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ABSTRACT

Moveout corrections based on hyperbolic traveltime apipnations are usually expected to caus
distortions of the wavelet, especially for comparativehed traveltimes and large offsets. This kin
of pulse stretch effect is well known from the conventiond@ correction and requires appropri
ate muting of the pre-stack data. However, data-driven intgagiethods based on multi-paramets
traveltime approximations like Multifocusing, delayecpieybola approaches, or Common-Reflection-
Surface stack do not expose such a stretch phenomenon.slocathiribution, we briefly review the
origin of the pulse stretch effect and relate it to the adifmoothness of typically applied NMQ
velocity fields. Data-driven imaging methods introduce stagatic variation of the stacking velocity
to avoid the unwanted pulse stretch. In contrast, the asgmatkinematic CRS wavefield attributes
remain virtually constant and, thus, again turn out to me\a more appropriate parameterization pf
the recorded wavefield.
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INTRODUCTION

Conventional imaging methods often systematically didtoe wavelet with respect to its length and its
shape. The former leads to a reduced frequency content nesiaéting image and the latter bears the risk
of a misinterpretation. These inherent effects occur eMiaeistacking operators are kinematically correct:
they are due to the usually smooth parameterization of théearespective if this model is explicitly
given (model-based imaging methods like Kirchhoff migvajior implicitly derived from the pre-stack
data (data-driven methods like NMO/DMO/stack).

This kind of unwanted changes of the wavelet do not occumdutiie CRS stack and similar data-
oriented imaging methods like Multifocusing (Berkovitched,, 1994; Landa et al., 1999) or the delayed
hyperbola approaches by de Bazelaire (1988); Thore et @94)1 To explain this fact, we will briefly
review the reasons for the pulse stretch in conventionagjintamethods for a simple example where the
respective second-order operators are kinematicallyteX&e discuss different approximations for the
stacking trajectories for neighboring samples along theeled in band-limited data and compare them to
the stacking velocities determined by means of the Commefite&ion-Surface stack. It turns out that the
optimum stacking velocity model for an undistorted stackslelet is not smooth but contains a systematic
variation of the stacking velocity.

Reformulated in terms of kinematic wavefield attributesnely emergence angles and radii of wave-
front curvatures, these variations can be removed to a kxtgnd and allow a more reliable extraction
of information for subsequent processing steps, e. g.hfatdmographic inversion approach presented by
Duveneck in this issue. Furthermore, the kinematic wawkfttributes provide a description that always
has a sound physical meaning, even in cases where the gfagitarcity is imaginary or tends to infinity,

i. e., in situations with negative or vanishing moveout.
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CMP TRAVELTIMES ALONG THE WAVELET

As already indicated above, pulse stretch even occurs éntewith perfectly hyperbolic traveltime curves.
To focus on this effect, we will only consider such idealizitdations in the following. The simplest situa-
tion that leads to perfectly hyperbolic events is, of copasglane reflector with homogeneous overburden.
Without imposing any restrictions on the consideratiorscan assume a horizontal reflector for the sake
of simplicity, as the dip only occurs as additional factottie stacking velocity. For a reflector at depth
and a velocityy, the kinematic reflection response is simply given by
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wherety = 2 zp/vo denotes the ZO traveltime arids the half-offset.

For a medium without attenuation, the pre-stack data caeesented as a temporal convolution of
the source wavelet with the temporal len@trand the kinematic reflection resporisin other words, the
pulse length is identical for all shot and receiver locagioAn undistorted imaging result can be obtained
by stacking along the kinematic reflection response (1)aadly shifted to all locations in the time domain
within the temporal length of the wavelet:
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where we assume that the wavelet is centered around thétirave i. e. a zero-phase wavelet. Of course,
the same considerations can also be made for causal wavelets

An NMO correction applied with the correct velocity obviously yields the correct traveltimes (1)
and, thus, the correct operator for the center of the waveletvever, the NMO operators attached to all
other ZO traveltimes differ from the iso-phase curves (Zhimdata: the moveout difference between the

two operators attached to the ZO traveltim&i"s) =ty T/2
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is not constant, but decreases with increasing offset. [Eaids to the well known NMO pulse stretch.
Similar considerations also apply to other imaging mettmzd®d on hyperbolic operators (see, e. g., Mann,
2002). The pulse stretch is due to the fact that the shapesafpbrators not only depends on the velocity
vp, but also on the ZO traveltime. This is an inherent propeftthe hyperbolic traveltime expressions
used for NMO, CMP stack, and other imaging methods. Pamabgfiresentations avoid the pulse stretch
as their shape remains unchanged for neighboring pointset#er, such representations are kinematically
less accurate, especially in the considered case whergpieetiolic representations are exact.

