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ABSTRACT

Seismic traveltimes are required for a variety of applications. We present a wavefront-oriented ray-
tracing technique for the computation of traveltimes in a smooth3D anisotropic model. In this method,
we propagate a wavefront stepwise through the model and interpolate output quantities (e.g., travel-
time, slowness) from rays to gridpoints. In contrast to isotropic media, where the input is a velocity
model, the model for an anisotropic medium is defined by21 elastic parameters at each gridpoint. To
interpolate the elastic parameters to arbitrary points we use the Cardinal spline interpolation. For a
homogeneous transversely isotropic medium a comparison with reference traveltimes for qP-waves
shows that the maximum absolute errors do not exceed0.04 ms. In addition we compute traveltimes
for an inhomogeneous triclinic model. While we have no analytical solutions to verify the computed
traveltimes, we compared our results to traveltimes computed by an FD perturbation method.

INTRODUCTION

Seismic traveltimes are used in many processing techniques, such as Kirchhoff migration and traveltime
tomography. There are two major approaches for the computation of traveltimes in anisotropic media:
ray-tracing methods (see, e.g.,Červený, 1972; Gajewski and Pšenčik, 1987) and methods which are based
on a numerical solution of the eikonal equation using finite differences and perturbation (see, e.g., Ettrich
and Gajewski, 1998; Lecomte, 1993). The main criteria to compare these methods are the accuracy and the
efficiency (Leidenfrost et al., 1999).
Unfortunately, the traditional, i.e. two-point ray-tracing method is computationally expensive when travel-
times are required for an entire2D or 3D grid. During the last years several authors have introduced new
ray-tracing based methods, so called wavefront construction methods (Vinje et al., 1993; Lambaré et al.,
1996). The basic idea of wavefront construction is to propagate a ray field rather than a single ray. For
anisotropic media the propagation is performed by solving the kinematic ray-tracing system introduced by
Červený (1972).
In the last year Coman and Gajewski (2001) presented an implementation to compute traveltimes by
wavefront-oriented ray tracing in inhomogeneous isotropic media. Based on this efficient and accurate
technique for isotropic media, we now extended the wavefront-oriented ray-tracing technique to compute
qP-wave traveltimes in smooth3D anisotropic media. Since we wish to consider arbitrary types of sym-
metry the3D model for an anisotropic medium is defined by21 elastic parameters and the density for
every gridpoint. This leads to a more complicated formalismfor the kinematic ray-tracing system than for
isotropic media. Therefore we had to change the representation of the model: Instead of using trilinear
interpolation, we compute the elastic parameters and the derivatives at arbitrary points by Cardinal spline
interpolation. This makes the algorithm more efficient in terms of computational storage and CPU time.
After an introduction to the method we give several numerical examples. We demonstrate the accuracy
of the method by comparing the traveltimes computed for a homogeneous transversely isotropic model
to exact traveltimes. While we have no analytical solutionsfor an inhomogeneous anisotropic model, we
compare our results with an alternative method for traveltime computation, the FD perturbation method
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(Soukina and Gajewski, 2001).

THE METHOD

The wavefront-oriented ray-tracing technique presented by Coman and Gajewski (2002) for a smooth 3D
isotropic medium is based on the idea of wavefront construction (WFC). Our implementation is an exten-
sion of this method to3D smooth anisotropic media. In this part, we give a short overview of the theoretical
background, i.e. the formalism of the kinematic ray-tracing system and the definition of the initial con-
ditions in anisotropic media. Also, we explain some implementation details of the algorithm, e.g., the
interpolation of the elastic parameters.

