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ABSTRACT

We calculate the variance of the log-amplitude within the Rytov approximation for plane waves prop-
agating in weakly inhomogeneous and statistically anisotropic random media. Since there is a simple
relation between the log-amplitude variance and the attenuation coefficient of seismic primaries in the
weak wavefield fluctuation regime, we also obtain scatteringattenuation estimates which additionally
depend on the aspect ratio of longitudinal and transverse correlation scales of the inhomogeneities.
These estimates can be useful for the statistical characterization of anisotropic, large-scale inhomo-
geneities (large compared to the wavelength of the probing pulse) in the Earth crust and mantle, such as
fault zones. With help of plane-wave-transmission numerical experiments using the finite-difference
method we compute the log-amplitude variance as a function of the propagation distance and observe
reasonable agreement with the analytical results. We discuss the implications of our results in the
context of seismic scattering attenuation estimations.

INTRODUCTION

In seismology it is common practice to analyze the amplitudeand phase fluctuations of transmitted and
reflected seismic signals in order to statistically characterize the subsurface heterogeneities. In particu-
lar, the Rytov approximation for the variance of the log-amplitude and phase fluctuations of diffracted
and refracted waves has been applied in several studies (Wu and Flatté, 1990, Sato and Fehler, 1998 and
references therein, Tripathi, 2001). For example, Wu and Flatté derived from seismograms of the NOR-
SAR array the log-amplitude and phase (and their cross-) correlation function and modeled them with the
corresponding correlation functions for isotropic randommedia. It is well-known that the diffraction and
refraction of waves atrandomlydistributed inhomogeneities results in a random focusing and defocusing
of wave energy and consequently results in an increase of theamplitude fluctuations with increasing prop-
agation distances (Rytov et al., 1989). Diffraction of seismic waves becomes noticeable if the size of an
inhomogeneity exceeds the wavelength. A measure that distinguishes the importance of diffraction and
refraction effects is the wave parameterD, which is defined as the ratio of the size of the Fresnel zone and
the characteristic length scale of the inhomogeneities (ifD � 1 refraction prevails, whereas forD � 1
both, diffraction and refraction effects occur). Shapiro and Kneib (1993) showed that the variance of the
log-amplitude fluctuations is directly related to the coefficient of scattering attenuation and thus to the scat-
tering quality factor, which is another important quantityin order to characterize the propagation medium.

All the above-mentioned works use the model of an isotropic random medium. There is, however, a
lot of evidence that at some sites the heterogeneities of thecrust are anisotropic. Indeed, from the analysis
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of well-log data at the KTB deep borehole, Wu et al. (1994) suggested a model of randomly distributed
velocity inhomogeneities with a lateral characteristic scale of 3.6km and a vertical scale of2km. Also
parts of the lithospheric mantle are assumed to be composed of anisotropic heterogeneities. Ryberg et al.
(1995) deduced from short period wavefield data recorded on aprofile across Northern Eurasia that this
zone contains randomly distributed, spatially anisotropic velocity fluctuations, which are ’stretched’ in the
horizontal direction. Based on a modeling study of these data, Tittgemeyer et al. (1999) provide a generic
description of lower-crust and upper-mantle heterogeneities with a ratio of anisotropy (the aspect ratio
of vertical and horizontal correlation scale) of≈ 0.25. Analyzing the P-coda characteristics in seismo-
grams from local events at the San Jacinto fault zone, Wagner(1998) concluded that a model of a grossly
plane-layered structure statistically described by a spatially anisotropic correlation function would be most
consistent with the observations. He raised concern about the ’overlooked alternative’ to allow the hetero-
geneities to be spatially anisotropic. Thus, when analyzing the statistical properties of wavefields recorded
in such regions it is necessary to include the anisotropy of the inhomogeneities (this is also pointed out
in the book of Sato and Fehler, 1998. Estimates of the strength of the medium perturbations, their cor-
relation properties and of the quality factor will be strongly affected if the model of statically isotropic
inhomogeneities is generalized such that also anisotropicinhomogeneities are permitted. To our knowl-
edge, there exist no explicit results how large-scale, anisotropic inhomogeneities affect the amplitudes of
seismic primaries.

