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ABSTRACT

Kirchhoff depth migration is an imaging process that transforms reflection seismic data into the depth
domain in order to obtain a structural image of the subsurface. Mathematically, it can be formu-
lated as a weighted diffraction stack which is related to theKirchhoff integral representation of the
scalar acoustic wave equation and, hence, usually only formulated for imaging of compressional or,
more generally, monotypical waves. In this paper, the scalar approach to Kirchhoff imaging based
on zero-order ray theory is extended to handle the full elastic wavefield recorded with multicompo-
nent receivers by considering the polarization of respective wave modes scattered at an interface. The
weight functions that remove the effect of geometrical spreading from the recorded amplitude change
for each scattering mode and have thus to be extended for the case of an elastic multicomponent mi-
gration. The extended weight functions presented here are also valid for converted waves. It is shown,
that the method allows to retrieve the full elastic scattering matrix of target reflectors.

INTRODUCTION

The graphical migration scheme proposed by Hagedoorn (1954) can be formulated as a summation over
the Green’s function of the medium. This leads to the so-called Diffraction Stack Integral (DSI) as a
wave-equation related integral representation of the graphical image construction technique (Bleistein and
Gray, 2001). In the last two decades, several representations of the DSI were developed with slightly
different approaches to approximate the (unknown) Green’sfunction of the medium (see, e. g. Bleistein,
1987; Beylkin and Burridge, 1990). These approaches lead toa weighted diffraction stack in which a
weight function accounts for the amplitude loss due to geometrical spreading along the propagation path.
If other effects on the recorded amplitude can be neglected,this enables the recovery of the angle-dependent
reflection coefficient from the migrated image, and is thus called true-amplitude migration.

The approach presented by Schleicher et al. (1993) makes explicit use of zero-order ray theory in order
to describe reflections of smoothly-curved first-order discontinuities as the part of the wavefield relevant
for imaging. This approach can also be extended to the asymptotically inverse process of demigration,
which leads to the so-called unified approach theory to seismic imaging (Hubral et al., 1996; Tygel et al.,
1996).

In this paper, the work of the latter three authors, which hasso far been strictly formulated only for
monotypical reflections (i. e., it did not account for the possibility of mode conversions at an interface)
is extended to include the vectorial properties of the elastic wavefield, which can also be described by
zero-order ray-theory (̌Cervený, 2001). This approach can then also handle mode-converted reflections.

RAY-THEORETICAL DESCRIPTION OF ELASTIC AMPLITUDES

The correct treatment of the vectorial properties of an elastic wave within the framework of zero-order ray
theory requires a formulation of the problem in ray-centered coordinates. Assuming that the elastic wave-
field has been recorded in three Cartesian components on a (for simplicity) planar measurement surface, I

mailto:goertz@geophysik.fu-berlin.de


Annual WIT report 2002 119

can obtain the principle components in ray-centered coordinates by means of a rotation (Červený, 2001):

~U(~ξ, t) =




USV

USH

UP


 = HT




Ux

Uy

Uz


 . (1)

H denotes the local rotation matrix from the ray-centered coordinate system to the Cartesian measurement
coordinate system. The amplitude~U(~ξ, t) stands for the displacement field and subscriptP refers to
an incoming P-wave that is polarized perpendicular to the wavefront1 andSV andSH refer to the two
principal S wave components within the local tangent plane to the wavefront. The correct rotation of the
recorded seismograms into the ray-centered coordinate system will thus enable a separation of the wavefield
into its constituting wave modes. The rotation itself requires the knowledge of the local emergence angle of
a wavefront; a property which is, as we shall see, also necessary for the calculation of the weight function.
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Figure 1: Sketch to explain the geometry of any seismic reflection experiment. Generally, waves are
considered that can be described by rays that travel from a source point S at the measurement surface to
a depth point M where they are (specularly) reflected by an interface and travel back to a receiver point
R at the surface where they are recorded over an aperture A which is densely covered with sources and
receivers. The depicted emergence angles are needed for thecalculation of the elastic weight function.
Note, that for the case of a converted wave, the anglesθ−M andθ+

M are not equal.

I assume that the recorded displacement amplitude has originated from a point source, was reflected
by a first-order discontinuity and may have transmitted a number of other reflectors in the overburden, see
Figure 1. It can be described by means of the continuation relation (Červený, 2001) as

~U(R) =
1

vRvS
√

ρRρS

1

L̂SR

(
N−1∏

k=1

T̂k

)
R̂ ~G(S) ei π

2 κ , (2)

with subscriptS andR denoting properties at the source and receiver, respectively. L̂SR denotes the nor-
malized point-source geometrical spreading that can be calculated from the ray JacobianJ as L̂SR =√

J
vrvs

. With this definition (which is due to Schleicher et al., 2002), the geometrical spreading becomes

1I will restrict myself to the isotropic case
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reciprocal2. In the following, all reciprocal properties are denoted bya hat.κ denotes the KMAH-index
which allows a proper description of the ray Jacobian through caustics.