The kinematic ray-tracing system

The ray field is propagated by kinematic ray tracing (KRT). For the 3D anisotropic case the KRT-system is
given by, e.g.,̌Cervený (2001),

dxi

dτ
= aijklplDjk/D,

dpi

dτ
= −1

2

∂ajkln

∂xi
pkpnDjl/D. (1)

The Einstein summation convention applies over all repeated lower indices andaijkl represents the density-
normalised elastic tensor,xi are the Cartesian coordinates;pi are the components of the slowness vector~p,
andτ is the traveltime along the ray. TheDjk andD are given by (see, e.g.,Červený, 2001):

D11 = (Γ22 − Gm)(Γ33 − Gm) − Γ2
23,

D22 = (Γ11 − Gm)(Γ33 − Gm) − Γ2
13,

D33 = (Γ11 − Gm)(Γ22 − Gm) − Γ2
12,

D12 = D21 = Γ13Γ23 − Γ12(Γ33 − Gm),

D13 = D31 = Γ12Γ23 − Γ13(Γ22 − Gm),

D23 = D32 = Γ12Γ13 − Γ23(Γ11 − Gm),

D = D11 + D22 + D33.

(2)

The quantityGm is them-th eigenvalue of the Christoffel matrixΓik, wherem denotes the type of ele-
mentary wave we wish to compute (e.g., qP- or qS-wave). The Christoffel matrix is given by the relation

Γik = aijklpjpl. (3)

Furthermore, the eikonal equation

Gm = ΓikDik/D = aijklpjplDik/D = 1 for m = 1, 2, 3 (4)

is satisfied along the ray. Therefore, Equation (4) should betaken into account in Equation (2).
The ray-tracing system (1) is identical for all types of waves (e.g., qP-wave or qS-wave) that can propagate
in an anisotropic smooth inhomogeneous medium. Therefore,the type of wave is specified by the initial
conditions, which are introduced in the next section.

Initial conditions

In contrast to the isotropic case the directions of the slowness vector~p and the ray velocity vector~U are
different in an anisotropic medium. The direction of propagation of the wavefront is specified by the unit
vector ~N , given by the direction of the slowness vector~p = ~N/C, and of the phase velocityC, where
C = [pipi]

−1/2.
The initial conditions for a single ray of one particular selected wave passing through a pointS, the source
position, can be most easily expressed by defining the initial direction of slowness vector~p at the pointS.
The initial conditions for the ray tracing system (1) may then be expressed by

atS : x
(m)
i = x

(m)
i0 , p

(m)
i = p

(m)
i0 , m = 1, 2, 3, (5)
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Figure 1: Graphical description of the WFC methods: the propagation of the ray field with a constant
traveltime step∆τ . If necessary, we insert a new ray by tracing it directly fromthe source

wherep
(m)
i0 satisfy the eikonal equation (4) at the source locationS corresponding to the particular wave

denoted bym. To express the slownessp(m)
i0 , we define the components of the phase normal vector~N0

using the take-off angles,i0 andφ0 at the source

N10 = sin i0 cosφ0, N20 = sin i0 sin φ0, N30 = cos i0. (6)

After solving the eigenvalue problem to compute the phase velocity at the sourceC(m)
0 , the components of

the slowness vector~p(m) atS are given by

p
(m)
10 = N10/C

(m)
0 , p

(m)
20 = N20/C

(m)
0 , p

(m)
30 = N30/C

(m)
0 . (7)

Propagation of wavefronts

The first step is the definition of a single ray by its initial conditions (5). To increase the efficiency the
wavefront construction methods propagate a ray field ratherthan a single ray (see also Figure 1). To prop-
agate the wavefront stepwise through the model we solve the KRT-system (1) for every timestep∆τ using
a fourth-order Runge-Kutta method. To provide a high accuracy the ray density is evaluated after every
timestep and, if necessary, new rays are inserted. The insertion of a new ray is performed by tracing it from
the source (see Coman and Gajewski, 2001). To decide if a new ray has to be inserted three criteria are
applied: (1) the distance between two adjacent rays exceedsa predefined threshold, (2) the difference in
wavefront curvature between two adjacent rays exceeds a predefined threshold, (3) two adjacent rays cross
each other. If one of the insertion criteria is satisfied, we insert a new ray by tracing it directly from the
source. The initial conditions for the inserted ray are defined by halving of intervals of the initial conditions
of the parent rays at the sourceS.
Using the KRT-system (1) we get the traveltime along the ray,but for Kirchhoff depth migration the travel-
times are needed on a rectangular grid. Therefore, we interpolate the output quantities on a Cartesian grid
(for details see Coman and Gajewski, 2001). The wavefront curvature is needed for the interpolation to
the grid. To make the method more efficient we use the positionand the direction of the slowness for two
adjacent rays and then approximate the wavefront curvature, instead of using dynamic ray tracing.
For Kirchhoff migration traveltimes on fine grids are needed. From the point of computational effiency it
is advisable to calculate traveltimes on a coarse grid and then interpolate onto the fine grid, using, e.g., the
hyperbolic interpolation by Vanelle and Gajewski (2002).
Following Vinje et al. (1996), we start with12 rays from the source point which pass through the vertices of
an icosahedron. To increase the ray density leaving from thesource vicinity additional rays are introduced
by interpolation on the surfaces of the icosahedron. Usually we start with320 rays, which corresponds to
two repeated interpolation steps.
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Representation of the model