Kon (1994) presented a qualitative theory of amplitude and phase fluctuations due to diffraction in
anisotropic, turbulent media based on the consideration ofrandomly distributed, collecting and diverging
lenses (the isotropic case has been previously discussed inthis manner by Rytov et al., 1989. He showed
that waves propagating along the short axis of inhomogeneities exhibit decreasing amplitude and phase
fluctuations as compared to the isotropic case. Contrarily,waves propagating parallel to the long axis of
the inhomogeneities show stronger fluctuations (see Figure1). In order to describe the statistical moments
in weakly inhomogeneous media the Markov and the Rytov approximations are frequently employed (Ry-
tov et al., 1989). Both approximations are restricted by thesmall-angle scattering (or equivalently forward
scattering) assumption. Dashen (1979) argues that the Markov approximation can fail in anisotropic ran-
dom media because the scattering angles grow successively while the wave passes from one inhomogeneity
to the next (this effect is most pronounced when the wave initially propagates along the long axis of the
inhomogeneities). It may be suspected that the same argumentation holds for the Rytov approximation. By
solving the single scattering problem for anisotropic heterogeneities (with the corelation scalesax, ay and
az, whereax = az � ay), Beran and McCoy (1974) showed that for the casekax � 1 (k is the wavenum-
ber) the scattering angles in the directionsx, z andy are of the orderθx,z = O( 1

kax
) andθy = O( 1√

kax
),

respectively. They concluded that a more stringent condition for the validity of small-angle scattering
approximations must be imposed as compared with the isotropic scattering problem, whereθ = O( 1

ka ).

a) b)

Figure 1: Geometry for wave propagation in anisotropic random media.Two cases are of particular
interest: a) main direction of wave propagation parallel tothe short axis of the inhomogeneities and b)
main direction of wave propagation parallel to the long axisof the inhomogeneities. For both cases we
present explicit results of the log-amplitude variance if the inhomogeneities are Gaussian correlated.
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In spite of the possibility to treat anisotropic inhomogeneities within the Rytov approximation, usually
only final results and discussions for the isotropic case arefound (e.g. Ishimaru, 1978, Rytov et al., 1989.
Exceptionally, in the works of Komissarov (1964) and Knollman (1964) the anisotropic case is investi-
gated, however resulting in rather complicated expressions for the second order moments of the wavefield.
Moreover, Knollman considers the amplitude fluctuations instead of the log-amplitude fluctuations. More
recently, the variance of the phase fluctuations, which serves as a measure of the velocity shift, has been
analyzed in detail for anisotropic random media by Samuelides (1998). Tractable, explicit results for the
log-amplitude variance in the Rytov approximation valid for anisotropic random media are at present not
known. It is the purpose of this research note to fill this gap and to discuss its significance in the context
of seismic scattering attenuation. That is to say we do not re-derive the Rytov approximation, but on the
basis of explicit results (which we numerically verify) we focus on its applicability in anisotropic random
media.

The outline of our consideration is the following. First we briefly formulate the problem of seismic
scattering in randomly inhomogeneous media in the framework of the stochastic scalar wave equation and
provide the basic relations necessary for subsequent sections. Then, an expression of the log-amplitude
variance using the Rytov approximation is derived. After that, explicit results for Gaussian random media
are presented. The frequency and travel-distance dependency of the log-amplitude variance are analyzed.
The analytical results are numerically verified with the help of finite-difference simulations (section last but
one). In the last section we discuss our results in the context of seismic scattering attenuation estimates. The
results are also discussed in the light of previously obtained approximations for the scattering attenuation
coefficient in 3-D isotropic and 1-D random media.

ATTENUATION DUE TO DIFFRACTION AND REFRACTION

In order to study the propagation of waves in randomly inhomogeneous media we use the acoustic wave
equation

4u(t, ~r) − p2(~r)
∂2u(t, ~r)

∂t2
= 0 , (1)

where we defined the squared slowness asp2(~r) = 1
c2
0
(1 + 2n(~r)), wherec0 denotes the propagation

velocity in a homogeneous reference medium. The functionn(~r) is a realization of a stationary random
field with zero average, i.e.,〈n(~r)〉 = 0 and is characterized by a spatial correlation functionBn(~r) =
〈n(~r1)n(~r2)〉 that only depends on the difference vector~r = ~r1−~r2. A solution of equation (1) in the form
of time-harmonic wavefields can be presented using the Rytovtransformation

u(ω;~r) = A0e
Ψ(ω;~r) , (2)

where the complex functionΨ is composed of the so-called log-amplitude fluctuations

Re{Ψ} ≡ χ ≡ ln(A/A0), (3)

and the phase fluctuationsIm{Ψ} ≡ φ̃ ≡ φ − φ0. Here the quantitiesA andφ denote the current ampli-
tude and phase, respectively. The quantitiesA0 andφ0 define the incident wavefieldu0 = A0 exp(iφ0)
propagating through the homogeneous reference medium (n(~r) = 0).

