy u(x, y, z, t) e−iκy , (3)

andκ is the wavenumber for they-direction. Solving the 2-D equation (2) using a finite-difference scheme
for a discrete set of equally spacedκ’s, κj = j∆κ, the solution aty = 0 is then obtained by an inverse
Fourier transform, which can be approximated by

u(x, 0, z, t) =
1

2π

∫ ∞

−∞
dκ U(x, κ, z, t) eiκ0 ≈ ∆κ

π

∑

kj≥0

U(x, κj , z, t) , (4)

where we have used the fact thatU(x, κ, z, t) is an even function inκ. Equation (4) means that the field
u(x, 0, z, t) can be obtained by summing the contributions for allκj ≥ 0.

FINITE-DIFFERENCE FORMULAS

A set of indicesm, n andl is chosen to establish a finite-difference scheme with uniform grid spacing∆x,
∆z and∆t in x, z andt, respectively:xm = xmin + m ∆x, zn = zmin + n ∆z andtl = tmin + l ∆t.
Consequently, we denote, for a fixedκ, U(xm, κ, zn, tl) = U l

m,n.
The finite-difference scheme for solving equation (2) was chosen to be fourth-order in space and second-

order in time (Strikwerda, 1989), and is given by

U l+1
m,n = −αm,n

[
U l

m−2,n + U l
m+2,n − 16

(
U l

m−1,n + U l
m+1,n

)
+ 30U l

m,n

]

−βm,n

[
U l

m,n−2 + U l
m,n+2 − 16

(
U l

m,n−1 + U l
m,n+1

)
+ 30U l

m,n

]

−v2∆t2κ2U l
m,n + 2U l

m,n − U l−1
m,n + f l

m,n , (5)

where

αm,n =
v2

m,n

12

∆t2

∆x2
, βm,n =

v2
m,n

12

∆t2

∆z2
, (6)

vm,n denotes the velocity at(xm, zn), and

f l
m,n =

{
f(tl) , xm = xs andzn = zs,
0 , otherwise.

(7)
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For initiating the propagation process, we set

U0
m,n = 0, for all m, n , (8)

and define the boundary conditions

U l
m,0 = U l

0,n = 0, for all m, n, l . (9)

We will consider a uniform grid spacing, i.e.,∆x = ∆z = h. For the scheme (5) to be stable (see
Appendix A), we should have

κ2 +
32

3 h2
≤
(

2

v ∆t

)2

, (10)

and, sinceκ must be real, equation (10) provides a condition between∆t andh, viz.,

∆t ≤
√

3

8

h

vmax
, (11)

wherevmax represents the maximum value of the velocity field.
We compare the numerical solution obtained by the process described above with the one obtained by

a scheme of fourth-order in space and second-order in time for the full wave 3-D equation (1). For the 3-D
scheme, we have that the maximum value ofh, that can be used without causing excessive dispersion of
energy, is determined by the following condition (Mufti, 1990)

h ≤ vmin

ϑfmax
. (12)

Here,vmin is the minimum value of the velocity field,fmax is the maximum frequency of the source pulse,
andϑ is the number of samples per minimum wavelength (to be chosen). Moreover, for a given value of
the grid spacing, the process becomes numerically unstableunless the time sampling interval satisfies the
condition

∆t ≤ γ h

vmax
, (13)

whereγ is a constant. According to Mufti et al. (1996), the optimal values for the above parameters for
3-D FD areγ = 0.5 andϑ = 3.5.

Now, if we use the 3-D condition (13), which is slightly stronger than the 2.5-D condition (11), in
equation (10), we obtain

κmax ≤ 4
√

3

3h
. (14)

Condition (14) can be used as a stop criterion for the summation in equation (4). Note that condition (14)
is stronger than a condition based on the Nyquist criterion (see, e.g., Brigham, 1988) that would require
κmax ≤ π/h. To determine the sampling rate for the wavenumber (∆κ), we have used the property of the
discrete Fourier transform that∆κ = π/(ymax − ymin), where[ymin, ymax] is the range in the out-of-plane
direction to be covered.

