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ABSTRACT

We calculate the variance of the log-amplitude within thea®yapproximation for plane waves propf-
agating in weakly inhomogeneous and statistically anigotrrandom media. Since there is a simpfe
relation between the log-amplitude variance and the a#téonicoefficient of seismic primaries in the
weak wavefield fluctuation regime, we also obtain scatteaitgnuation estimates which additionally
depend on the aspect ratio of longitudinal and transverselation scales of the inhomogeneities.
These estimates can be useful for the statistical chaizatien of anisotropic, large-scale inhomg-
geneities (large compared to the wavelength of the prohifggpin the Earth crust and mantle, such as
fault zones. With help of plane-wave-transmission nunaggperiments using the finite-difference
method we compute the log-amplitude variance as a funcfitiieqpropagation distance and observe
reasonable agreement with the analytical results. We sisthe implications of our results in the
context of seismic scattering attenuation estimations.

INTRODUCTION

In seismology it is common practice to analyze the amplitade phase fluctuations of transmitted and
reflected seismic signals in order to statistically chamaze the subsurface heterogeneities. In particu-
lar, the Rytov approximation for the variance of the log-ditnge and phase fluctuations of diffracted
and refracted waves has been applied in several studies if@/&latté, 1990, Sato and Fehler, 1998 and
references therein, Tripathi, 2001). For example, Wu amttdé-derived from seismograms of the NOR-
SAR array the log-amplitude and phase (and their crossrglation function and modeled them with the
corresponding correlation functions for isotropic randmedia. It is well-known that the diffraction and
refraction of waves atandomlydistributed inhomogeneities results in a random focusimdy@defocusing

of wave energy and consequently results in an increase afntipditude fluctuations with increasing prop-
agation distances (Rytov et al., 1989). Diffraction of sgiswaves becomes noticeable if the size of an
inhomogeneity exceeds the wavelength. A measure thahgisthes the importance of diffraction and
refraction effects is the wave parametgrwhich is defined as the ratio of the size of the Fresnel zode an
the characteristic length scale of the inhomogeneitie® (i 1 refraction prevails, whereas fd» > 1
both, diffraction and refraction effects occur). Shapina &neib (1993) showed that the variance of the
log-amplitude fluctuations is directly related to the caedfint of scattering attenuation and thus to the scat-
tering quality factor, which is another important quaniityorder to characterize the propagation medium.

All the above-mentioned works use the model of an isotropiom medium. There is, however, a
lot of evidence that at some sites the heterogeneities afrtist are anisotropic. Indeed, from the analysis


mailto:tobias.mueller@geophy.curtin.edu.au

166 Annual WIT report 2002

of well-log data at the KTB deep borehole, Wu et al. (1994)gasted a model of randomly distributed
velocity inhomogeneities with a lateral characteristialeof 3.6km and a vertical scale dfkm. Also
parts of the lithospheric mantle are assumed to be compdsausmtropic heterogeneities. Ryberg et al.
(1995) deduced from short period wavefield data recorded profde across Northern Eurasia that this
zone contains randomly distributed, spatially anisotegilocity fluctuations, which are 'stretched’ in the
horizontal direction. Based on a modeling study of these,d&ttgemeyer et al. (1999) provide a generic
description of lower-crust and upper-mantle heterogergeivith a ratio of anisotropy (the aspect ratio
of vertical and horizontal correlation scale) =f 0.25. Analyzing the P-coda characteristics in seismo-
grams from local events at the San Jacinto fault zone, Wg(@®&8) concluded that a model of a grossly
plane-layered structure statistically described by aialhagnisotropic correlation function would be most
consistent with the observations. He raised concern abeubverlooked alternative’ to allow the hetero-
geneities to be spatially anisotropic. Thus, when anatyttie statistical properties of wavefields recorded
in such regions it is necessary to include the anisotropphefithomogeneities (this is also pointed out
in the book of Sato and Fehler, 1998. Estimates of the stneofgthe medium perturbations, their cor-
relation properties and of the quality factor will be stringffected if the model of statically isotropic
inhomogeneities is generalized such that also anisotiopimmogeneities are permitted. To our knowl-
edge, there exist no explicit results how large-scale cairdpic inhomogeneities affect the amplitudes of
seismic primaries.