It has been shown that the mean and the variance of the log-amplitude fluctuations are related through
(Rytov et al., 1989)

〈χ〉 = −σ2
χ , (4)

where the variance is defined asσ2
χ ≡ 〈(χ − 〈χ〉)2〉. Equation (4) is valid as long as the wavefield

fluctuations are weak and the waves are mainly scattered in the forward direction. Such a regime exists if

σ2
n(ka)2

L

a
< 1 (5)

and ka ≥ 1, whereka and L/a denote the normalized wavenumber and travel-distance, respectively
(normalized by the correlation lengtha). In order to obtain global scattering attenuation estimates, Shapiro
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and Kneib (1993) used the fact that the attenuation coefficient α of a plane wave can be expressed through
the mean of the log-amplitude fluctuations

α = −〈χ〉
L

=
σ2

χ

L
. (6)

Hence, the key to the description of attenuation due to random diffraction and refraction is the computation
of the log-amplitude varianceσ2

χ. For the case of statistically isotropic random media, in the second-order
Rytov approximation one obtains (Ishimaru, 1978)

σ2
χ = 2π2k2L

∫ ∞

0

dκ κ Φn(κ)

[
1 − sin(κ2L/k)

κ2L/k

]
, (7)

whereΦn(κ) denotes the fluctuation spectrum, i.e. the 3-D Fourier transform of the correlation function
Bn.

LOG-AMPLITUDE VARIANCE FOR ANISOTROPIC RANDOM MEDIA

The calculation of the variance of the log-amplitude fluctuations is based on that for the transverse correla-
tion functionBχ = 〈χχ?〉, because by definitionσ2

χ ≡ Bχ(~ρ = 0), where~ρ denote the spatial coordinates
transversal to the direction of the incident wave (x-direction). The log-amplitude correlation function at
zero lag is given by the following expression (Ishimaru, 1978, equation 17.44)

σ2
χ = k2

∫ L

0

dx′
∫ L

0

dx′′
∫ ∫

d~κ Fn(x′ − x′′, ~κ) sin

(
L − x′

2k
κ2

)
sin

(
L − x′′

2k
κ2

)
, (8)

whereFn denotes the 2-D Fourier transform of the correlation functionBn in the transverse coordinates~ρ

Fn(x′ − x′′, ~κ) =
1

4π2

∫ ∫
Bn(x′ − x′′, ~ρ) e−i~κ~ρd~ρ . (9)

Note that equation (8) and (9) are also valid in the general case when the direction of wave propagation
x does not coincide with the axes of the corelation lengths of the inhomogeneities. In this case the corre-
lation functionBn can be transformed such that the angle between planes transversal to the direction of
propagation and the planes spanned by the axes of the correlation lengths is included (see e.g. Samuelides,
1998.

In a next step, the difference and center-of-mass coordinatesxd = x′ − x′′ andη = x′+x′′

2 are in-
troduced and the ranges of integration are tranformed according to equation (17.46) of Ishimaru (1978):∫ L

0 dx′ ∫ L

0 dx′′(·) ≈
∫ L

0 η
∫∞
−∞ dxd(·). In the derivation ofσ2

χ for the isotropic case it is assumed that the
’sin’ terms in equation (8) are slowly varying functions ofx′ andx′′ becauseκ2a/k < 1/ka ≤ 1 and there-

fore these variables are replaced by the center-of-mass coordinateη, i.e. sin
(

L−x′

2k κ2
)

sin
(

L−x′′

2k κ2
)
≈

sin2
(

L−η
2k κ2

)
. However, this replacement means that local variations of the medium parameters in the

direction of wave propagation are not taken into account andconsequently the correlation length in the
direction of wave propagation,a|| becomes a redundant parameter. This is admissible in isotropic ran-
dom media, where it is known that the correlation length transverse to the direction of wave propaga-
tion, a⊥, mainly controls the strength of the wavefield fluctuation (Ishimaru, 1978, chapter 20). Con-
sidering anisotropic random media, more accurate results can be obtained when all terms inside the ’sin’
functions in equation (8) are retained when introducing thecenter-of-mass coordinateη. Thus, we have

sin
(

L−x′

2k κ2
)

sin
(

L−x′′

2k κ2
)

= cos2
(

xd

4k κ2
)
− cos2

(
L−η
2k κ2

)
. Performing now the integration with re-

spect toη, equation (8) modifies to

σ2
χ = k2L

∫ ∫
d~κ

∫ ∞

0

dxd Fn(xd, ~κ)

[
cos
(xd

2k
κ2
)
− sin(κ2L/k)