NUMERICAL EXPERIMENTS

We illustrate the 2.5-D finite-difference process discussed above by means of two numerical experiments.
The first model consists of a homogeneous layer between two homogeneous half-spaces (see Figure 1).
The velocities, from top to bottom, are 3 m/ms, 3.5 m/ms, and 4m/ms, respectively. For this model, we
have simulated a split-spread experiment with a omnidirectional point source located atx = 800 m and 41
receivers equally spaced at every 40 m betweenx = 0 m andx = 1600 m.

Figure 2 shows the simulated seismic common-shot section resulting from the 2.5-D finite-difference
scheme, together with the corresponding section obtained using a 3-D finite-difference scheme. In both
schemes we have used a uniform spatial grid,∆x = ∆y = ∆z = 10 m, with time sampling interval
∆t = 1 ms. The source wavelet was chosen to be a Küpper wavelet (Fuchs and Müller, 1971) with
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Figure 1: First model: Two interfaces, separating three homogeneouslayers

fmax =35 Hz. For the summation indicated in equation (4) for the inverse Fourier transform, we take
∆κ = 0.0005 m−1 andκmax = 0.22 m−1. All parameters used are clearly in accordance with the criteria
described in the previous section. We observe in Figure 2 that both FD schemes yield the expected two
reflection events with apparently identical kinematics (arrival time) and dynamics (amplitude). Note that
the numerical noise reported by Song and Williamson (1995) for their frequency-domain scheme cannot
be observed in the data in Figure 2, modeled by our time-domain scheme.

Since the two modeled sections in Figure 2 obtained by the 2.5-D and 3-D schemes look almost iden-
tical, we proceed with a comparison of some selected traces.Due to the symmetry of the model, the
simulated seismic section is symmetric with respect to the source position. Therefore, we choose only
traces recorded to the left of the source, at the positionsx = 0 m, x = 250 m, x = 550 m, andx = 800 m.
In the trace-by-trace comparison depicted in Figure 3, it isalmost impossible to distinguish between the
two modeling results. In Figure 4 we show the differences between the respective traces. Observe that the
percentage error is smaller than 2.5%. So, for all practicalpurposes, the 2.5-D FD scheme is as accurate as
the 3-D scheme.

The second model has also two interfaces (see Figure 5), and the velocities of the layers, from top to
bottom, are 2.5 m/ms, 3 m/ms, and 3.5 m/ms, respectively.

As before, we have simulated a split-spread experiment witha omnidirectional point source located at
x = 0 m and 61 receivers equally spaced at every 25 m betweenx = −750 m andx = 750 m. We have
used the same discretization and wavelet as in the first experiment. In this situation, the recorded wavefield
has encountered a caustic and a diffraction. In Figure 6 we show the common-shot section for both finite-
difference schemes (2.5-D and 3-D). As for the first model, the simulated seismic sections are practically
identical (kinematics and dynamicly).

For a better visualization, we compare in Figures 7 and 8 the modeled traces atx = −750m, x =
−550m,x = −350m,x = −150m,x = 75m,x = 300m,x = 525m, andx = 750m. From this trace-by-
trace comparison, we can observe that both the 2.5-D and 3-D FD schemes yield almost the same results
for both the reflection and diffraction events (see, e.g., the trace atx = 300 m). Figures 9 and 10 show the
differences between traces, where we observe that, again, the percentage error is always less the 2.5%.

CONCLUSIONS

We have used a similar approach of Song and Williamson (1995)to take advantage of the medium symme-
try in the 2.5-D situation to accelerate the finite-difference computation of 3-D wave propagation. The full
3-D solution can be recovered as a summation of 2-D solutionsof 2-D differential equations that are ob-
tained from the original 3-D wave equation after the application of the Fourier transform in they-direction.
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Figure 2: Synthetic seismograms (First Model): (a) 2.5-D FD. (b) 3-D FD.

In this way, the finite differences calculations can be accelerated by a factor that increases with the size of
the model.