Kon (1994) presented a qualitative theory of amplitude ahdsp fluctuations due to diffraction in
anisotropic, turbulent media based on the consideratisarafomly distributed, collecting and diverging
lenses (the isotropic case has been previously discusgbis imanner by Rytov et al., 1989. He showed
that waves propagating along the short axis of inhomogesedixhibit decreasing amplitude and phase
fluctuations as compared to the isotropic case. Contravilyes propagating parallel to the long axis of
the inhomogeneities show stronger fluctuations (see Fijur@ order to describe the statistical moments
in weakly inhomogeneous media the Markov and the Rytov agmrations are frequently employed (Ry-
tov et al., 1989). Both approximations are restricted bystinall-angle scattering (or equivalently forward
scattering) assumption. Dashen (1979) argues that thedMabproximation can fail in anisotropic ran-
dom media because the scattering angles grow successiuidytihe wave passes from one inhomogeneity
to the next (this effect is most pronounced when the wavalhitpropagates along the long axis of the
inhomogeneities). It may be suspected that the same ardatizerholds for the Rytov approximation. By
solving the single scattering problem for anisotropic hegeneities (with the corelation scales, a,, and
a., wherea, = a, > a,), Beran and McCoy (1974) showed that for the dasg > 1 (k is the wavenum-
ber) the scattering angles in the directians andy are of the ordeé,, ., = O(i) andf, = O(\/%),
respectively. They concluded that a more stringent comditor the validity of small-angle scatfering
approximations must be imposed as compared with the isotsspttering problem, wheke= O(ﬁ).

a) b)

Figure 1: Geometry for wave propagation in anisotropic random mediao cases are of particular
interest: a) main direction of wave propagation parallefh® short axis of the inhomogeneities and b)
main direction of wave propagation parallel to the long afishe inhomogeneities. For both cases we
present explicit results of the log-amplitude variancéd inhomogeneities are Gaussian correlated.
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In spite of the possibility to treat anisotropic inhomogiirs within the Rytov approximation, usually
only final results and discussions for the isotropic casdared (e.g. Ishimaru, 1978, Rytov et al., 1989.
Exceptionally, in the works of Komissarov (1964) and Knalim(1964) the anisotropic case is investi-
gated, however resulting in rather complicated expresdionthe second order moments of the wavefield.
Moreover, Knollman considers the amplitude fluctuatiors¢éad of the log-amplitude fluctuations. More
recently, the variance of the phase fluctuations, whicheseas a measure of the velocity shift, has been
analyzed in detail for anisotropic random media by Sameslid 998). Tractable, explicit results for the
log-amplitude variance in the Rytov approximation valid &misotropic random media are at present not
known. It is the purpose of this research note to fill this gag # discuss its significance in the context
of seismic scattering attenuation. That is to say we do noderé/e the Rytov approximation, but on the
basis of explicit results (which we numerically verify) wectis on its applicability in anisotropic random
media.

The outline of our consideration is the following. First weelly formulate the problem of seismic
scattering in randomly inhomogeneous media in the framewbthe stochastic scalar wave equation and
provide the basic relations necessary for subsequenbgsctiThen, an expression of the log-amplitude
variance using the Rytov approximation is derived. Afteattlexplicit results for Gaussian random media
are presented. The frequency and travel-distance dependéthe log-amplitude variance are analyzed.
The analytical results are numerically verified with thephaf finite-difference simulations (section last but
one). Inthe last section we discuss our results in the cboteeismic scattering attenuation estimates. The
results are also discussed in the light of previously ole@impproximations for the scattering attenuation
coefficient in 3-D isotropic and 1-D random media.

ATTENUATION DUE TO DIFFRACTION AND REFRACTION

In order to study the propagation of waves in randomly inhgemeous media we use the acoustic wave
equation
2
t
ruft, ) - pp2lbD g (1)
ot?
where we defined the squared slownes®4$) = (1 + 2n()), wherec, denotes the propagation

velocity in a homogeneous reference medium. The funaiig) is a realization of a stationary random
field with zero average, i.e(n(7)) = 0 and is characterized by a spatial correlation functity{r) =
(n(7)n(72)) that only depends on the difference vectos 7 — 7. A solution of equation (1) in the form
of time-harmonic wavefields can be presented using the Ryamgformation

u(w; ) = Ape? @) 2
where the complex functio¥r is composed of the so-called log-amplitude fluctuations
Re{¥} = x =In(A/Ay), (3)

and the phase fluctuatiofism{ ¥} = é = ¢ — ¢o. Here the quantities and¢ denote the current ampli-
tude and phase, respectively. The quantiigsand ¢, define the incident wavefieldy = Ag exp(igo)
propagating through the homogeneous reference medigm) £ 0).