κ2L/k

]
. (10)
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This equation has a similar structure as compared with the isotropic result (7), however, involves an addi-
tional integration with respect to the difference coordinate xd, which can not be performed without spec-
ifying the correlation functionBn and henceFn. Equation (10) together with equation (6) provides an
estimate of the scattering attenuation coefficient of seismic primaries in anisotropic random media. A sim-
ilar equation can be obtained for 2-D random media. In particular, dividing equation (10) byπ, and using
the 1-D Fourier transform ofBn instead of equation (9) yields the 2-D result forσ2

χ. We note that the vari-
ance of the phase fluctuations, the crossvariance between log-amplitude and phase fluctuations and also the
transverse correlation functions can be treated in the samemanner. This is, however, not the topic of the
present study.

EXPLICIT RESULTS FOR GAUSSIAN RANDOM MEDIA

In order to obtain explicit results from equation (10) we have to specify the correlation functionBn. We

choose a Gaussian correlation functionBn(~r) = σ2
n exp

(
− x2

a2
x
− y2

a2
y
− z2

a2
z

)
. For simplicity, we consider

the case of wave propagation inx direction so that the correlation length parallel to this direction isa|| = ax

and assume also thatay = az = a⊥, i.e. isotropy in the transversal plane. Then, the correlation function is
of the form

Bn(~r) = σ2
n exp

(
−x2

a2
||
− ρ2

a2
⊥

)
(11)

and with help of equation (9), which in the given geometry degenerates to the Hankel transform, one obtains

Fn(xd, κ) = σ2
n

a2
⊥

4π
exp(−x2

d/a2
||) exp(−κ2a2

⊥/4) . (12)

Inserting equation (12) into (10) and performing the integrations with respect toxd andκ, we obtain

σ2
χ = σ2

n

√
π

16
k4a4

⊥

(√
πe1/A2

[1 − erf(1/A2)]2D − A arctan(2D)
)

, (13)

whereerf denote the error function and we introduced the dimensionless quantitiesD = 2L
ka2
⊥

(known as

the wave parameter) andA =
2a||
ka2
⊥

. For ka⊥ > 1, which is required in order to satisfy restriction (5),
equation (13) can be simplified

σ2
χ ≈ σ2

n

√
π

4

a||
a⊥

k3a3
⊥D

[
1 − arctan(2D)

2D

]
. (14)

An analogous calculation yields the 2-D result

σ2
χ ≈ σ2

n

√
π

4

a||
a⊥

k3a3
⊥D

[
1 − 1√

2D

√√
1 + 4D2 − 1

]
. (15)

It is interesting to note that in the casea|| = a⊥, formulas (14) and (15) exactly coincide with the formulas
of σ2

χ for the isotropic case (e.g. Müller et al., 2002). Therefore, the ratioγ =
a||
a⊥

additionally controls
the magnitude of the log-amplitude variance in anisotropicrandom media. Equations (14) and (15) for
the variance of the log-amplitude complement the corresponding equations for the variance of the phase
fluctuations (see equations (20) and (29) in Samuelides, 1998). Figure (2) shows the log amplitude vari-
ance according to equation (14) as a function of the wave parameter for a fixed value ofka⊥ but varying
parameterγ.

With increasing travel-distances the wavefield fluctuations also increase. Once reached the strong wave-
field fluctuations regime (the quantityσ2

n(ka)2 L
a is comparable or larger than unit), it is well-known that

the variance of the intensity fluctuationsm2 (the so-called scintillation index) saturates, i.e.,m2 → 1 if
σ2

n(ka)2 L
a = O(1) (Rytov et al., 1989). It is easy to show that the variance of the intensity fluctuations

and that of the log-amplitude fluctuations are related viam2 = exp (4σ2
χ) − 1 (Shapiro and Kneib, 1993).
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Figure 2: The normalized log-amplitude variance (14) as a function ofthe wave parameter for varyingγ
and fixedka⊥. Compared to the isotropic case (γ = 1), σ2

χ is increased forγ > 1 and decreased forγ < 1.
The characteristic dependence on the wave parameterD is the same for allγ. For D � 1, σ2

χ ∝ D3,
whereas forD � 1, σ2

χ ∝ D (see the discussion in Rytov et al., 1989).