∏N−1
k=1 T̂k denotes the accumu-

lated effect of transmission loss through the overburden, usually called total transmission lossA. R̂ is a
(3×3) matrix of wave-mode specific reflection/conversion coefficients at the target reflector. It is obtained
by satisfying the boundary conditions across the interface, which lead to the well-known Zoeppritz equa-
tions (Zoeppritz, 1919). If the local ray-centered tripod is chosen in such a way that theSH component is
aligned parallel to the reflecting interface, these boundary conditions simplify, and one obtains a symmetric
matrix of reflection coefficients with 5 non-zero components. This results in the fact, that P-waves can only
convert inSV -waves and vice versa, whereasSH-waves cannot convert into a different propagation mode.
Consequently, I will obtain separate migration formulas for P − SV systems andSH-systems.

Finally, the factor~G(S) in equation (2) refers to a source term. It contains the source strength and the
radiation pattern of the seismic source. In case a P wave is generated atS, the source is omnidirectional and
thus ~G = (0, 0, f0)

T with f0 being the source strength. This would be the representationof an explosive
source. For an S wave generated at the source,~G can be much more complex. For the most general case,
it is represented by means of the Seismic Moment TensorM0 which expresses the source directivity in
terms of nine elementary force couples (see, e.g., Aki and Richards, 1980). For the purpose followed in
this paper, a moment tensor point source can be written in a high-frequency asymptotic sense according to
Červený et al. (1987) as

~G(S) =
1

4πρsvs
HT M0 ~p0 , (3)

where~p0 denotes the initial slowness vector at the source. SinceM0 and~p0 are expressed in a Cartesian
coordinate system at the source, the rotation matrixH introduced in equation (1) has to be employed again
to obtain an expression for~G in ray-centered coordinates.

Definition of elastic true-amplitude traces

It has to be noted that in reality there exist quite a few more processes that may affect the amplitude of
the recorded wavefield. Among these are attenuation effects, receiver array directivity, ground coupling of
geophones, just to name a few (Sheriff, 1975). In the following, I assume that all these effects can be either
neglected or corrected for. Likewise, the transmission loss A can be neglected as it is usually a slowly
varying quantity compared to the amplitude variation with offset (AVO) behavior. It could be corrected for
by a layer-stripping approach. As a summary, one can approximate the elementary reflection in equation
(2) in terms of a transient solution within the framework of zero-order ray theory as

~U(R(~ξ), t) ≈ 1

vRvS
√

ρRρS

R̂

L̂
~G 0 F [t − τR(~ξ)], (4)

where the source wavelet is specified by an analytic source pulseF [t], shifted to the arrival timeτR which
denotes the reflection traveltime along the rayS(~ξ)MRR(~ξ) (see Figure 1).~G 0 denotes the source direc-
tivity function normalized by the source strength.

A true-amplitude process aims at recovering the reflection coefficientR̂ from a seismic trace. Since
the reflection coefficient consists of five non-zero components (four forP − SV systems and one forSH
systems), we are able to define true-amplitude traces in a system of five equations by interchanging the
applicable components of each term in equation (4) for each ray code. Each true-amplitude trace consists
of the seismic source signal (at the correct reflection time for the specified ray code) multiplied only by the
respective component of the reflection MatrixR̂. Consequently, one may write

UTA
ij = R̂ijF [t − τij(~ξ)] ≈ vi,Svj,R

√
ρSρR

L̂
G 0

i

Uj(~ξ, t − τij) , (5)

2Also, defined in this manner,̂L equals the length of the ray between S and R for homogeneous media, which is according to our
physical intuition.
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where the indexi denotes eitherP , SV , or SH on the source side and indexj likewise the respective
component on the receiver side:

i, j =

{
P, SV for P − SV systems

i = j = SH for SH systems.
(6)

SubscriptsS andR in equation (5) refer now and in the following to properties at the source and receiver,
respectively, andτij refers to the reflection traveltime of the specified ray code.G 0

i denotes the component
of the source directivity function andUj stands for the respective component (in ray-centered coordinates)
of the recorded signal.