It has been shown that the mean and the variance of the logjtadgfluctuations are related through
(Rytov et al., 1989)
<X> = _0)2() (4)
where the variance is defined a3 = ((x — (x))?). Equation (4) is valid as long as the wavefield
fluctuations are weak and the waves are mainly scatteree ifottvard direction. Such a regime exists if

L
Ji(ka)zg <1 (5)

andka > 1, whereka and L/a denote the normalized wavenumber and travel-distancpecésely
(normalized by the correlation lengdf). In order to obtain global scattering attenuation estgsaShapiro
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and Kneib (1993) used the fact that the attenuation coefficief a plane wave can be expressed through
the mean of the log-amplitude fluctuations
) _ ox
=L == 6

o T =7 (6)
Hence, the key to the description of attenuation due to ramndiéfraction and refraction is the computation
of the log-amplitude varianoef(. For the case of statistically isotropic random media, exgbcond-order
Rytov approximation one obtains (Ishimaru, 1978)

ai = 27r2k2L/OOO dk k@, (k) [1 — %] ) (7)

where®,,(x) denotes the fluctuation spectrum, i.e. the 3-D Fourier foansof the correlation function
B,,.

LOG-AMPLITUDE VARIANCE FOR ANISOTROPIC RANDOM MEDIA

The calculation of the variance of the log-amplitude flutiturgs is based on that for the transverse correla-
tion functionB, = (xx*), because by definition; = B, (5 = 0), wherey denote the spatial coordinates
transversal to the direction of the incident wavedjrection). The log-amplitude correlation function at
zero lag is given by the following expression (Ishimaru, 895quation 17.44)

L L / "
L — L —
ai = k:2/ d:c’/ dx" // dR F, (2" — 2" | R) sin( 2kx f<;2) sin( 2; 52) , (8)
0 0

whereF;, denotes the 2-D Fourier transform of the correlation furets,, in the transverse coordinatgs

1 -
Fo(2' — 2" R) = o // By (2 — 2", p)e”"Pdp. 9

Note that equation (8) and (9) are also valid in the generse @ghen the direction of wave propagation
x does not coincide with the axes of the corelation lengtheefithomogeneities. In this case the corre-
lation functionB,, can be transformed such that the angle between planesdraabto the direction of
propagation and the planes spanned by the axes of the ¢mmdingths is included (see e.g. Samuelides,
1998.

In a next step, the difference and center-of-mass coombngt = =’ — z” andn = ”“"“;I” are in-
troduced and the ranges of integration are tranformed dowpto equation (17.46) of Ishimaru (1978):
[ da [ da () ~ [ n [ dza(-). Inthe derivation ob? for the isotropic case it is assumed that the

'sin’ terms in equation (8) are slowly varying functionsi$fandz” because?a/k < 1/ka < 1 and there-
fore these variables are replaced by the center-of-massioaten, i.e. sin (L;kfﬁ'ﬁ) sin (Lglj’” ,%Q) ~

sin? (LQ—‘,C%Q). However, this replacement means that local variationi@fmedium parameters in the

direction of wave propagation are not taken into account@msequently the correlation length in the
direction of wave propagatiom,, becomes a redundant parameter. This is admissible in gotran-
dom media, where it is known that the correlation length dvanse to the direction of wave propaga-
tion, a, mainly controls the strength of the wavefield fluctuatioshiinaru, 1978, chapter 20). Con-
sidering anisotropic random media, more accurate resaitde obtained when all terms inside the 'sin’
functions in equation (8) are retained when introducingddeter-of-mass coordinate Thus, we have

sin (L*f’jlxﬁ) sin (L’f”” mQ) = cos? (£ k?) — cos? (%Fa?). Performing now the integration with re-

2k 2k 4k
spect ton, equation (8) modifies to

o2 = k?L//d,z /Om dzg Fo(za, ) [cos (;—Zﬁ) - %} : (10)
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This equation has a similar structure as compared with thiteoigic result (7), however, involves an addi-
tional integration with respect to the difference coortkng;, which can not be performed without spec-
ifying the correlation functionB,, and henceF,,. Equation (10) together with equation (6) provides an
estimate of the scattering attenuation coefficient of seigmmaries in anisotropic random media. A sim-
ilar equation can be obtained for 2-D random media. In paldi¢ dividing equation (10) by, and using
the 1-D Fourier transform aB,, instead of equation (9) yields the 2-D result txir We note that the vari-
ance of the phase fluctuations, the crossvariance betwgeaniplitude and phase fluctuations and also the
transverse correlation functions can be treated in the saammer. This is, however, not the topic of the
present study.