Consequently, form2 → 1 the log-amplitude variance tends to the constant1
4 ln(2) = 0.173. This result

is true if the incident wave has unit intensity and backscattering can be neglected. A different constant is
obtained for anisotropic random media: Taking into accountthe results for isotropic and anisotropic ran-
dom media (denoted byisoσ2

χ andanisoσ2
χ, respectively), we roughly obtainanisoσ2

χ ≈ γ · isoσ2
χ and thus

the log-amplitude variance tends to the constant

σ2
χ
∼= 1

4γ
ln(2) . (16)

This constant depends on the correlation properties in longitudinal and transversal directions. Ifγ � 1,
this constant is much smaller than that of the isotropic caseindicating that a saturation of the log-amplitude
fluctuations occurs at shorter propagation distances. However, in such a case the neglect of backscattered
energy is not any more admissible (because the scattering angles will not be any more small) and the
total amount of wavefield energy received at geophones transverse to the direction of wave propagation
decreases with increasing propagation distances. Ifγ < 1 the constant value (16) is larger than that in
isotropic random media. This behavior is numerically verified in the section below. Note that in the case
γ � 1 equation (16) is again not any more valid because the Rytov approximation forσ2

χ in 3-D does not
take into account backscattered waves (see also the discussion in the next paragraph).

From equations (14) and (15) we can roughly estimate the range of applicability of equation (10). For
the isotropic case, i.e.γ = 1, inequality (5) must be satisfied. For the anisotropic case (γ 6= 1), it is natural
to assume that inequality (5) extends to

σ2
n

a||
a⊥

(ka⊥)2
L

a⊥
< 1 . (17)

As a consequence, ifγ < 1, the log-amplitude variance (10) can be applied for larger travel-distances
as compared with the isotropic case. The opposite is true ifγ > 1. Then, one should observe stronger
wavefield fluctuations as compared to the isotropic case. This is in agreement with the calculations of Kon
(1994) and Beran and McCoy (1974). Note that relation (17) infact does not depend on the transverse
correlation lengtha⊥ and thus the validity range is formally the same as in (5) provided that the correlation
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lengtha is replaced by the correlation length in the direction of wave propagationa||. Although the wave
apparently interacts with the transverse correlation scale, the strength of the log-amplitude fluctuations is
controlled by the longitudinal correlation scalea||. There is an additional restriction for the applicability
of equation (10), which results from the fact that backscattered waves are neglected within the Rytov
approximation in 2-D and 3-D random media. It can be formulated as

{
ka⊥γ > 1 if γ < 1
ka⊥ > 1 if γ > 1

(18)

and is analogous to the conditionka > 1 in the isotropic case. The meaning of this constraint is also
discussed in the last section. In conclusion, equations (17) and (18) define the validity range of formula
(10).

NUMERICAL VERIFICATION

In order to verify equations (14) and (15), we perform finite-difference simulations of wave propagation
in 2-D random media. Similar numerical experiments have been performed by Shapiro and Kneib (1993)
and Müller et al. (2002) for isotropic random media. Resultsof numerical simulations of seismic waves
in anisotropic random media are also presented in Ikelle et al. (1993). In this study, a plane wave (a
Ricker wavelet with a dominant frequency of43Hz) propagating in the homogeneous reference medium
(c0 = 3000m/s andn(~r) = 0) impinges on a slab of an anisotropic random medium realization, where the
inhomogeneities are Gaussian correlated (with a standard deviation of 5% and correlation scales specified
below). The long (short) axis of the inhomogeneities is perpendicular to the direction of wave propagation.
Inside the random medium the initially plane wave field becomes distorted and is recorded by 20 receiver
lines perpendicular to the main propagation direction. Each receiver line consists of 150 geophones sep-
arated by the distance of the horizontal correlation length. The log-amplitude variance is extracted from
the synthetic seismograms in the following way. 1) A box-carwindow is applied around the primary ar-
rivals. The window length increases with increasing travel-distance (this is in accordance with the results
of Müller and Shapiro, 2001), where it is shown that the broadening of the primaries is approximately
proportional to

√
L). 2) The amplitude spectrum of the windowed seismograms is calculated. 3) We take

the logarithm of the amplitude spectra and subtract the logarithm of the amplitude spectrum of the incident
pulse. 4) We average the resulting quantity over all geophones along one receiver line. Repeating this
procedure for all receiver lines yields the desired log-amplitude variance as a function of travel-distance
(using equation (4)).

The numerical results are displayed in Figure (3). To emphasize the differences with the isotropic case,
we performed a reference experiment (i.e.a|| = a⊥ = 45m) for which the evaluated log-amplitude vari-
ance is shown in the plot on the left hand side (Figure 3(a)). Up to travel-distances of500m the numerical
results (illustrated by crosses) closely follow the theoretical prediction (the solid line), i.e. equation (15)
with γ = 1. For travel-distances larger than500m the weak fluctuation regime is not any more valid
(restriction (17) yields forL = 500m a value ofσ2

χ ≈ 0.5), and theσ2
χ estimate for the strong fluctua-

tion regime roughly applies (the constant0.25 ln(2) is indicated by the dotted line). That the numerically
determined values slightly exceed this constant value is caused by numerical instabilities during the com-
putation ofσ2

χ and by the choice of the window length. Nevertheless, there is an indication of the saturating
behavior ofσ2

χ at the level≈ 0.2.