For our implementation we need the model defined on a discreteregular grid. In a complex inhomogeneous
medium21 elastic parameters and the density are required for each gridpoint. For the evaluation of the
elastic parameters at arbitrary points, we used the Cardinal spline interpolation (Thomson and Gubbins,
1982).
To use the Cardinal spline interpolation instead of, for example, the cubic splines has significant advantages
in terms of computational storage and time. If we used cubic splines (Späth, 1973) we would have to
calculate four coeffients for each grid increment in each dimension. For a model defined on a101× 101×
101 grid cube, we would thus have to compute and store64.000.000 coefficients. Using the Cardinal spline
interpolation we have to calculate and store only about400 values (depends on the chosen accuracy of the
interpolation). The elastic parameters at an arbitrary point are interpolated from the nearest gridpoint where
the parameters are known, using the distance between the points as weighting term.
Also, using Cardinal splines instead of, e.g., linear interpolation, we can compute the first spatial derivatives
of the elastic parameters, which are needed to solve the KRT-system, without storing them on the regular
grid.

NUMERICAL RESULTS

To illustrate the accuracy of the traveltime computation bywavefront-oriented ray tracing in 3D anisotropic
media we chose two types of models. To estimate the accuracy we considered a homogeneous transversely
isotropic model, because here we know the exact solutions. We use the Voigt-notationAmn for the density-
normalised tensoraijkl with the usual correspondencem → i, j andn → k, l: 1 → 1, 1; 2 → 2, 2;
3 → 3, 3; 4 → 2, 3; 5 → 1, 3; 6 → 1, 2. The density-normalised elastic parameters of the example
medium are given by

A =




15.96 6.99 6.06 0.00 0.00 0.00
15.96 6.06 0.00 0.00 0.00

11.40 0.00 0.00 0.00
2.22 0.00 0.00

2.22 0.00
4.48




[km2/s2]. (8)

A model cube of100 × 100 × 100 is considered. The grid spacing is10 m in each direction. The source
point is located in the center of thex-y plane and in a depth of60m at the position (0.5, 0.5, 0.06km). The
results of the comparison between exact traveltimes and traveltimes computed by wavefront-oriented ray
tracing are shown in Figure 2. Usually, we have the highest wavefront curvature near the source. Therefore,
the maximum relative error of0.11% is located in this region. The relative errors near the source appear
exaggerated since there the traveltimes themselves are very small. The observed average relative error is
only 1.15 ·10−3%. In addition, we show the absolute traveltime error (see Figure 3(a)). The maximal abso-
lute error4 · 10−2ms is located in the source region. We observed an average absolute error of1 · 10−3ms.
Figure 2(b) visualises that we have for the most part of the model only random numerical errors. For this
homogeneous anisotropic model the traveltimes computed with our implementation are nearly exact.