EXPLICIT RESULTS FOR GAUSSIAN RANDOM MEDIA

In order to obtain explicit results from equation (10) we by specify the correlation functiaB,,. We
choose a Gaussian correlation functiBp(7) = o2 exp (72—2 — g—i — a2 . For simplicity, we consider
the case of wave propagationirdirection so that the correlation Iength paraIIeI to thiwdtionisa| = a,
and assume also thaj = a, = a, i.e. isotropy in the transversal plane. Then, the corialdtinction is

of the form

B 22 2
B, (F) = 02 exp <G_|2| - %) (11)

and with help of equation (9), which in the given geometryategrates to the Hankel transform, one obtains

2
a
Fu(aa,r) = 0% 7= exp(—a3/af) exp(~ra? /4). (12)
Inserting equation (12) into (10) and performing the in&tigns with respect te; andx, we obtain

ai = Ui\l/_(; (\/_el/A [1 —erf(1/A%)]2D — Aarctan(QD)) (13)

whereerf denote the error function and we introduced the dimensésndgiantitied) =

2L k
nown as
kai (

2ay|

the wave parameter) andl = Fa? For ka, > 1, which is required in order to satisfy restriction (5),
equation (13) can be simplified

2 2VT A 3 3 arctan(2D)
~o.——k’a "D |1l - ——=| . 14
IxZ O [ 2D (14)
An analogous calculation yields the 2-D result
2 2 VT )| 5 3 1
~o-~——k’a7D |1l - ——\/\/1+4D2 - 1| . 15
oy o, 1 a, a’l [ /2D + ] (15)
Itis interesting to note that in the casg = a1 , formulas (14) and (15) exactly coincide with the formulas
of ai for the isotropic case (e.g. Milller et al., 2002). Therefdme ratioy = 2L additionally controls

the magnitude of the log-amplitude variance in anisotrapicdom media. Equatlons (14) and (15) for
the variance of the log-amplitude complement the corredpgnequations for the variance of the phase
fluctuations (see equations (20) and (29) in Samuelides3)19gure (2) shows the log amplitude vari-
ance according to equation (14) as a function of the wavenpetex for a fixed value ofa but varying
parametety.

With increasing travel-distances the wavefield fluctuatialso increase. Once reached the strong wave-
field fluctuations regime (the quanti@%(ka)% is comparable or larger than unit), it is well-known that
the variance of the intensity fluctuations® (the so-called scintillation index) saturates, @2 — 1 if
J%(ka)Qg = O(1) (Rytov et al., 1989). It is easy to show that the variance efitttensity fluctuations
and that of the log-amplitude fluctuations are relatedwfa= exp (405() — 1 (Shapiro and Kneib, 1993).
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Figure 2: The normalized log-amplitude variance (14) as a functiothefwave parameter for varying
and fixedka . Compared to the isotropic case£ 1), ai is increased foty > 1 and decreased for < 1.
The characteristic dependence on the wave paranigierthe same for ally. ForD « 1, ai o« D3,
whereas foD > 1, ai x D (see the discussion in Rytov et al., 1989).

Consequently, forn? — 1 the log-amplitude variance tends to the cons%hi(Q) = 0.173. This result

is true if the incident wave has unit intensity and backscaty can be neglected. A different constant is
obtained for anisotropic random media: Taking into accdhetresults for isotropic and anisotropic ran-
dom media (_denoted_ki?’af( and*™=¢?, respectively), we roughly obtaift*°c? ~ ~ - *°¢? and thus
the log-amplitude variance tends to the constant

1
=5 In(2). (16)
This constant depends on the correlation properties initogigal and transversal directions. Af> 1,
this constant is much smaller than that of the isotropic aadieating that a saturation of the log-amplitude
fluctuations occurs at shorter propagation distances. Mewi such a case the neglect of backscattered
energy is not any more admissible (because the scatterigigsawill not be any more small) and the
total amount of wavefield energy received at geophonesueass to the direction of wave propagation
decreases with increasing propagation distances. 4f 1 the constant value (16) is larger than that in
isotropic random media. This behavior is numerically vedfin the section below. Note that in the case
~v < 1 equation (16) is again not any more valid because the Rytpxoxpmation foraf( in 3-D does not
take into account backscattered waves (see also the dizcusshe next paragraph).