The true-amplitude migration introduced in the following section will perform exactly this operation,
i.e., applying a weight piecewise to the data and interchanging the relevant properties and components
for each ray code in such a way, that the resulting amplitude equals the respective reflection/conversion
coefficients at the migrated interface. This means also, that the migrated image will consist in the most
general case of five components for each of the five componentsof the reflectivity matrix.

TRUE-AMPLITUDE DIFFRACTION STACK

Mathematically, the Kirchhoff migration process is expressed as an integration over the recorded wavefield
and reads for scalar wavefields in 3-D (Tygel et al., 1996)

V (M) = − 1

2π

∫∫

A

dξ1 dξ2 WDS(~ξ, M)
∂U(~ξ, t)

∂t

∣∣∣∣∣
t=τD(~ξ,M)

. (7)

V (M) is the value assigned to one diffraction pointM in the depth domain after migration andU(~ξ, t)
denotes the (scalar) data in the time domain. These data are assumed to consist of analytic traces, i. e., the
actual trace recorded in the field as the real part and its Hilbert transform as the imaginary part. Sources
and receivers are grouped into pairs, whose locations are described as a function of~ξ. The actual form of
this function depends on the measurement configuration. Themigration apertureA is the area over which
~ξ varies to cover all source-receiver pairs used in the stack.The factorWDS(~ξ, M) is the true-amplitude
weight function which removes the effect of geometrical spreading from the migrated amplitude. The
stacking surfaceτD(~ξ, M) denotes the diffraction traveltime for point M (hence the name diffraction stack)
and is called Huygens surface. The time derivative is neededin order to correctly recover the source pulse
(Newman, 1975).

For the purpose followed in this paper, I assume an elastic wavefield recorded with an array of three-
component receivers. Furthermore, I require that at least one reflection event is present in the seismic data
~U(~ξ, t). A seismic trace with several (primary) events may be described by superposition of individual
seismic events of the type of equation (4). Thus, by applyinga Fourier transform to the integral of equa-
tion (7) and by inserting the ray-theoretical definition of atrue-amplitude trace (5), I obtain a system of
equations in the frequency domain

Ṽij(M, ω) = − iω

2π
F̃ (ω)

∫∫

A

dξ1 dξ2
Wi(~ξ, M)

vi,Svj,R
√

ρSρR L̂
R̂ijG

0
i eiωτdif,ij , (8)

where the indicesi andj are to be permutated as in equation (6).F̃ (ω) andṼij(M, ω) denote the Fourier
transforms ofF (t) andVij(M, t), respectively. The Migration resultVij(M) is obtained fromṼij(M, ω)

by an inverse Fourier transform together with the imaging condition t = 0. The termτdif,ij(~ξ, M) is the
difference between the diffraction and reflection traveltime for the specified ray code,τD − τR.

As is well known, integrals of the above type can be solved by means of the method of stationary phase
(see, e. g. Bleistein, 1984). An expression for the weight function is obtained by (a) expanding the phase
function τdif,ij into a Taylor series up to the second order at the stationary point and (b) comparing the
result of the method of stationary phase with the definition of a true-amplitude trace (5). The resulting
expression will be a function of the difference between diffraction and reflection traveltimeτdif,ij .
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ELASTIC WEIGHT FUNCTION

In the following, I will quickly review how an expression of the weight function can be obtained that con-
sists of the measurable properties along the ray depicted inFigure 1 as well as derivatives of the diffraction
traveltimeτD. This calculation involves mainly the following steps (a more complete compilation of the
matter that has been published in the references cited belowcan be found in Goertz, 2002):

• The geometrical spreading along the raySMRR can be decomposed into contributions from the
source branchSMR and the receiver branchMRR (Hubral et al., 1992a,b).

• Traveltime derivatives can be expressed by means of the so-called Beylkin determinanthB (Beylkin,
1985; Bleistein, 1987) which consists entirely of derivatives of the diffraction traveltimeτD and is
thus obtainable without the knowledge of a stationary pointξ∗.

• The pulse stretch factor (Tygel et al., 1994) has to be recasted in a more general form that takes into
account the fact that the incidence and emergence anglesθ−M andθ+

M at the depth pointM are not
equal for converted waves (see Figure 1),

mD(ξ∗, MR) =
∂τD(ξ∗, MR)

∂z

∣∣∣∣∣
z=ζ∗

= cosβ

(
cos θ+

M

v+
M

+
cos θ−M

v−M

)
. (9)

Superscript− denotes properties before and superscript+ refers to properties right after reflection
or conversion from an interface. For monotypical reflections, θ−M = θ+

M = θM as well asv−M =
v+

M = vM , and thusmD reduces to the formula published in Tygel et al. (1994).