The numerical results for anisotropic media are displayed in Figure (3(b)). In a further experiment we
choosea|| = 90m anda⊥ = 45m so thatγ = 2 and as predicted by equation (15) theσ2

χ values grow
more rapidly with travel-distance (the dotted line and diamonds, respectively). It can be also observed that
the range of weak fluctuation regime is restricted by smallertravel-distances as compared to the isotropic
case (in agreement with restriction (17)). The strong fluctuation regime apparently begins atL ≈ 300m,
however there is no indication of a saturation of the log-amplitude variance. This is probably caused by
two reasons. First, as in the isotropic case the numerical evaluation ofσ2

χ becomes less accurate when
the wavefield fluctuations are too strong. Second, as mentioned in the introduction, for wave propagation
along the longer axis of the inhomogeneities it is known thatthe scattering angles are not any more small
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(b) Here, the results forσ2
χ

in anisotropic random media for
two values ofγ = a||/a⊥ are presented (the lines corre-
spond to formula (15), the diamonds and rectangles denote
the corresponding numerical results).

Figure 3: The log-amplitude variance as a function of travel-distance. Apart from the correlation lengths,
the medium parameters are in all experiments the same:c0 = 3000m/s, σv = 0.05 and the value ofk is
derived from the dominant frequency of43Hz.

and thus there is a considerable amount of backscattering which is neglected in the consideration of the
strong-fluctuation-regime estimate ofσ2

χ (see also last paragraph of the section above). Further numerical
considerations (results are not shown) indicate that for even larger values ofγ the presented formulas
cannot be any more applied (in agreement with restriction (17). A common travel-distance gather for
L = 500m is displayed in Figure (5) (bottom) showing a strongly distorted primary wave, which is a
qualitative indication for these strong wavefield fluctuations.

The numerical results for wave propagation along the short axis of the inhomogeneities is also displayed
in the plot on the right hand side of Figure (3). Here, we choose a|| = 45m anda⊥ = 135m so that
γ = 1/3. The numerically determinedσ2

χ values (the filled squares) fit the theoretical result given by
equation (15) (the solid line) quite well over the whole travel-distance interval under consideration (L =
0..1000m). This is again in agreement with restriction (17), which predicts a increased range of validity
of the Rytov approximation for wave propagation along the shorter axis of the inhomogeneities (γ < 1).
In this case, the regime of strong wavefield fluctuations is beyond the domain of our numerical simulation.
That the numerical estimates ofσ2

χ fluctuate slightly stronger around the theoretical curve ascompared
to the isotropic case is a purely numerical effect because less statistically independent measurements are
made (i.e. the distance between two geophones is less than the horizontal correlation length).

In order to elucidate the increased range of applicability of the Rytov approximation forσ2
χ (and to

assess its limitations) we perform further experiments. First, we repeat the last experiment withγ = 1/3,
however, for a medium with stronger velocity fluctuations (σv = 10%). The extracted log-amplitude
variances are shown in Figure (4(a)) by the black squares. The theoretical prediction is shown by the
solid curve, which gives a good approximation for the numerically determined values up toL ≈ 500m.
For larger travel-distances we observe a saturating behavior of the log-amplitude variances, indicating the
beginning of the strong fluctuation regime. Comparing this result with that of the corresponding isotropic
case, whereσv = 5% (displayed at Figure (3(a))), we observe the same range of travel-distances, where
formula (15) gives a good approximation in spite of the fact thatσv is twice as large. This is in agreement
with equation (17): in anisotropic random media withγ < 1 we may increase the medium contrasts without
violating the range of applicability. There is however a significant difference for the two experiments
regarding the magnitude of the log-amplitude variances. Also the level of saturation has been increased for
the experiment withγ = 1/3 (nowσ2

χ ≈ 0.35 instead of0.2 for the experiment withγ = 1). This increase
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can be qualitatively explained using estimate (16) (the experiment shows that it is only a rough estimate
because we expectsatσ2

χ = 3
4 ln(2) ≈ 0.5).
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Figure 4: The log-amplitude variance as a function of travel-distance determined from experiments, where
the limits of applicability are reached (see main text for explanation).In a) and b) we usedc0 = 3000m/s
and a dominant frequency of43Hz. The strength of the perturbations and the ratio of spatial anisotropy
are indicated in the legend.