2
UX

From equations (14) and (15) we can roughly estimate theerahgpplicability of equation (10). For
the isotropic case, i.ex = 1, inequality (5) must be satisfied. For the anisotropic casg (), it is natural
to assume that inequality (5) extends to

o2 (kg 2L 1 (17)
ay al

As a consequence, #f < 1, the log-amplitude variance (10) can be applied for largavel-distances
as compared with the isotropic case. The opposite is trge>¥ 1. Then, one should observe stronger
wavefield fluctuations as compared to the isotropic cases iShin agreement with the calculations of Kon
(1994) and Beran and McCoy (1974). Note that relation (17aat does not depend on the transverse
correlation lengthu; and thus the validity range is formally the same as in (5) jpled that the correlation
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lengtha is replaced by the correlation length in the direction of &avopagatiom,. Although the wave
apparently interacts with the transverse correlationesdhk strength of the log-amplitude fluctuations is
controlled by the longitudinal correlation scalg. There is an additional restriction for the applicability
of equation (10), which results from the fact that backsratt waves are neglected within the Rytov
approximation in 2-D and 3-D random media. It can be fornedats
ka;v>1 if <1
{ kay >1 if ~>1 (18)

and is analogous to the conditida > 1 in the isotropic case. The meaning of this constraint is also
discussed in the last section. In conclusion, equationsdfd (18) define the validity range of formula
(10).

NUMERICAL VERIFICATION

In order to verify equations (14) and (15), we perform firdiference simulations of wave propagation
in 2-D random media. Similar numerical experiments havenlpegformed by Shapiro and Kneib (1993)
and Muller et al. (2002) for isotropic random media. Resaftaumerical simulations of seismic waves
in anisotropic random media are also presented in lkelld.gt1893). In this study, a plane wave (a
Ricker wavelet with a dominant frequency 48 H z) propagating in the homogeneous reference medium
(co = 3000m /s andn(7) = 0) impinges on a slab of an anisotropic random medium re&izaivhere the
inhomogeneities are Gaussian correlated (with a standafidttbn of 5% and correlation scales specified
below). The long (short) axis of the inhomogeneities is padicular to the direction of wave propagation.
Inside the random medium the initially plane wave field beesmistorted and is recorded by 20 receiver
lines perpendicular to the main propagation direction. hEa&ceiver line consists of 150 geophones sep-
arated by the distance of the horizontal correlation lendtie log-amplitude variance is extracted from
the synthetic seismograms in the following way. 1) A box-wardow is applied around the primary ar-
rivals. The window length increases with increasing tralistance (this is in accordance with the results
of Miiller and Shapiro, 2001), where it is shown that the bewddg of the primaries is approximately
proportional toy/L). 2) The amplitude spectrum of the windowed seismogramaliutated. 3) We take
the logarithm of the amplitude spectra and subtract therithga of the amplitude spectrum of the incident
pulse. 4) We average the resulting quantity over all geoph@bong one receiver line. Repeating this
procedure for all receiver lines yields the desired log-tonbe variance as a function of travel-distance
(using equation (4)).

The numerical results are displayed in Figure (3). To empghdke differences with the isotropic case,
we performed a reference experiment (ug. = a, = 45m) for which the evaluated log-amplitude vari-
ance is shown in the plot on the left hand side (Figure 3(a))tdtravel-distances &f00m the numerical
results (illustrated by crosses) closely follow the th¢ioet prediction (the solid line), i.e. equation (15)
with v = 1. For travel-distances larger th&d0m the weak fluctuation regime is not any more valid
(restriction (17) yields fol, = 500m a value ofaf< ~ 0.5), and theafc estimate for the strong fluctua-
tion regime roughly applies (the constd@n®5 In(2) is indicated by the dotted line). That the numerically
determined values slightly exceed this constant valueusa@ by numerical instabilities during the com-
putation ofs2 and by the choice of the window length. Nevertheless, thsema indication of the saturating

s

behavior ofax at the levek: 0.2.