By consequently considering the difference between incidence and emergence angles in the above outlined
points, I obtain the following expression for the weight function:

Wi(~ξ
∗, M) = vi,Svj,R

√
ρSρR OC

hB L̂SM L̂MR

G0
i

ei π
2 (κS+κR) , (10)

where the factorsκS andκR denote the KMAH-indices of the ray branchesSM andMR. The individual
weight function for each ray code is obtained by permutationof the indicesi andj for each of the two
ray branches according to equation (6). Furthermore, I haveintroduced a new factorOC in equation (10)
which reads

OC =

√
v+

Mv−M
cos θ+

M cos θ−M

(
cos θ+

M

v+
M

+
cos θ−M

v−M

)−1

. (11)

For the case of monotypical reflections,cos θ+
M = cos θ−M = cos θM andv+

M = v−M = vM . Thus, if
the factorvi,Svj,R

√
ρSρR and the normalized source directivity functionG0

i are neglected, equation (10)
reduces to the well-known formula of Jaramillo et al. (1998)

WDS(~ξ∗, M) =
v2

M

2 cos2 θM
hB L̂SM L̂MR . (12)

Equation (10) represents thus a generalization of the weight function for the case of mode-converted re-
flections. Note that the factorvi,Svj,R

√
ρSρR changes for different propagation modes and thus cannot be

neglected.
The factorOC defined in equation (11) can be reformulated in such a way, that it contains the sum of

the emergence angles of a diffracted ray atM measured towards the vertical instead of the actual reflec-
tion/conversion angles at a point of specular reflectionMR. It then reads

OC = v+
Mv−M

√
v−Mv+

M

(v+
M + v−M cos(αS

M + αR
M ))(v−M + v+

M cos(αS
M + αR

M ))
, (13)

whereαS
M andαR

M denote the angles the source and receiver segments make withthe vertical axis at the
depth pointM . These angles are independent of the reflector dip angleβ. The derivation of equation (13)
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can be found in Appendix A.

Equation (13) expresses the important fact, that the weightfunction of equation (10) is independent
of any reflector properties at pointM . The velocitiesv+

M andv−M are known from the (elastic) macro-
velocity model. The angle(αS

M + αR
M ) can be calculated for any diffracted ray in the subsurface atany

point M , irrespective of whether it is an actual reflection pointMR or not. The geometrical spreading
factors of the two ray branchesSM andMR can be determined by means of dynamic ray tracing. Finally,
the Beylkin determinant consists, as mentioned, only of derivatives of the diffraction traveltimeτD. This
means that, although all the derivations so far were made under the assumption of an actual reflection point
MR, equation (10) is generally valid foranydepth pointM in the macro-velocity model.

Let me finally mention, that the approach presented by Schleicher et al. (1993) results in a weight
function that does not involve the Beylkin determinant. Rather,hB can be further decomposed (Schleicher
et al., 2002)

hB =
mD

cosβ
| det (ΓSNSM + ΓRNMR) | , (14)

whereΓS andΓR are(2 × 2) configuration matrices describing the source and receiver positions with
respect to the chosen measurement configuration. They are either the zero matrixO or the identity matrix
I. For the case of, e.g., a common-shot experiment, the sourceposition does not vary, thusΓS = O and
ΓR = I. For a common-offset experiment (which is mainly considered in the following), both matrices
ΓS andΓR are unity, i.e., the identity matrix. The MatricesNSM andNMR are second-order mixed-
derivative Hessian matrices of traveltimes with respect tothe positions of the source and receiver. These
matrices relate to the geometrical spreading (Hubral et al., 1992a) as

L̂SM =

√
cos θS cos θ−M

vSv−M
(detNSM)

− 1
2 e−i π

2 κSM , (15)

L̂MR =

√
cos θR cos θ+

M

vRv+
M

(detNMR)
− 1

2 e−i π
2 κMR . (16)

Upon insertion of relation (15) and (14) into the weight function of equation 10, I obtain an expression
of the weight function which depends only on (mixed) traveltime derivatives and the properties at the
measurement surface

Wi(~ξ
∗, M) =

√
vi,Svj,RρSρR cos θS cos θR

G0
i

| det(ΓSNSM + ΓRNMR)|√
detNSM

√
detNMR

e−i π
2 (κS+κR) , (17)

which can be considered as a generalization of the weight function derived by Schleicher (1993). The only
difference, however, are the forefactors under the square root and the source termG0

i which cannot be
neglected for the case of mode-converted waves.