Since we have no exact traveltimes for a heterogeneous anisotropic medium, we compare traveltimes
calculated by wavefront-oriented ray tracing with traveltimes obtained by the FD perturbation method
(Soukina and Gajewski, 2001). To estimate the error distribution for both methods, we calculate the abso-
lute traveltime error for the homogeneous anisotropic model and use this knowledge for a heterogeneous
anisotropic model.
In Figure 3 the absolute traveltime errors in comparison to the FD perturbation method (Soukina and
Gajewski, 2001) are shown. The FD perturbation method accumulates absolute traveltime errors with in-
creasing distance from the source location (see Figure 3(b)). The wavefront-oriented ray tracing has only
small errors in the source region, and the absolute error distribution in the rest of the model is nearly ho-
mogeneous. We use this knowledge about the error distribution for both methods to assess the quality of
our implementation for traveltimes in a heterogeneous anisotropic model.
As an inhomogeneous anisotropic example we used a factorised anisotropic medium (FAM). FAM were
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(a) x-y slice through the source plane.
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(b) x-y slice400 m below the source.
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(c) y-z slice through the source
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(d) x-z slice through the source

Figure 2: Wavefronts in a homogeneous transversely isotropic model.The upper figures shows slices with
different distances in depth from the source location (0.5, 0.5, 0.06 km). The figures below shows vertical
slices through the source position. The underlying greyscale images show the relative errors. Please note
the different error scales.
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(a) Wavefront-oriented ray tracing
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(b) FD perturbation method

Figure 3: Absolute traveltime errors for the homogeneous transversely isotropic model, both figures shows
ax–z slice to represent the error distribution for the differentmethods; left: wavefront-oriented ray tracing;
right: FD perturbation method. Please note the different error scales.

introduced byČervený (1989). To construct FAM we multiplied the same elastic parameters by an individ-
ual factor for each gridpoint.
The elastic parameters for the triclinic sandstone are (Mensch and Rasolofosaon, 1997):

A =




6.77 0.62 1.0 −0.48 0.00 −0.24
4.95 0.43 0.38 0.67 0.52

5.09 −0.28 0.09 −0.09
2.35 0.09 0.00

2.45 0.00
2.88




[km2/s2]. (9)

For the uppermost100m the factor has the constant value3.0, underneath the factor increased linearly
with depth up to a value of3.4 at the bottom of the model. The size of the model and the location of the
source are as in the first example. Figure (4) shows the calculated differences between traveltimes from
the FD perturbation method and the traveltimes obtained by wavefront-oriented ray tracing. The solid lines
display the wavefronts calculated by our method, whereas the dotted lines visualise the results from the FD
perturbation method. The maximum absolut traveltime difference is2.3 ms and we observed an average
absolute traveltime difference of0.6 ms. It can be seen, that the behaviour and the order of traveltime
differences are similar to the observed errors in the previous model.
In conclusions of these observations, the accuracy of the anisotropic wavefront-oriented ray tracing is
nearly constant over the whole3D model. Although the FD perturbation method is faster, its accuracy
decreases with growing distance from the source.

CONCLUSIONS

We have presented a new implementation to compute traveltimes in 3D heterogeneous anisotropic media
with arbitrary symmetry based on wavefront-oriented ray tracing. We have shown the representation of
the model, which is defined by the elastic parameters. The elastic parameters on arbitrary positions are
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Figure 4: Wavefronts for the factorised triclinic anisotropic model. The solid lines show the wavefronts
calculated by wavefront-oriented ray tracing, whereas thedotted lines represent the traveltimes obtained
by the FD perturbation method. The underlying greyscale illustrates the absolute traveltime error between
both methods in ms.
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computed by Cardinal spline interpolation. A first numerical example illustrates the accuracy of our method
for the computation of traveltimes of qP-waves in a homogeneous transversely isotropic model. We have
also evaluated the computation of traveltimes in a heterogeneous anisotropic model. There we compared
the traveltimes calculated by wavefront-oriented ray tracing to traveltimes obtained by a FD perturbation
method.
In general, the method is valid for qS-waves also, if we assume that we have two well-separated qS waves.
That means we have strongly anisotropic media and no shear wave singularities. Therefore, future work
must be devoted to calculate numerical examples for qS-waves in inhomogeneous anisotropic models.
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