
35

Short note: the pulse stretch phenomenon in the context of
data-driven imaging methods

Jürgen Mann and German Höcht

email: Juergen.Mann@gpi.uka.de
keywords: CRS stack, pulse stretch, NMO correction, wavefield attributes

ABSTRACT

Moveout corrections based on hyperbolic traveltime approximations are usually expected to cause
distortions of the wavelet, especially for comparatively small traveltimes and large offsets. This kind
of pulse stretch effect is well known from the conventional NMO correction and requires appropri-
ate muting of the pre-stack data. However, data-driven imaging methods based on multi-parameter
traveltime approximations like Multifocusing, delayed hyperbola approaches, or Common-Reflection-
Surface stack do not expose such a stretch phenomenon. In this contribution, we briefly review the
origin of the pulse stretch effect and relate it to the artifical smoothness of typically applied NMO
velocity fields. Data-driven imaging methods introduce a systematic variation of the stacking velocity
to avoid the unwanted pulse stretch. In contrast, the associated kinematic CRS wavefield attributes
remain virtually constant and, thus, again turn out to provide a more appropriate parameterization of
the recorded wavefield.

INTRODUCTION

Conventional imaging methods often systematically distort the wavelet with respect to its length and its
shape. The former leads to a reduced frequency content in theresulting image and the latter bears the risk
of a misinterpretation. These inherent effects occur even if the stacking operators are kinematically correct:
they are due to the usually smooth parameterization of the model, irrespective if this model is explicitly
given (model-based imaging methods like Kirchhoff migration) or implicitly derived from the pre-stack
data (data-driven methods like NMO/DMO/stack).

This kind of unwanted changes of the wavelet do not occur during the CRS stack and similar data-
oriented imaging methods like Multifocusing (Berkovitch et al., 1994; Landa et al., 1999) or the delayed
hyperbola approaches by de Bazelaire (1988); Thore et al. (1994). To explain this fact, we will briefly
review the reasons for the pulse stretch in conventional imaging methods for a simple example where the
respective second-order operators are kinematically exact. We discuss different approximations for the
stacking trajectories for neighboring samples along the wavelet in band-limited data and compare them to
the stacking velocities determined by means of the Common-Reflection-Surface stack. It turns out that the
optimum stacking velocity model for an undistorted stackedwavelet is not smooth but contains a systematic
variation of the stacking velocity.

Reformulated in terms of kinematic wavefield attributes, namely emergence angles and radii of wave-
front curvatures, these variations can be removed to a largeextend and allow a more reliable extraction
of information for subsequent processing steps, e. g., for the tomographic inversion approach presented by
Duveneck in this issue. Furthermore, the kinematic wavefield attributes provide a description that always
has a sound physical meaning, even in cases where the stacking velocity is imaginary or tends to infinity,
i. e., in situations with negative or vanishing moveout.
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CMP TRAVELTIMES ALONG THE WAVELET

As already indicated above, pulse stretch even occurs for events with perfectly hyperbolic traveltime curves.
To focus on this effect, we will only consider such idealizedsituations in the following. The simplest situa-
tion that leads to perfectly hyperbolic events is, of course, a plane reflector with homogeneous overburden.
Without imposing any restrictions on the considerations, we can assume a horizontal reflector for the sake
of simplicity, as the dip only occurs as additional factor inthe stacking velocity. For a reflector at depthz0

and a velocityv0, the kinematic reflection response is simply given by
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wheret0 = 2 z0/v0 denotes the ZO traveltime andh is the half-offset.
For a medium without attenuation, the pre-stack data can be represented as a temporal convolution of

the source wavelet with the temporal lengthT and the kinematic reflection response.1 In other words, the
pulse length is identical for all shot and receiver locations. An undistorted imaging result can be obtained
by stacking along the kinematic reflection response (1) vertically shifted to all locations in the time domain
within the temporal length of the wavelet:
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where we assume that the wavelet is centered around the traveltime t, i. e. a zero-phase wavelet. Of course,
the same considerations can also be made for causal wavelets.

An NMO correction applied with the correct velocityv0 obviously yields the correct traveltimes (1)
and, thus, the correct operator for the center of the wavelet. However, the NMO operators attached to all
other ZO traveltimes differ from the iso-phase curves (2) inthe data: the moveout difference between the
two operators attached to the ZO traveltimest
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is not constant, but decreases with increasing offset. Thisleads to the well known NMO pulse stretch.
Similar considerations also apply to other imaging methodsbased on hyperbolic operators (see, e. g., Mann,
2002). The pulse stretch is due to the fact that the shape of the operators not only depends on the velocity
v0, but also on the ZO traveltime. This is an inherent property of the hyperbolic traveltime expressions
used for NMO, CMP stack, and other imaging methods. Parabolic representations avoid the pulse stretch
as their shape remains unchanged for neighboring points. However, such representations are kinematically
less accurate, especially in the considered case where the hyperbolic representations are exact.

