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ABSTRACT

Seismic traveltimes are required for a variety of applmadi We present a wavefront-oriented ray
tracing technique for the computation of traveltimes in @seth3D anisotropic model. In this method
we propagate a wavefront stepwise through the model antpitge output quantities (e.g., trave
time, slowness) from rays to gridpoints. In contrast torgpic media, where the input is a velocity
model, the model for an anisotropic medium is define@bglastic parameters at each gridpoint. 1
interpolate the elastic parameters to arbitrary points sethe Cardinal spline interpolation. For
homogeneous transversely isotropic medium a comparistinrefierence traveltimes for qP-wave
shows that the maximum absolute errors do not exégedms. In addition we compute traveltime
for an inhomogeneous triclinic model. While we have no atiedy solutions to verify the computed
traveltimes, we compared our results to traveltimes coatbhy an FD perturbation method.

VJ(J)mO

INTRODUCTION

Seismic traveltimes are used in many processing techniguek as Kirchhoff migration and traveltime
tomography. There are two major approaches for the cormipntaf traveltimes in anisotropic media:
ray-tracing methods (see, e.@erveny, 1972; Gajewski and P&#n 1987) and methods which are based
on a numerical solution of the eikonal equation using finiteecences and perturbation (see, e.g., Ettrich
and Gajewski, 1998; Lecomte, 1993). The main criteria togama these methods are the accuracy and the
efficiency (Leidenfrost et al., 1999).

Unfortunately, the traditional, i.e. two-point ray-tragimethod is computationally expensive when travel-
times are required for an enti2® or 3D grid. During the last years several authors have introdunesv
ray-tracing based methods, so called wavefront constnuctiethods (Vinje et al., 1993; Lambaré et al.,
1996). The basic idea of wavefront construction is to prepag ray field rather than a single ray. For
anisotropic media the propagation is performed by solviregkdinematic ray-tracing system introduced by
Cerveny (1972).

In the last year Coman and Gajewski (2001) presented an imgpitation to compute traveltimes by
wavefront-oriented ray tracing in inhomogeneous isottapedia. Based on this efficient and accurate
technique for isotropic media, we now extended the wavéfooiented ray-tracing technique to compute
gP-wave traveltimes in smoofiD anisotropic media. Since we wish to consider arbitrares/pf sym-
metry the3D model for an anisotropic medium is defined By elastic parameters and the density for
every gridpoint. This leads to a more complicated formalisnthe kinematic ray-tracing system than for
isotropic media. Therefore we had to change the represemtaft the model: Instead of using trilinear
interpolation, we compute the elastic parameters and thieadiges at arbitrary points by Cardinal spline
interpolation. This makes the algorithm more efficient imrte of computational storage and CPU time.
After an introduction to the method we give several numéesamples. We demonstrate the accuracy
of the method by comparing the traveltimes computed for adgeneous transversely isotropic model
to exact traveltimes. While we have no analytical solutifirsan inhomogeneous anisotropic model, we
compare our results with an alternative method for trawvedtcomputation, the FD perturbation method
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(Soukina and Gajewski, 2001).

THE METHOD

The wavefront-oriented ray-tracing technique presenye@dman and Gajewski (2002) for a smooth 3D
isotropic medium is based on the idea of wavefront conson¢iWVFC). Our implementation is an exten-
sion of this method t8D smooth anisotropic media. In this part, we give a shorteer of the theoretical
background, i.e. the formalism of the kinematic ray-trgciystem and the definition of the initial con-
ditions in anisotropic media. Also, we explain some implaméon details of the algorithm, e.g., the
interpolation of the elastic parameters.