Special cases

One of the advantages of equation (17) is the fact that can be easily simplified for some special cases of the
measurement configuration. For the case of a common-shot or acommon-receiver configuration, the sum
in the determinant of equation (14) vanishes since one of theconfiguration matricesΓ becomes zero. For
these cases, the numerator of equation (17) simplifies, and by employing equation (15) again, I obtain

Wij,CS =
√

ρS,iρR,j vS,i cos θR,j OG
L̂SM

L̂MR

1

G0
i

for common shot, (18)

Wij,CR =
√

ρS,iρR,jvR,j cos θS,i

1

OG

L̂MR

L̂SM

1

G0
i

for common receiver (19)

configurations. Here, the factorOG contains the incidence and reflection angle at the depth point M which
can be formulated in terms of the diffraction angles measured towards the vertical according to equation
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(35):

OG =

√
v−M cos θ+

M

v+
M cos θ−M

(35)
=

√
(v−M )2 + v−Mv+

M cos(αS
M + αR

M )

(v+
M )2 + v−Mv+

M cos(αS
M + αR

M )
. (20)

For the case of monotypical reflections the factorOG vanishes, and by neglecting the forefactors again,
these weights reduce to the expressions published by Hanitzsch (1997).

Since the final aim of a true-amplitude migration is the extraction of the AVO behavior at a depth point
M, the actually desired measurement configuration is a common-offset (CO) geometry. For this measure-
ment configuration, both matricesΓ become the identity matrix and thus, the sum under the determinant in
equation (14) remains. Unfortunately, it is in general not possible to interchange a summation with taking
the determinant. Mathematically, this is only possible, ifat least one row of the two (2 × 2) matrices to be
summed is identical. This is the case for alaterally homogeneousmedium, i.e., when the velocity is only
a function of depth,v = v(z). Then, every raySMR in a 3-D acquisition geometry is confined to a plane,
and the derivatives perpendicular to this plane (and thus one row of the matricesN) are identical. For this
special case only, equation (17) can be simplified by employing again equations (15) and (35)

Wij,v(z) =

√
ρS,iρR,j

G0
i

(
vS,i cos θR,jOG

L̂SM

L̂MR

+ vR,j cos θS,i

1

OG

L̂MR

L̂SM

)
, (21)

where the factorOG is again given by equation (20). The validity of equation (21) for a laterally homo-
geneous medium only may seem as a strong restriction, but is justifiable in many practical applications.
For arbitrary 3-D media, however, the derivatives of eitherthe MatricesN in equation (17) or the Beylkin
determinant in equation (10) have to be calculated directly.

Wavefield separation

All the derivations so far were made under the assumption, that the data in the time domain was acquired
in ray-centered coordinates where the P and S wavefields are already separated. This separation of the P
and S wavefields can be done independently for each diffracted ray during migration by means of equation
(1). The rotation angles are the angle of emergenceθj,R that occur already in the weight function of
equation (17). I can therefore extend the diffraction stackintegral of equation (7) for the migration of
elastic wavefields as follows:

Vij(M) = − 1

2π

∫∫

A

dξ1 dξ2 Wi(~ξ, M)
∂

∂t

(
Hjk(R)Uk(~ξ(R), t)

) ∣∣∣∣∣
t=τ

D,ij
(~ξ,M)

, (22)

where the weight function (ortrue-amplitude kernel) Wi is given by either equation (10) or, alternatively,
equation (17).Hjk denotes the components of the rotation matrixHT introduced in equation (1).Uk then
refers to the recorded wavefield in Cartesian coordinates. The components of the rotation matrix consist of
direction cosines,

Uj(R) = Hjk(R)Uk(R) =
∂qj

∂xk
Uk

∣∣∣∣∣
R

. (23)

For practical use, the rotation into ray-centered coordinates is best performed during migration together
with the application of the weight function. Then, the direction cosines of the rotation matrix can easily be
combined with the ones of the source directivity functionG0

i . A table of direction cosines combined in this
manner can be found in Traub (1999) for the most commonly usedP and S wave sources. These direction
cosines contain not only the angle of emergenceθR towards the vertical at the receiver (see Figure 1), but
also the azimuthφR, i.e., the emergence angle within the (horizontal) measurement plane.