The numerical results for anisotropic media are displapdeigure (3(b)). In a further experiment we
choosen = 90m anda = 45m so thaty = 2 and as predicted by equation (15) thigvalues grow
more rapidly with travel-distance (the dotted line and diabs, respectively). It can be also observed that
the range of weak fluctuation regime is restricted by smaléarel-distances as compared to the isotropic
case (in agreement with restriction (17)). The strong flatitun regime apparently begins At~ 300m,
however there is no indication of a saturation of the log-fitonghe variance. This is probably caused by
two reasons. First, as in the isotropic case the numericdlation ofaf< becomes less accurate when
the wavefield fluctuations are too strong. Second, as measdionthe introduction, for wave propagation
along the longer axis of the inhomogeneities it is known thatscattering angles are not any more small
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(a) Results for a reference experiment in isotropic random (b) Here, the results foarf< in anisotropic random media for

media (the solid line denotesf( according to equation (15),  two values ofy = q;|/a_ are presented (the lines corre-
the crosses denote the numerically determined values). spond to formula (15), the diamonds and rectangles denote
the corresponding numerical results).

Figure 3: The log-amplitude variance as a function of travel-disearpart from the correlation lengths,
the medium parameters are in all experiments the same: 3000m/s, o, = 0.05 and the value of is
derived from the dominant frequency 43 H -.

and thus there is a considerable amount of backscatterimghvidineglected in the consideration of the
strong-fluctuation-regime estimate@;‘f (see also last paragraph of the section above). Furtherncahe

considerations (results are not shown) indicate that fendarger values ofy the presented formulas

cannot be any more applied (in agreement with restrictiof).(JA common travel-distance gather for
L = 500m is displayed in Figure (5) (bottom) showing a strongly digtd primary wave, which is a

qualitative indication for these strong wavefield fluctaas.

The numerical results for wave propagation along the shxistd the inhomogeneities is also displayed
in the plot on the right hand side of Figure (3). Here, we cleags = 45m anda; = 135m so that
~v = 1/3. The numerically determine«zlf< values (the filled squares) fit the theoretical result givgn b
equation (15) (the solid line) quite well over the whole ghdistance interval under consideratidn £
0..1000m). This is again in agreement with restriction (17), whiclkdicts a increased range of validity
of the Rytov approximation for wave propagation along thersdr axis of the inhomogeneities  1).
In this case, the regime of strong wavefield fluctuations y®hd the domain of our numerical simulation.
That the numerical estimates @ﬁ fluctuate slightly stronger around the theoretical curve@spared
to the isotropic case is a purely numerical effect becausedatistically independent measurements are
made (i.e. the distance between two geophones is less th&otizontal correlation length).

In order to elucidate the increased range of applicabilitthe Rytov approximation fo&i (and to
assess its limitations) we perform further experimentsstFe repeat the last experiment with= 1/3,
however, for a medium with stronger velocity fluctuations (= 10%). The extracted log-amplitude
variances are shown in Figure (4(a)) by the black square® thdoretical prediction is shown by the
solid curve, which gives a good approximation for the nucadly determined values up tb ~ 500m.

For larger travel-distances we observe a saturating behaf/the log-amplitude variances, indicating the
beginning of the strong fluctuation regime. Comparing tesuit with that of the corresponding isotropic
case, where, = 5% (displayed at Figure (3(a))), we observe the same rangaeéltdistances, where
formula (15) gives a good approximation in spite of the faett, is twice as large. This is in agreement
with equation (17): in anisotropic random media wjtk: 1 we may increase the medium contrasts without
violating the range of applicability. There is however andigant difference for the two experiments
regarding the magnitude of the log-amplitude variancesoAthe level of saturation has been increased for
the experiment withy = 1/3 (nOWof< ~ 0.35 instead of).2 for the experiment withy = 1). This increase
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can be qualitatively explained using estimate (16) (theeexrpent shows that it is only a rough estimate
because we expetto? = 21n(2) ~ 0.5).

0.4 T T T 0.4
.

1
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Figure 4: The log-amplitude variance as a function of travel-distashetermined from experiments, where
the limits of applicability are reached (see main text foplexation).In a) and b) we used = 3000m/s
and a dominant frequency @B H z. The strength of the perturbations and the ratio of spatieicdropy
are indicated in the legend.