The kinematic ray-tracing system

The ray field is propagated by kinematic ray tracing (KRT). fae 3D anisotropic case the KRT-system is
given by, e.g.Cerveny (2001),

dz; dp; 1 9ajkin

— =ajjupiDix/D, — = J n D. 1
dr ikl Pl jk/ " dr 2 a r— Y 4 jl/ ( )
The Einstein summation convention applies over all repHateer indices and,;;;,; represents the density-
normalised elastic tensat; are the Cartesian coordinatgsare the components of the slowness vegtor
andr is the traveltime along the ray. TH;,, andD are given by (see, e.dCerveny, 2001):

Dy = (T2 )(FBB Gm) — T3,
Dy = (Fu — Gn)(T'33 — Gy) — I'fs,
D3z = (T'11 — Gp)(Ta2 — Gp) — T,
D12 = Doy = T3l — FlQ(FBS —Gm), (2)
Di3 = D31 = Tiol'as —T'i3(I'a2 — G),
Dy3 = D3y = Ti19l3 —Tag(T11 — Gm),
D = Djyi+ Dy + Dss.

The quantityG,,, is them-th eigenvalue of the Christoffel matrix;;, wherem denotes the type of ele-
mentary wave we wish to compute (e.g., qP- or gS-wave). Thistofel matrix is given by the relation

Lk = aijripipi- 3
Furthermore, the eikonal equation
Gm =T Dir/D = ajjupjpDi/D =1 for m=1,2,3 4)

is satisfied along the ray. Therefore, Equation (4) shoulken into account in Equation (2).

The ray-tracing system (1) is identical for all types of wae.g., gP-wave or gS-wave) that can propagate
in an anisotropic smooth inhomogeneous medium. Therefioeetype of wave is specified by the initial
conditions, which are introduced in the next section.

Initial conditions

In contrast to the isotropic case the directions of the sksgnvectop’ and the ray velocity vectdy are
different in an anisotropic medium. The direction of progtgn of the wavefront is specified by the unit
vector N, given by the direction of the slowness vecfoe= N/C, and of the phase velocity, where
C = [pipi) /2.
The initial conditions for a single ray of one particularesgted wave passing through a pafhithe source
position, can be most easily expressed by defining thelidiiiaction of slowness vectgr at the points.
The initial conditions for the ray tracing system (1) mayritoe expressed by

ats : zz(-m) = xl%n) p(-m) :p%n) m=1,2,3, (5)

3 1 7 3
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Figure 1: Graphical description of the WFC methods: the propagatiathe ray field with a constant
traveltime stepAr. If necessary, we insert a new ray by tracing it directly frin@ source

Wherepl%”) satisfy the eikonal equation (4) at the source locaiocorresponding to the particular wave

denoted bym. To express the slowneg%"), we define the components of the phase normal veltor
using the take-off angles; and¢, at the source

N10 = Sinio COSs (bo, NQ() = Sinio sin gf)o, Ng() = COSiQ. (6)

After solving the eigenvalue problem to compute the phateitg at the sourcé‘ém), the components of
the slowness vectgr™) at S are given by

piy) = N/, pl? = Nag/C§™,  pSe? = Nao/CF™. (7

Propagation of wavefronts

The first step is the definition of a single ray by its initialnclitions (5). To increase the efficiency the
wavefront construction methods propagate a ray field rdtizr a single ray (see also Figure 1). To prop-
agate the wavefront stepwise through the model we solve Rlegystem (1) for every timestefr using

a fourth-order Runge-Kutta method. To provide a high aagyuthe ray density is evaluated after every
timestep and, if necessary, new rays are inserted. Thdimsef a new ray is performed by tracing it from
the source (see Coman and Gajewski, 2001). To decide if a ag\Was to be inserted three criteria are
applied: (1) the distance between two adjacent rays exaepdsdefined threshold, (2) the difference in
wavefront curvature between two adjacent rays exceedsigfimed threshold, (3) two adjacent rays cross
each other. If one of the insertion criteria is satisfied, m&ert a new ray by tracing it directly from the
source. The initial conditions for the inserted ray are defiby halving of intervals of the initial conditions
of the parent rays at the sourSe

Using the KRT-system (1) we get the traveltime along thebayfor Kirchhoff depth migration the travel-
times are needed on a rectangular grid. Therefore, we bitggthe output quantities on a Cartesian grid
(for details see Coman and Gajewski, 2001). The wavefrontature is needed for the interpolation to
the grid. To make the method more efficient we use the positiehthe direction of the slowness for two
adjacent rays and then approximate the wavefront curvahstead of using dynamic ray tracing.