ELASTIC MIGRATION IN 2.5-D

In 2.5-D, i.e., when the medium does not vary with respect to the coordinate perpendicular to the seismic
line (crossline direction), the out-of-planeξ2-integration in equation (8) can be evaluated analytically. Since
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all data acquired on lines parallel to the actual seismic line would be identical, the migration apertureA
can be assumed to be infinite in theξ2-direction. Kirchhoff migration then reduces to an in-plane stack
over the aperture interval(a, b) in the ξ1-direction covered by the seismic line. Sinceξ1 is now the only
integration variable, we can drop the index 1 to write the 2.5-D Kirchhoff migration integral as

Ṽij(M, ω) =

√
−iω

2π
F̃ (ω)

b∫

a

dξ
1

vi,Svj,R
√

ρSρR L̂
W

(2.5)
i (ξ, M)R̂ijG

0
i eiωτdif,ij , (24)

whereW
(2.5)
i is the 2.5-D weight factor that guarantees true amplitudes in this 1-D stack. It is composed

of the 3-D weight factor and the result of the analytic solution of the out-of-plane integral. Since in the
2.5-D situation, the target model does not vary in theξ2-direction, it suffices to regard only one S wave
component. One may therefore skip the treatment ofSH systems and instead restrict the situation to only
two components recorded at the surface, a P component and oneS component aligned with the acquisition
line. However, we still consider a 3-dimensional wave propagation and thuŝL carries the full 3-D geomet-
rical spreading.

For the derivation of a 2.5-D weight function, the followingthree points have to be considered:

• The (3-D) geometrical spreadinĝL can be split into an in-plane part̄L and an out-of-plane partσ,
with L̂ = L̄√σ.

• According to equation (24), the migration integral reducesto an in-plane stack and the corresponding
stacking operators reduce to lines. The out-of-plane integration can be evaluated analytically and

yields (Bleistein et al., 1987) a factor
(

1
σ

S

+ 1
σ

R

)− 1
2

which has to be applied additionally to the

weight function.

• The Beylkin determinant, and, due to equation (14), also thedeterminant in the numerator of equa-

tion (17) simplify which allows to extract an additional factor
(

1
σ

S

+ 1
σ

R

)
. In the same manner as

described above, one may then interchange the summation with taking the determinant which allows
to give an expression for a 2.5-D common-offset weight function that does not contain traveltime
derivatives.

The out-of-plane spreading factorsσS andσR are defined by the path integralσ =
∫

v ds with s being the
arc length along the raysSM andMR. Altogether, I obtain for the 2.5-D common-offset case

Wij,2.5D =

√
ρS,iρR,j

G0
i

(
vS,i cos θR,jOG

L̄SM

L̄MR
+ vR,j cos θS,i

1

OG

L̄MR

L̄SM

)√
σS + σR , (25)

where the factorOG is defined in equation (20) and̄L denotes now the (2-D) in-plane geometrical spread-
ing. For the case of monotypical reflections, the factorOG vanishes again, and equation (25) reduces to
the formula published by Hanitzsch (1997), if constant factors are neglected again. Weight functions for
common-shot and common-receiver configurations can be derived accordingly. These are, however, of
less importance since a true-amplitude migration aims at recovering the AVO behavior of target reflectors
which implies a common-offset migration of multicoverage data.

Please note, that all the derivations so far were made for anormalized point-source geometrical spread-
ing as defined by Schleicher et al. (2002) . Many textbooks, however, use different notations for the ge-
ometrical spreading (includinǧCervený, 2001). Furthermore, the above formulae for the weight function
include the source directivity pattern in the denominator which may become zero for certain source types.
The problem can be circumvented in practical implementations through a simple case discrimination.

SIMPLE SYNTHETIC EXAMPLE

In the following, I will show a 2.5-D synthetic data example for a flat horizontal interface in a depth of
1 km. The P-wave velocity was chosen to be 2km/s above the interface and 2.5km/s below. The
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density of the model was kept constant at 2.0g/cm3 and the ratio between P- and S-wave velocity was
set to 2. A synthetic multicoverage dataset was shot, assuming a roll-along acquisition with an aperture
of 3 km in order to illuminate the target reflector well up to overcritical angles. Sources cover a line from
3.0 km to 7.0 km over the model with a spacing of 20 m and generate both P- and S-waves with (for
simplicity) a unidirectional radiation pattern for the S-wave. The dominant frequency of the source signal
was chosen at 10 Hz in order to safely exclude aliasing effects for all wave modes. The synthetic dataset
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Figure 2: Sketch showing the simple model of a horizontal interface and the chosen acquisition geometry
above it. On the right hand side, the prestack depth migration result of the target zone is shown for P to P
reflections. Only every second trace is plotted.