ALTERNATIVE APPROXIMATIONS OF THE STACKING VELOCITY

The application of a constant stacking velocity model is obviously not suited to describe the iso-phase
curves in the input data, not even in the simplest possible situation. Thus, we have to look for a better
description of the stacking velocity along the seismic wavelet. To address this task, we try to express the
shifted hyperbola (2) in the same form as the hyperbolic operator (1) and in terms of the ZO traveltimet0
and the velocityv0 defined at the center of the wavelet. Solving for the new stacking velocityvshift, we
obtain
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This velocity explicitely depends on the half-offseth, in other words, the shifted hyperbola (2) cannot be
expressed by means of a single stacking velocity. If we fixh, the time shift∆t is the same for this offset

1For critical and super-critical reflection angles, an additional phase shift occurs. We will not consider this case here. For the
model presented later on, such situations do not occur at all.
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and offset zero, but not for arbitrary offsets. For an exact description of the iso-phase curves in the data, we
would have to allow an additional parameter, the time shift∆t itself. To avoid this additional parameter, a
reasonable approximation ofvshift is required.

In conventional processing,vshift is assumed to coincide withv0. Obviously, this is only true forh → ∞,
simply stating that the asymptotes of the considered hyperbolae are parallel and, thus, have a constant time
shift. For the simulation of ZO sections, this constitutes an inappropriate approximation that leads to pulse
stretch. As in NMO stacking velocity models velocity usually increases with increasing time, the actual
situation is even worse.

For a ZO simulation, a more reasonable approach is to requirea constant curvature at offset zero of all
stacking hyperbolae, i. e., all values of∆t. This ensures that the time shift is constant in a vicinity ofoffset
zero. With this approximation, the stacking velocity reads

v2
shift,c =

t0
t0 + ∆t

v2
0 , (5)

where the index c indicates constant ZO curvature. The same result can be obtained by means of an
expansion of the shifted hyperbola (2) if we keep only terms up to second order inh.

So far, we have two quite different approximations for the shifted hyperbolae: constant stacking velocity
(the conventional approach) and constant curvature at offset zero. Below, we will compare these approaches
to the stacking velocity found by means of coherence analysis in the pre-stack data.

NUMERICAL EXAMPLE FOR A 1-D MODEL

To analyze the behavior of the stacking velocity derived by means of the CRS stack method, we defined
a simple 1-D model consisting of three horizontal planar reflectors at depthszi = 1000, 1080, 1160m
with a constant velocityv0 = 1500m/s. The impedance contrasts are entirely due to density changes,
thus, neither refraction nor over-critical reflections occur at the interfaces, and all events are perfectly
hyperbolic. The wavelet is a Ricker wavelet with a peak frequency of 30 Hz. A CMP gather within a
half-offset range of0 . . . 500m was simulated with a fold of 31. We added some noise to the data to obtain
reasonable coherence values and to avoid artifacts. As reference, the modeled ZO trace is shown on the left-
hand side of Figure 1a. Note that for this model no significantpulse stretch will occur with conventional
NMO correction: the maximum stretch is≈ 10%, which is usually considered as acceptable. Our aim is
to demonstrate that the optimum varying stacking velocity can even be recovered in case of very subtle
variations.

This CMP gather served as input to the first step of the CRS stack processing scheme, the automatic
CMP stack. This process also uses the one-parameter operator (1). However, it determines the optimum
stacking velocity separately for each simulated ZO sample.Thus, no smoothness of the stacking velocity is
imposed. The resulting stacked trace is shown on the right-hand side of Figure 1a: as expected, the wavelet
is recovered without any stretch. The associated coherencevalues, namely semblance, calculated along the
stacking trajectories is depicted in Figure 1b. It easily allows to identify the events and tells us for which
traveltimes the stacking velocity is meaningful. The detected stacking velocity is shown as solid line in
Figures 1c and d. As expected from the considerations in the previous section, it is not constant along the
wavelet, but exposes a characteristic “jig saw” appearance: it decreasesalong the wavelet withincreasing
traveltime. This is in contrast to usually applied smooth NMO velocity models.

Let us now compare the detected velocity to the expected behavior for constant ZO curvature according
to Equation 5. The analytic values are displayed as dashed lines in Figure 1c, of course separately for each
event. We observe a very good fit to the semblance-based results extracted from the pre-stack data.