For Kirchhoff migration traveltimes on fine grids are needetbm the point of computational effiency it
is advisable to calculate traveltimes on a coarse grid aex ititerpolate onto the fine grid, using, e.g., the
hyperbolic interpolation by Vanelle and Gajewski (2002).

Following Vinje et al. (1996), we start with2 rays from the source point which pass through the vertices of
an icosahedron. To increase the ray density leaving frorsdhece vicinity additional rays are introduced
by interpolation on the surfaces of the icosahedron. Ugwedl start with320 rays, which corresponds to
two repeated interpolation steps.



Annual WIT report 2002 215

Representation of the model

For our implementation we need the model defined on a disezgtear grid. In a complex inhomogeneous
medium?21 elastic parameters and the density are required for eadpajnt. For the evaluation of the
elastic parameters at arbitrary points, we used the Cdrgjiae interpolation (Thomson and Gubbins,
1982).

To use the Cardinal spline interpolation instead of, fomegke, the cubic splines has significant advantages
in terms of computational storage and time. If we used cupiinas (Spath, 1973) we would have to
calculate four coeffients for each grid increment in eachedision. For a model defined ori@l x 101 x

101 grid cube, we would thus have to compute and sédr800.000 coefficients. Using the Cardinal spline
interpolation we have to calculate and store only ald60tvalues (depends on the chosen accuracy of the
interpolation). The elastic parameters at an arbitrargtanie interpolated from the nearest gridpoint where
the parameters are known, using the distance between this aai weighting term.

Also, using Cardinal splines instead of, e.g., linear imddation, we can compute the first spatial derivatives
of the elastic parameters, which are needed to solve thedyREm, without storing them on the regular
grid.

NUMERICAL RESULTS

To illustrate the accuracy of the traveltime computatiomiayefront-oriented ray tracing in 3D anisotropic
media we chose two types of models. To estimate the accuracpmsidered a homogeneous transversely
isotropic model, because here we know the exact solutioesud4 the Voigt-notatiod,,,,, for the density-
normalised tenso;;,; with the usual correspondenee — 4,5 andn — k,I: 1 — 1,1; 2 — 2,2;

3 —3,3,4— 23,5 — 1,3, 6 — 1,2. The density-normalised elastic parameters of the example
medium are given by

1596 6.99 6.06 0.00 0.00 0.00
15.96 6.06 0.00 0.00 0.00
11.40 0.00 0.00 0.00

2.22 0.00 0.00

2.22 0.00

4.48

[sS
|

[km?/s?]. (8)

A model cube ofl00 x 100 x 100 is considered. The grid spacingli8 m in each direction. The source
pointis located in the center of they plane and in a depth @0m at the position(.5, 0.5, 0.06km). The
results of the comparison between exact traveltimes ardlti@mes computed by wavefront-oriented ray
tracing are shown in Figure 2. Usually, we have the highesefrant curvature near the source. Therefore,
the maximum relative error df.11% is located in this region. The relative errors near the smappear
exaggerated since there the traveltimes themselves ayeswell. The observed average relative error is
only 1.15-1073%. In addition, we show the absolute traveltime error (seeféi@(a)). The maximal abso-
lute error4 - 10~?ms is located in the source region. We observed an averagkigdbsrror ofl - 10~2ms.
Figure 2(b) visualises that we have for the most part of thdehonly random numerical errors. For this
homogeneous anisotropic model the traveltimes computddomr implementation are nearly exact.