The numerical solutions of the wave equation have been computed by finite difference schemes of
fourth-order in space and second-order in time. Our approach is developed in the time domain, unlike
Song and Williamson (1995) who work in the frequency domain.

For simple models consisting of smooth reflectors between homogeneous acoustic media, we have
compared the developed 2.5-D finite-difference scheme withthe corresponding solution using a 3-D finite-
difference scheme. We observed in all cases (two typical examples are shown in this paper) that the wave-
field modeled by 2.5-D finite differences agrees very well with the 3-D results.

We have also derived a criterion about where to terminate thewavenumber summation that realizes the
inverse Fourier transform of the modeled wavefield.
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Figure 3: First model: Comparison of traces modeled by 2.5-D FD (dashed line) and 3-D FD (dotted line).
Trace at (a)x = 0m, (b)x = 250m, (c)x = 550m and (d)x = 800m.
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APPENDIX A

STABILITY CONDITIONS

In a similar way to Mufti (1990), we use the von Neumann criterion to obtain the stability condition for
the FD scheme given by equation (5). That is, we substituteUm,n = ξlei κx ∆xei κy ∆y in equation (5)
and obtain the amplification factorξ ≡ ξ(κx∆x, κz∆z), which is given by the solution of the following
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Figure 4: First model: Differences of traces modeled by 2.5-D FD (dashed line) and 3-D FD (dotted line).
Trace at (a)x = 0m, (b)x = 250m, (c)x = 550m and (d)x = 800m.

quadratic equation

ξ2 = −ξ
{
α
[
(e−2iκx∆x + e2iκx∆x) − 16(e−iκx∆x + eiκx∆x) + 30

]

+β
[
(e−2iκz∆z + e2iκz∆z) − 16(e−iκz∆z + eiκz∆z) + 30

]}

+(v κ ∆t)2ξ + 2ξ − 1 . (15)

Here, for simplicity,α = αm,n, β = βm,n andv = vm,n. The solution is easily computed as

ξ = γ ±
√

γ2 − 1 , (16)

where

γ = 1 − (v κ ∆t)2

2
− 8α sin2 κx∆x

2

(
3 + sin2 κx∆x

2

)
− 8β sin2 κz∆z

2

(
3 + sin2 κz∆z

2

)
. (17)

For stability, we must have|ξ| ≤ 1 (Strikwerda, 1989), which implies|γ| ≤ 1. If we use a uniform
grid, i.e.,∆x = ∆z = h, this condition reduces to

0 ≤ (v κ ∆t)2

2
+

2

3

v2 ∆t2

h2
[(3 + sin2 θ) sin2 θ + (3 + sin2 φ) sin2 φ] ≤ 2 , (18)

where

θ =
κx∆x

2
, and φ =

κz∆z

2
. (19)

The left-hand side of inequality (18) is clearly satisfied. The maximum of the above expression occurs
whensin2 θ = sin2 φ = 1. Using these values in the right-hand-side of inequality (18), we obtain the
following condition forκ, ∆t andh,

κ2 +
32

3h2
≤
(

2

v∆t

)2

. (20)
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Figure 5: Second Model: two interfaces, separating three homogeneous layers
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Figure 6: Synthetic seismograms (Second Model): (a) 2.5-D FD. (b) 3-DFD.
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Figure 7: Second model: Comparison of traces modeled by 2.5-D FD (dashed line)and 3-D FD (dotted
line). Trace at (a)x = −750m, (b)x = −550m, (c)x = −350m and (d)x = −150m.
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Figure 8: Second model: Comparison of traces modeled by 2.5-D FD (dashed line)and 3-D FD (dotted
line). Trace at (a)x = 75m, (b)x = 300m, (c)x = 525m and (d)x = 750m.
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Figure 9: Second model: Difference of traces modeled by 2.5-D FD and 3-D FD. Trace at (a)x = −750m,
(b) x = −550m, (c)x = −350m and (d)x = −150m.
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Figure 10: Second model: Difference of traces modeled by 2.5-D FD and 3-D FD. Trace at (a)x = 75m,
(b) x = 300m, (c)x = 525m and (d)x = 750m.