Decreasingγ, increases the range of applicability of the formulas forσ2
χ. However, arbitrary small

values ofγ are only admitted if, at the same time, the conditions (17) and (18) are satisfied. This is demon-
strated by the following examples. Choosingσv = 10%, a⊥ = 135m anda|| = 11.25m (we then have
γ = 1/12), the resulting values ofσ2

χ are displayed by the unfilled circles in Figure (4(b)). The theoretical
prediction is plotted as dashed line. Obviously, there is nomore agreement between theory and experi-
ment. The reason for this discrepancy is the violation of condition (18) (nowka|| ≤ 1). In such a model
we expect a significant contribution to the attenuation due to scattering at quasi 1-D inhomogeneities and
a reduced contribution due to random diffractions and refractions (see discussion in the next section). The
change in the significance of the physical mechanism which causes attenuation becomes also visible in the
spatial energy-redistribution of waves propagating in an inhomogeneous medium. The uppermost plot in
Figure(5) displays a common-travel-distance gather for the experiment under consideration. Apart from
random diffractions (visible through fluctuating amplitudes for a fixed time), the wave field behind the
primary wave is composed of ’multiples’ that are similar in shape (but reduced in amplitude) as compared
with the primary wave. A quite different picture gives the common-travel-distance gather for a reference
experiment, where condition (18) is satisfied (middle plot in Figure 5). Here the wavefield fluctuations are
concentrated in the vicinity of the wavefront which is, however, more distorted than that of the previous
experiment. Moreover, the randomly distributed diffractions and refractions are clearly visible. In such a
situation the presented formulas forσ2

χ can be applied. This is also demonstrated in an experiment with
σv = 15%, where condition (18) is met (a⊥ = 360m anda|| = 30m), however, due to the strong fluctu-
ations we reach the limit of condition (17) (nowσ2

v(ka||)
2L/a|| ≥ 1 for L ≥ 200m). As a consequence,

the numerically determined values ofσ2
χ slightly exceed the theoretical prediction (see the squares and the

dotted line in Figure (4(b)) and the corresponding seismogram section in Figure (5)).
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Figure 5: Simulated common-travel-distance gather (L = 500m) in anisotropic random media (c0 =
3000m/s) with varyingγ (indicated at the lower right corner of each plot) and fixed perturbation strength
(σv = 0.1). Top: Condition (18) is violated and the random diffractions and refractions are superim-
posed with spatially coherent ’multiple reflections’. Middle: Conditions (17) and (18) are satisfied and
the formulas for theσ2

χ work well. Bottom: Condition (17) is violated and the beginning of the strong
fluctuation regime becomes visible through the decomposition of the clearly distinguishable ballistic wave
(the primary wave) into random fluctuations.



DISCUSSION

That the log-amplitude variance calculated in the Rytov approximation serves as an estimate of attenuation
due to diffraction and refraction at randomly distributed velocity inhomogeneities (in connection with
equation (6)) becomes once more evident when we consider thelimit a⊥ → ∞ (while a|| remains finite),
which corresponds to a purely layered random medium. In sucha case, the log-amplitude variance vanishes
and resembles the fact that in 1-D random media no diffraction effects nor random foci due to refraction
(nor intersecting ’rays’) occur. Thus, in addition to the limits of applicability of the Rytov approximation
to estimate the amount of scattering attenuation (weak wavefield fluctuations), there is a further constraint
in anisotropic random media: For a certain ratio of anisotropy (γ � 1) and for wavelengths that exceed
the correlation distance in the direction of wave propagation those diffraction and refraction effects, which
cause amplitude fluctuations along the direction perpendicular to the direction of propagation, play a minor
role. Then, the attenuation of primary waves is mainly caused due to backscattering and primary amplitudes
are given by constructive interference of parts of the wavefield that are multiply reflected and refracted
(transmitted) at quasi 1-D impedance contrasts. This resembles the physics of scattering attenuation in 1-D
random media, which is maximal forka = 1 and is larger than in 2-D and 3-D random media ifka < 1
(because of the universal Rayleigh scattering frequency dependenceα ∝ ωd+1, whered denotes the spatial
dimension). That is why the description of scattering attenuation of primary waves within the Rytov theory
in 2-D and 3-D anisotropic random media is principally limited by the neglect of backscattering (constraint
18).