But now let us go a step further: the assumption of constant curvature only provides a constant time shift
close to offset zero. However, a finite half-offset range of0 . . . 500m contributes to the stack. Thus, one
might argue that Equation (4) might provide an even better fitfor a certain “average offset” such that the
deviation from the constant time shift is as small as possible for all offsets. We analyzed this by minimizing
the least square error between the shifted hyperbolae and its one-parameter approximation. Strikingly, the
optimum half-offset obtained in this way is a) virtually independent of the time shift∆t, b) the same for
all three events, and c) with≈ 830m located outside the modeled half-offset range. The stacking velocity
calculated in this way is depicted as dashed line in Figure 1d. The result is very similar to the constant
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Figure 1: Synthetic example: a) slightly noisy modeled ZO trace vs. the CMP stack result, b) coherence
measure semblance calculated along the stacking hyperbolae, c) detected stacking velocities (solid line)
vs. forward-calculated stacking velocities (dashed lines) for hyperbolae with the same curvature at offset
zero, and d) same as c) but for hyperbolae providing the best kinematic fit within the given offset range. e)
radius of the NIP wavefront. In contrast to the stacking velocity, RNIP is almost constant along the wavelet
and—for this simple model—represents the reflector depths.
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curvature approach shown in Figure 1d and fits the detected velocities even a little better.

BEHAVIOR OF THE KINEMATIC WAVEFIELD ATTRIBUTES

In the following, we will reformulate the preceeding sections in terms of the CRS wavefield attributes. The
CRS operator is also a hyperbolic representation and its shape also explicitly depends on the ZO traveltime
t0. Expressed in terms of midpoint coordinatexm and half-offseth, it reads

t2hyp (xm, h) =

[
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2 sinα (xm − x0)
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]2
+
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[
(xm − x0)

2
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+
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]
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wherev0 represents the near-surface velocity and(t0, x0) is the considered ZO location. The CRS operator
is parameterized by three kinematic wavefield attributes defined at the surface locationx0, namelyα,
the emergence angle of the normal ray,RNIP, the radius of the normal-incidence-point (NIP) wavefront,
andRN, the radius of the normal wavefront. The relation of these attributes to two so-called eigenwave
experiments can, e. g., be found in Mann et al. (1999) and Jäger et al. (2001).

For the considered 1-D model, it is obvious that all rays are vertical and all normal wavefronts are plane,
i. e.,α = 0 andRN = ±∞ for all three events. Accordingly, the CRS operator reducesto

t (xm, h) =

√
t20 +

2 t0 h2

v0 RNIP
(7)

for any midpoint locationxm. For the center of the wavelet, this represents the exact kinematic reflection
response of the reflector withRNIP = z = v0 t0/2. As a matter of fact, this is simply an alternative
formulation of the well known CMP moveout formula (1).

More general, the stacking velocityvstack is related to the wavefield attributes according to

v2
stack=

RNIP v0

2 t0 cosα
. (8)

If we reformulate Equation (5) in terms ofRNIP for t0 and RNIP,shift for t0 + ∆t, we readily observe
thatRNIP = RNIP,shift for any∆t: the angleα is determined by the linear term in the CRS operator (6),
such that it does not vary along the wavelet. In other words, the assumption of constant curvature of the
traveltime curves at offset zero is equivalent to constant radius of curvatureRNIP along the wavelet. As this
approximation provided a good fit to the detected stacking velocity, we can also expect the corresponding
behavior forRNIP. Indeed, the NIP wavefront radius shown in Figure 1e, calculated from the detected
stacking velocities according to Equation (8), is almost constant for each of the three events, for this 1-D
model simply representing the reflector depthszi. Thus, this radius appears to be a more natural parameter
for the traveltime curves as it does not vary along the wavelet. Furthermore, it is always well-defined even
in situations when the stacking velocity has no physical meaning.

So far, we only considered the CMP gather. As the CRS operatoris hyperbolic for any configuration
that includes the simulated ZO location, e. g., common-shotor common-receiver gather or the ZO section,
the same behavior is expected in any case. The additional linear term in any gather except the CMP gather
does not change the principal properties. The respective curvature, in general a linear combination of
1/RNIP and1/RN will remain almost constant along the wavelet and the pulse stretch will be avoided. This
allows a far more reliable extraction of attributes for subsequent applications than the stacking velocity
section.

CONCLUSIONS

We briefly reviewed the origin of pulse stretch in conventional time domain processing with constant or
smooth NMO velocity models. A stretch free imaging with optimally recovered wavelet is not possible
with such models: the limited bandwidth of the data is not considered even in case of kinematically exact
operators. We discussed an approximation of the stacking velocity variation along the wavelet that is better
suited for the simulation of ZO sections. A comparison with CRS stack results for a 1-D model demon-
strated that data-driven imaging methods automatically avoid the pulse stretch and introduce a systematic
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variation of the stacking velocity. Formulated in terms of the kinematic CRS wavefield attributes, this vari-
ation vanishes. Thus, the radii of wavefront curvatures involved in the CRS stack approach provide a more
natural parameterization of the reflection events.
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