consists of 60501 traces that ensure an equal illumination for all offsets for a small target zone between
3.0 km and 4.0 km (see Figure 2). Figure 3 shows one example shot gather for the vertical component
(left) and the horizontal component (right). Both seismogram sections show the four principal scattering
modes generated at the interface. For this simple case, theP → S andS → P conversion arrive at the
same traveltime. Nevertheless, the contributions of the two wave modes can clearly be separated by the
multicomponent migration.
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Figure 3: Example shot gather of the vertical (left) and horizontal (right) component of the synthetic
multicoverage dataset for a flat layer. Only every 5th trace is shown.
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Amplitude evaluation

After a common-offset multicomponent migration employingthe weight function of equation (25), one
obtains separate migrated images for every offset as well asfor every ray code. Figure 4 shows the migrated
image gathers for the four principal wave modes contained inthe synthetic multicoverage dataset. As can
be seen, all four image gathers show a flat event at a depth of 1 km which corresponds to the respective
reflection or conversion event from the interface depicted in Figure 2. The reflectivity becomes complex-
valued for overcritical angles which results in a phase shift of the migrated signal that is observable at high
offsets.
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Figure 4: Image gathers of the migration result for the principal wavemodes: a) P to P reflection. b) P
to S conversion. c) S to P conversion. d) S to S reflection. Bluecolors behind the wiggle traces denote
positive amplitudes and red colors denote negative amplitudes. Only every 5th trace is shown as wiggle
line. Events with moveout stem from other wave modes that appear on the same principal component (see
text for discussion).

By picking the amplitudes along the flat events in the image gather, one obtains the desired AVO
behavior. If the correct weight function was applied, the picked values should directly yield the reflectivity
for the corresponding depth point on a reflector. Figure 5 shows a comparison of the complex magnitudes
picked from the migrated image gathers with the theoretically expected values from the Zoeppritz equations
for all of the four wave modes. Furthermore, Figure 6 shows a comparison of the phase of the complex
reflectivity with the phase shifts picked from the migrated image gathers. As can be seen, both Figure 5
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Figure 5: Comparison of amplitudes picked from the migrated image gathers with theoretical values from
Zoeppritz equations for every scattering mode: shown are complex magnitudes for P to P (upper left), P to
S (upper right), S to P (lower left), and S to S (lower right).

and Figure 6 show a very good agreement of the picked amplitudes with the expected theoretical values.
The synthetic time-domain data was generated by using a commercially available wavefront ray tracer that
unfortunately proved to calculate the phase of the S to P reflection incorrectly, which explains observable
differences in the lower left graph of Figure 6.

Offset stacking

Even after rotation into ray-centered coordinates, the respective input data for one (ray-centered) principal
component will contain more than one event since always two modes are arriving at the receiver on the
same principal component. In this case, P to P and S to P eventswill occur on the principal component
perpendicular to the wavefront and P to S and S to S events willoccur on the principal component tangent
to the wavefront. This implies, that the diffraction stack will find stationary points also for events that do
not belong to the respective wave mode considered. These events will be mapped incorrectly and thus occur
with a considerable moveout in the image gathers. Such events are visible below theP → S conversion in
Figure 4 (b) and above theS → P conversion in Figure 4 (c). These are remnants of the S to S reflection
and P to P reflection, respectively. The kinematically correct image for every wave mode is obtained, if all
image gathers are stacked in the offset direction. Then, only the correctly migrated (flat) events remain in
the final stacked image and all events with moveout in the image gathers will be summed up destructively
and thus yield zero.

However, care has to be taken when stacking events with phasechanges at overcritical angles (this is
the case especially for the conversion modes where the pulsepolarity is reversed at high offsets). In order
to avoid a destructive summation of such events, one usuallystacks the image gathers only for ranges of
offsets where phase changes can be neglected. If more than one reflector is present in the data (which is
usually the case), these phase changes occur at different offsets for every depth. If furthermore a laterally
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Figure 6: Comparison of the phase of the complex reflectivity picked from the migrated image gathers
with theoretical values from Zoeppritz equations for everyscattering mode: shown are values for P to P
(upper left), P to S (upper right), S to P (lower left), and S toS (lower right).

heterogeneous macro velocity model has to be taken into account, the suitable range for stacking would
either have to be chosen individually for every image point (which is impracticable), or the migrated image
would have to be sorted according to reflection angle (which implies the knowledge of the reflector dip).
In practice, and if the signal-to-noise ratio is sufficiently high, this problem is circumvented by applying
several stacks for small ranges of offsets, so-callednear-offsetandfar-offsetstacks.