ALTERNATIVE APPROXIMATIONS OF THE STACKING VELOCITY

The application of a constant stacking velocity model isiobsly not suited to describe the iso-phase
curves in the input data, not even in the simplest possillatson. Thus, we have to look for a better
description of the stacking velocity along the seismic vietveTo address this task, we try to express the
shifted hyperbola (2) in the same form as the hyperbolicater(1) and in terms of the ZO travelting
and the velocityy, defined at the center of the wavelet. Solving for the new atgckelocity vshir, we

obtain
2h2v3

: (4)
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This velocity explicitely depends on the half-offggtin other words, the shifted hyperbola (2) cannot be
expressed by means of a single stacking velocity. If wéfithe time shiftAt¢ is the same for this offset

Vgnine (AL, h) =

IFor critical and super-critical reflection angles, an dddil phase shift occurs. We will not consider this case .h&ar the
model presented later on, such situations do not occur.at all
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and offset zero, but not for arbitrary offsets. For an exastdiption of the iso-phase curves in the data, we
would have to allow an additional parameter, the time shifitself. To avoid this additional parameter, a
reasonable approximation o is required.

In conventional processingghis; is assumed to coincide witly. Obviously, this is only true fok — oo,
simply stating that the asymptotes of the considered hypaetare parallel and, thus, have a constant time
shift. For the simulation of ZO sections, this constitutesreappropriate approximation that leads to pulse
stretch. As in NMO stacking velocity models velocity usyalicreases with increasing time, the actual
situation is even worse.

For a ZO simulation, a more reasonable approach is to reguiomstant curvature at offset zero of all
stacking hyperbolae, i. e., all valuesAt. This ensures that the time shift is constant in a vicinitpféet
zero. With this approximation, the stacking velocity reads

t
Vahife = tOTOAtU(Q’ ) (5)
where the index c indicates constant ZO curvature. The sasdtrcan be obtained by means of an
expansion of the shifted hyperbola (2) if we keep only term$ausecond order ih.
So far, we have two quite different approximations for thiéetl hyperbolae: constant stacking velocity
(the conventional approach) and constant curvature ataféso. Below, we will compare these approaches
to the stacking velocity found by means of coherence armlgghe pre-stack data.

NUMERICAL EXAMPLE FOR A 1-D MODEL

To analyze the behavior of the stacking velocity derived ans of the CRS stack method, we defined
a simple 1-D model consisting of three horizontal planarerfirs at depths; = 1000, 1080, 1160m
with a constant velocity, = 1500m/s. The impedance contrasts are entirely due to densitygesa
thus, neither refraction nor over-critical reflections wcat the interfaces, and all events are perfectly
hyperbolic. The wavelet is a Ricker wavelet with a peak feagry of 30 Hz. A CMP gather within a
half-offset range o . . . 500 m was simulated with a fold of 31. We added some noise to thetdaibtain
reasonable coherence values and to avoid artifacts. A®refe, the modeled ZO trace is shown on the left-
hand side of Figure 1a. Note that for this model no signifigarse stretch will occur with conventional
NMO correction: the maximum stretch 4s 10%, which is usually considered as acceptable. Our aim is
to demonstrate that the optimum varying stacking velocity even be recovered in case of very subtle
variations.

This CMP gather served as input to the first step of the CR% stacessing scheme, the automatic
CMP stack. This process also uses the one-parameter opgratéiowever, it determines the optimum
stacking velocity separately for each simulated ZO saniies, no smoothness of the stacking velocity is
imposed. The resulting stacked trace is shown on the righttkide of Figure 1a: as expected, the wavelet
is recovered without any stretch. The associated cohekehges, namely semblance, calculated along the
stacking trajectories is depicted in Figure 1b. It easilgvas$ to identify the events and tells us for which
traveltimes the stacking velocity is meaningful. The ditdcstacking velocity is shown as solid line in
Figures 1c and d. As expected from the considerations inrdangqus section, it is not constant along the
wavelet, but exposes a characteristic “jig saw” appearahdecreaseslong the wavelet witlincreasing
traveltime. This is in contrast to usually applied smooth @Melocity models.

Let us now compare the detected velocity to the expected/imtfar constant ZO curvature according
to Equation 5. The analytic values are displayed as dashesliln Figure 1c, of course separately for each
event. We observe a very good fit to the semblance-basedsestiacted from the pre-stack data.