Since we have no exact traveltimes for a heterogeneoustaypgomedium, we compare traveltimes
calculated by wavefront-oriented ray tracing with traweéis obtained by the FD perturbation method
(Soukina and Gajewski, 2001). To estimate the error digtion for both methods, we calculate the abso-
lute traveltime error for the homogeneous anisotropic rhadd use this knowledge for a heterogeneous
anisotropic model.
In Figure 3 the absolute traveltime errors in comparisorh® ED perturbation method (Soukina and
Gajewski, 2001) are shown. The FD perturbation method aatates absolute traveltime errors with in-
creasing distance from the source location (see Figurg.3(be wavefront-oriented ray tracing has only
small errors in the source region, and the absolute errtnitition in the rest of the model is nearly ho-
mogeneous. We use this knowledge about the error diswibbfitir both methods to assess the quality of
our implementation for traveltimes in a heterogeneousodrgpic model.

As an inhomogeneous anisotropic example we used a faalaisisotropic medium (FAM). FAM were
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(a) z-y slice through the source plane.
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Figure 2: Wavefronts in a homogeneous transversely isotropic mddel.upper figures shows slices with
different distances in depth from the source locati@#f,(0.5, 0.06 km). The figures below shows vertical

slices through the source position. The underlying grdgsoaages show the relative errors. Please note
the different error scales.
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Figure 3: Absolute traveltime errors for the homogeneous transiyeis®ropic model, both figures shows
ax—z slice to represent the error distribution for the diffenergthods; left: wavefront-oriented ray tracing;
right: FD perturbation method. Please note the differemrescales.

introduced b)f:erveny (1989). To construct FAM we multiplied the sametégmrameters by an individ-
ual factor for each gridpoint.
The elastic parameters for the triclinic sandstone are @dieland Rasolofosaon, 1997):

6.77 0.62 1.0 —-048 0.00 —-0.24
495 043 038 0.67 0.52
5.09 -0.28 0.09 -0.09

_ 2 2
A= 935 009 000 |Fm/s )
245  0.00
2.88

For the uppermost00m the factor has the constant val8®, underneath the factor increased linearly
with depth up to a value df.4 at the bottom of the model. The size of the model and the logatf the
source are as in the first example. Figure (4) shows the eadmlibifferences between traveltimes from
the FD perturbation method and the traveltimes obtaineddwefvont-oriented ray tracing. The solid lines
display the wavefronts calculated by our method, whereadtiited lines visualise the results from the FD
perturbation method. The maximum absolut traveltime dhifiee is2.3 ms and we observed an average
absolute traveltime difference 6f6 ms. It can be seen, that the behaviour and the order of tiraeelt
differences are similar to the observed errors in the presinodel.

In conclusions of these observations, the accuracy of tieotapic wavefront-oriented ray tracing is
nearly constant over the whos® model. Although the FD perturbation method is faster, dsuaacy
decreases with growing distance from the source.

CONCLUSIONS

We have presented a new implementation to compute trawsdtim3D heterogeneous anisotropic media
with arbitrary symmetry based on wavefront-oriented ragitig. We have shown the representation of
the model, which is defined by the elastic parameters. Thatielparameters on arbitrary positions are
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Figure 4. Wavefronts for the factorised triclinic anisotropic mad&he solid lines show the wavefronts
calculated by wavefront-oriented ray tracing, whereasditted lines represent the traveltimes obtained

by the FD perturbation method. The underlying greyscalstithtes the absolute traveltime error between
both methods in ms.



Annual WIT report 2002 219

computed by Cardinal spline interpolation. A first numer@ample illustrates the accuracy of our method
for the computation of traveltimes of qP-waves in a homogeséransversely isotropic model. We have
also evaluated the computation of traveltimes in a hetereges anisotropic model. There we compared
the traveltimes calculated by wavefront-oriented rayitrgdo traveltimes obtained by a FD perturbation
method.

In general, the method is valid for qS-waves also, if we agstirat we have two well-separated gS waves.
That means we have strongly anisotropic media and no sheew suagularities. Therefore, future work
must be devoted to calculate numerical examples for gS-svavi@homogeneous anisotropic models.
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