Decreasingy, increases the range of applicability of the formulasa‘@r However, arbitrary small
values ofy are only admitted if, at the same time, the conditions (1d)(@®8) are satisfied. This is demon-
strated by the following examples. Choosing = 10%, a1 = 135m anda) = 11.25m (we then have
~v = 1/12), the resulting values Q;ff< are displayed by the unfilled circles in Figure (4(b)). Thedretical
prediction is plotted as dashed line. Obviously, there isnowe agreement between theory and experi-
ment. The reason for this discrepancy is the violation ofdttion (18) (nowka; < 1). In such a model
we expect a significant contribution to the attenuation duscattering at quasi 1-D inhomogeneities and
a reduced contribution due to random diffractions and otifvas (see discussion in the next section). The
change in the significance of the physical mechanism whigbesattenuation becomes also visible in the
spatial energy-redistribution of waves propagating inrdromogeneous medium. The uppermost plot in
Figure(5) displays a common-travel-distance gather ferekperiment under consideration. Apart from
random diffractions (visible through fluctuating ampliasdfor a fixed time), the wave field behind the
primary wave is composed of ‘'multiples’ that are similar rape (but reduced in amplitude) as compared
with the primary wave. A quite different picture gives themwmoon-travel-distance gather for a reference
experiment, where condition (18) is satisfied (middle phoFigure 5). Here the wavefield fluctuations are
concentrated in the vicinity of the wavefront which is, heee more distorted than that of the previous
experiment. Moreover, the randomly distributed diffrans and refractions are clearly visible. In such a
situation the presented formulas f@;fz can be applied. This is also demonstrated in an experimeht wi
o, = 15%, where condition (18) is met( = 360m anda; = 30m), however, due to the strong fluctu-
ations we reach the limit of condition (17) (naj(ka)>L/aj; > 1 for L > 200m). As a consequence,
the numerically determined valuesmﬁ slightly exceed the theoretical prediction (see the squane the
dotted line in Figure (4(b)) and the corresponding seismwmgsection in Figure (5)).
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Figure 5: Simulated common-travel-distance gathér-{£ 500m) in anisotropic random mediay =
3000m/s) with varying~y (indicated at the lower right corner of each plot) and fixedy®ation strength
(0, = 0.1). Top: Condition (18) is violated and the random diffraotocand refractions are superim-
posed with spatially coherent 'multiple reflections’. Midd Conditions (17) and (18) are satisfied and
the formulas for theri work well. Bottom: Condition (17) is violated and the begimm of the strong
fluctuation regime becomes visible through the decomposdf the clearly distinguishable ballistic wave
(the primary wave) into random fluctuations.




DISCUSSION

That the log-amplitude variance calculated in the Rytowapimation serves as an estimate of attenuation
due to diffraction and refraction at randomly distributeglocity inhomogeneities (in connection with
equation (6)) becomes once more evident when we considéinthe:; — oo (while a|| remains finite),
which corresponds to a purely layered random medium. In aueise, the log-amplitude variance vanishes
and resembles the fact that in 1-D random media no diffractitects nor random foci due to refraction
(nor intersecting rays’) occur. Thus, in addition to theaiis of applicability of the Rytov approximation
to estimate the amount of scattering attenuation (weak fiedsldluctuations), there is a further constraint
in anisotropic random media: For a certain ratio of anigotrgy < 1) and for wavelengths that exceed
the correlation distance in the direction of wave propagettiose diffraction and refraction effects, which
cause amplitude fluctuations along the direction perpetatito the direction of propagation, play a minor
role. Then, the attenuation of primary waves is mainly cduke to backscattering and primary amplitudes
are given by constructive interference of parts of the walefihat are multiply reflected and refracted
(transmitted) at quasi 1-D impedance contrasts. This rekEnthe physics of scattering attenuation in 1-D
random media, which is maximal fé = 1 and is larger than in 2-D and 3-D random medi&df < 1
(because of the universal Rayleigh scattering frequenggmigencer o« w1, whered denotes the spatial
dimension). That is why the description of scattering at&ion of primary waves within the Rytov theory
in 2-D and 3-D anisotropic random media is principally lietitoy the neglect of backscattering (constraint
18).