But now let us go a step further: the assumption of constamature only provides a constant time shift
close to offset zero. However, a finite half-offset rang® of. 500 m contributes to the stack. Thus, one
might argue that Equation (4) might provide an even bettdofia certain “average offset” such that the
deviation from the constant time shift is as small as possin all offsets. We analyzed this by minimizing
the least square error between the shifted hyperbolae sindé-parameter approximation. Strikingly, the
optimum half-offset obtained in this way is a) virtually ygendent of the time shifh¢, b) the same for
all three events, and c) witls 830 m located outside the modeled half-offset range. The stgokélocity
calculated in this way is depicted as dashed line in FigureTlee result is very similar to the constant
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ZO0 trace vs. CMP stack Coherence Velocity [m/s] Velocity [m/s]
0 0.5 1.0 1480 1500 1520 1480 1500 1520
1.3 . .
1.44
)
(O]
£
|_
1.5
1.64
a) b) c) d)
1160-
E
o 10801
c
@
1000+
1.30 1.35 1.40 1.45 1.50 1.55 1.60
Time [s] e)

Figure 1: Synthetic example: a) slightly noisy modeled ZO trace ve. &P stack result, b) coherence
measure semblance calculated along the stacking hyperhmlaetected stacking velocities (solid line)
vs. forward-calculated stacking velocities (dashed lifieshyperbolae with the same curvature at offset
zero, and d) same as c) but for hyperbolae providing the liestiatic fit within the given offset range. e)

radius of the NIP wavefront. In contrast to the stacking e#yo Ry p is almost constant along the wavelet
and—for this simple model—represents the reflector depths.
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curvature approach shown in Figure 1d and fits the detectedities even a little better.

BEHAVIOR OF THE KINEMATIC WAVEFIELD ATTRIBUTES

In the following, we will reformulate the preceeding seosan terms of the CRS wavefield attributes. The
CRS operator is also a hyperbolic representation and ifseshiao explicitly depends on the ZO traveltime
to. Expressed in terms of midpoint coordinatg and half-offset:, it reads

QSina(acm—wo)]2+2t0 cos? a (mm—$0)2+ h?

t h) = |t
ryp (2m: ) 0 Rn Rnip

(6)

Vo Vo
whereuv, represents the near-surface velocity &hadx ) is the considered ZO location. The CRS operator
is parameterized by three kinematic wavefield attributéinee at the surface location,, namelyq,
the emergence angle of the normal r&yp, the radius of the normal-incidence-point (NIP) wavefront
and Ry, the radius of the normal wavefront. The relation of thesebattes to two so-called eigenwave
experiments can, e. g., be found in Mann et al. (1999) and &igé (2001).

For the considered 1-D model, itis obvious that all rays arical and all normal wavefronts are plane,
i.e.,a = 0andRy = +oo for all three events. Accordingly, the CRS operator redtces

2to h?
t h) = ‘/tQ 7
(mm, ) 0 + U() RN|P ( )

for any midpoint locatione,. For the center of the wavelet, this represents the exaetidtic reflection
response of the reflector witRyp = 2z = votp/2. As a matter of fact, this is simply an alternative
formulation of the well known CMP moveout formula (1).

More general, the stacking velocity,ckis related to the wavefield attributes according to

V2 Rnipvg
stack™ 94, cosar

(8)

If we reformulate Equation (5) in terms d¥yp for to and Rnipshitt for to + At, we readily observe
that Rnip = Ripshic for any At: the anglex is determined by the linear term in the CRS operator (6),
such that it does not vary along the wavelet. In other wotts assumption of constant curvature of the
traveltime curves at offset zero is equivalent to constadius of curvaturd?yp along the wavelet. As this
approximation provided a good fit to the detected stackigoity, we can also expect the corresponding
behavior forRyp. Indeed, the NIP wavefront radius shown in Figure le, cated from the detected
stacking velocities according to Equation (8), is almoststant for each of the three events, for this 1-D
model simply representing the reflector depthsThus, this radius appears to be a more natural parameter
for the traveltime curves as it does not vary along the wavElerthermore, it is always well-defined even
in situations when the stacking velocity has no physicalmirea

So far, we only considered the CMP gather. As the CRS opeisitorperbolic for any configuration
that includes the simulated ZO location, e. g., common-shobmmon-receiver gather or the ZO section,
the same behavior is expected in any case. The additiorallterm in any gather except the CMP gather
does not change the principal properties. The respectimature, in general a linear combination of
1/Rnip and1/ Ry will remain almost constant along the wavelet and the putséch will be avoided. This
allows a far more reliable extraction of attributes for sdpgent applications than the stacking velocity
section.

CONCLUSIONS

We briefly reviewed the origin of pulse stretch in convensibiime domain processing with constant or
smooth NMO velocity models. A stretch free imaging with opdily recovered wavelet is not possible
with such models: the limited bandwidth of the data is notsidered even in case of kinematically exact
operators. We discussed an approximation of the stackilogityevariation along the wavelet that is better
suited for the simulation of ZO sections. A comparison witRSCstack results for a 1-D model demon-
strated that data-driven imaging methods automaticalbydathe pulse stretch and introduce a systematic
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variation of the stacking velocity. Formulated in termstaf kinematic CRS wavefield attributes, this vari-
ation vanishes. Thus, the radii of wavefront curvatureslived in the CRS stack approach provide a more
natural parameterization of the reflection events.
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