It is interesting to relate the above description of scattering attenuation of primaries in anisotropic
random media to existing full-frequency-range-valid approximations, which have been obtained for 3-D
isotropic random media on the one hand and 1-D random media onthe other. For 3-D (and also 2-D)
isotropic random media Müller et al. (2002) derived within the weak scattering regime a solution for the
scattering coefficientα, which is attached to the most probable primary pulse (note that in 3-D there is a
multitude of possible realizations of primary pulses). This dynamic solution ofα has been obtained by com-
bining the Rytov approximation (compare with equation (7) for the log-amplitude variance) with another
perturbation approximation that partially takes into account backscattering. In contrast to this, the present
results are only based on the Rytov approximation, which completely neglects backscattered waves and
thus restricts the validity ofα with respect to the frequency range as discussed in the previous paragraph.
For 1-D random media Shapiro and Hubral (1999) obtained approximations of the scattering attenuation
coefficient within the so-calledgeneralized O’Doherty-Anstey(ODA) approach. This is formally equiva-
lent to the second-order Rytov approximation for 1-D randommedia, which has the remarkable property to
account for backscattered waves. A general description of scattering attenuation in 3-D anisotropic random
media, which reduces in the layered-media-limit to the results of the ODA approach, has not been reported
so far. However, we think that the present results are a first step towards this goal.

The quantification of seismic scattering attenuation alongwith estimates of the correlation scales and
the spatial orientation of subsurface heterogeneities in the crust and mantle may contribute to the under-
standing of large-scale geoprocesses. Wrong estimates of scattering attenuation can lead to serious misin-
terpretations of rock properties and structural images. Ifthere is evidence for the presence of anisotropic
inhomogeneities (which in many geological settings is the case, see introduction), these information must
be taken into account in the calculation and interpretationof scattering attenuation. The above results can
also provide a useful correction to the scattering attenuation estimates obtained from seismo-stratigraphic
considerations when additionally the finite lateral extentof geological structures is taken into account. The
combination of the scattering attenuation descriptions for 1-D and 3-D random media is the topic of a
forthcoming paper.

In Müller and Shapiro (2001) scattering attenuation estimates for the German KTB area were obtained
with help of statistical estimates of velocity inhomogeneities deduced from the well-log data. With the
assumption of statistically isotropic inhomogeneities, they explained a large amount of the ’measured’
attenuation (extracted from the seismic data of the accompanying VSP experiment) in terms of scattering.
A previously reported hypothesis Lüschen et al. (1993) assumes that seismic reflectivity is mainly related to
scattering at hydraulically active fracture zones. We hypothesize that such fracture systems can effectively
act like an anisotropic random medium, where the largest correlation scale is associated with the average
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direction of the fractures and cracks. Moreover, to assume spatially anisotropy is necessary because in
fracture systems there is a preferred orientation of cracksthat is associated with the orientation of major
faults. Taking into account the steeply inclined major faults in the KTB region (for depths up to 10 km the
dip angle is typically30−70o, see e.g. Harjes et al., 1997), it is reasonable to assume that the seismic waves
in the VSP experiment traveled to some extent parallel to thecracks and thus along the long axis of the
anisotropic random medium such that the caseγ > 1 applies. For the evaluation of scattering attenuation
this has an important consequence. As shown above, forγ > 1 larger scattering attenuation estimates are
obtained as compared to the isotropic case. Taking into account this fact, we speculate that the amount of
scattering attenuation at the KTB area can be even larger than that evaluated in Müller and Shapiro (2001)).

CONCLUSIONS

In conclusion, we derived tractable results for the log-amplitude variance in anisotropic random media
based on the Rytov approximation. Assuming Gaussian correlated inhomogeneities we obtain explicit
results, which are confirmed by numerical simulations. For wave propagation along the large axis of
inhomogeneities, the Rytov approximation is not the best choice because of its limited range of validity.
The opposite is true for wave propagation along the short axis of the inhomogeneities. Then the Rytov
approximation for the log-amplitude variance (and also thevariance of the phase fluctuations) has a wider
range of applicability as compared with the isotropic case.Further, we formulate conditions that define
the range of applicability of the presented formulas. We discussed the use of the log-amplitude variance as
an estimate of scattering attenuation in anisotropic random media. Caution is required in the caseγ � 1,
because the attenuation of seismic primaries due to random diffraction and refraction in the presented
approximation may then be small compared with the attenuation which is caused due to backscattering.
It remains to be tested if a combination of 1-DQ-estimates which account for backscattering (such as
obtained from the ODA approach) and the presented results for Q in 3-D anisotropic random media is
more adequate to modelQ-measurements in layered structures with finite lateral extent.
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