It is interesting to relate the above description of scatteattenuation of primaries in anisotropic
random media to existing full-frequency-range-valid apjimations, which have been obtained for 3-D
isotropic random media on the one hand and 1-D random medtheonther. For 3-D (and also 2-D)
isotropic random media Miiller et al. (2002) derived withire weak scattering regime a solution for the
scattering coefficient, which is attached to the most probable primary pulse (fwtin 3-D there is a
multitude of possible realizations of primary pulses).sldhynamic solution of has been obtained by com-
bining the Rytov approximation (compare with equation @f)the log-amplitude variance) with another
perturbation approximation that partially takes into agtbackscattering. In contrast to this, the present
results are only based on the Rytov approximation, whichptetaly neglects backscattered waves and
thus restricts the validity of with respect to the frequency range as discussed in thequeyiaragraph.
For 1-D random media Shapiro and Hubral (1999) obtainedeqimations of the scattering attenuation
coefficient within the so-calledeneralized O’'Doherty-Ansté®DA) approach. This is formally equiva-
lent to the second-order Rytov approximation for 1-D randoedlia, which has the remarkable property to
account for backscattered waves. A general descriptiocatfeying attenuation in 3-D anisotropic random
media, which reduces in the layered-media-limit to the ltssif the ODA approach, has not been reported
so far. However, we think that the present results are a fepttewards this goal.

The quantification of seismic scattering attenuation alith estimates of the correlation scales and
the spatial orientation of subsurface heterogeneitieeeénctust and mantle may contribute to the under-
standing of large-scale geoprocesses. Wrong estimatesittéiing attenuation can lead to serious misin-
terpretations of rock properties and structural imagethdfe is evidence for the presence of anisotropic
inhomogeneities (which in many geological settings is thge¢ see introduction), these information must
be taken into account in the calculation and interpretatioscattering attenuation. The above results can
also provide a useful correction to the scattering attéonastimates obtained from seismo-stratigraphic
considerations when additionally the finite lateral extd#rgeological structures is taken into account. The
combination of the scattering attenuation descriptiomslf® and 3-D random media is the topic of a
forthcoming paper.

In Muller and Shapiro (2001) scattering attenuation edtanéor the German KTB area were obtained
with help of statistical estimates of velocity inhomogeissi deduced from the well-log data. With the
assumption of statistically isotropic inhomogeneitid®yt explained a large amount of the 'measured’
attenuation (extracted from the seismic data of the accagipg VSP experiment) in terms of scattering.
A previously reported hypothesis Lischen et al. (1993)ragsithat seismic reflectivity is mainly related to
scattering at hydraulically active fracture zones. We higpsize that such fracture systems can effectively
act like an anisotropic random medium, where the largesetaiion scale is associated with the average
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direction of the fractures and cracks. Moreover, to assypagiadly anisotropy is necessary because in
fracture systems there is a preferred orientation of crétisis associated with the orientation of major
faults. Taking into account the steeply inclined major fair the KTB region (for depths up to 10 km the
dip angle is typically30—70°, see e.g. Harjes et al., 1997), it is reasonable to assurrthéseismic waves

in the VSP experiment traveled to some extent parallel tactheks and thus along the long axis of the
anisotropic random medium such that the case 1 applies. For the evaluation of scattering attenuation
this has an important consequence. As shown above, ferl larger scattering attenuation estimates are
obtained as compared to the isotropic case. Taking intoustdhis fact, we speculate that the amount of
scattering attenuation at the KTB area can be even largetitiad evaluated in Miller and Shapiro (2001)).

CONCLUSIONS

In conclusion, we derived tractable results for the log-ktugbe variance in anisotropic random media
based on the Rytov approximation. Assuming Gaussian edectlinhomogeneities we obtain explicit
results, which are confirmed by numerical simulations. Fewvevpropagation along the large axis of
inhomogeneities, the Rytov approximation is not the bestaghbecause of its limited range of validity.
The opposite is true for wave propagation along the shog akthe inhomogeneities. Then the Rytov
approximation for the log-amplitude variance (and alsovidugance of the phase fluctuations) has a wider
range of applicability as compared with the isotropic caSarther, we formulate conditions that define
the range of applicability of the presented formulas. Weutised the use of the log-amplitude variance as
an estimate of scattering attenuation in anisotropic remg@dia. Caution is required in the cage 1,
because the attenuation of seismic primaries due to randfraction and refraction in the presented
approximation may then be small compared with the atteanatihich is caused due to backscattering.
It remains to be tested if a combination of 1¢Bestimates which account for backscattering (such as
obtained from the ODA approach) and the presented resultQ fim 3-D anisotropic random media is
more adequate to mod@-measurements in layered structures with finite lateradrext
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