CONCLUSIONS

The zero-order ray-theory approach to true-amplitude imaging has been restricted so far to the treatment
of monotypical reflections, i.e., it did not account for modeconversions at an interface. Here, an extension
to this approach is presented that account for the vectorialproperties of the elastic wavefield recorded with
multicomponent receivers. The resulting weight functionschange for every propagation mode and can
also be applied to converted waves. Therefore, the procedure allows to retrieve the full matrix of elastic
reflection coefficients for all wave modes.

An application of the proposed method to real data requires auniform and highly controlled coupling of
receivers. These requirements may be met for data acquisition within a borehole for vertical seismic profil-
ing (VSP) or on the seafloor for data acquisition with an OceanBottom Cable (OBC). The true-amplitude
multicomponent imaging method can then have an impact onto amplitude-versus-offset (AVO) inversion
which in current applications uses only two parameters:intercept(zero-offset reflection coefficient) and
gradient (near-offset slope of the reflection coefficient) of P to P reflections. If additional information
could be retrieved from mode-converted and S-wave reflections, much more parameters can be added to
the inversion and less effort needs to be put into calibration with borehole logs from the vicinity.
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APPENDIX A

In this appendix, I will proof that the factorOC introduced in equation (10) is independent of the reflector
properties at a point of specular reflectionMR, i.e., it is to proof that

OC =

√
v+

Mv−M
cos θ+

M cos θ−M

(
cos θ+

M

v+
M

+
cos θ−M

v−M

)−1

(26)

can be written in such a way that it is independent of the individual anglesθ−M andθ+
M . It will be shown in

the following that the factor (26) depends rather on the sum of the angles between the two ray segments (see
Figure 7). This sum can be also expressed as the sum of these angles measured towards the vertical which
can be calculated for every diffracted ray. As a consequence, the weight function (10) will be generally
valid for every subsurface pointM , whether or not it is an actual reflection point.

With the use of the trigonometrical addition theorem

cos(α + β) = cosα cosβ − sinα sin β , (27)

I may write for the inverse of the second term in in equation (26)

cos θ+
M

v+
M

+
cos θ−M

v−M
=

(
cos θ+

M

v+
M

+
cos θ−M

v−M

)
cos θ−M
cos θ−M

=
1

cos θ−M

(
cos θ−M cos θ+

M

v+
M

+
cos2 θ−M

v−M

)

=
1

cos θ−M

(
cos(θ−M + θ+

M ) + sin θ−M sin θ+
M

v+
M

+
cos2 θ−M

v−M

)
.

(28)

By using Snell’s law for the termsin θ+
M ,

sin θ+
M

v+
M

=
sin θ−M

v−M
(29)

and recalling the fact thatsin2 x + cos2 x = 1, I may write for the right hand side of equation (28)

· · · =
1

cos θ−M

(
cos(θ+

M + θ−M )

v+
M

+
1

v−M

)
. (30)

By inserting this preliminary result into equation (26), I obtain

OC =

√
v+

Mv−M
cos θ+

M cos θ−M

(
cos θ−Mv+

Mv−M
v−M cos(θ+

M + θ−M ) + v+
M

)

=
√

v+
Mv−M

√
cos θ−M
cos θ+

M

(
v+

Mv−M
v−M cos(θ+

M + θ−M ) + v+
M

)
.

(31)
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Figure 7: Slowness vectors of a wavefront impinging on an interface.

Now, I turn my attention to the cosines under the square root of equation (31). These can be expressed in
terms of the slowness vectors, according to Figure 7 as follows:

cos θ−M =
~p− · (~p− + ~p+)

|~p−||~p− + ~p+| . (32)

The numerator can be calculated by recalling that the lengthof the slowness vector equals (by definition)
the inverse of the velocity, and by expressing its components by means of the angles towards the vertical.
Since the two slowness vectors span up a plane, I can confine the calculation to a local (Cartesian) 2-D
coordinate system and obtain for the numerator

~p−(~p− + ~p+) = (p−x )2 + (p−z )2 + p−x p+
x + p−z p+

z =

(27)
=

sin2 αS
M

(v−M )2
+

cos2 αS
M

(v−M )2
+

cos(αS
M + αR

M )

v−Mv+
M

.
(33)

Therefore, I obtain for equation (32) by replacing only|~p−| = 1
v−

M

in the denominator

cos θ−M =
1

v−Mv+
M

v+
M + v−M cos(αS

M + αR
M )

|~p− + ~p+| . (34)

cos θ+
M can be calculated accordingly and I finally obtain for the ratio of cosines under the square root in

equation (31) √
cos θ−M
cos θ+

M

=

√
v+

M + v−M cos(αS
M + αR

M )

v−M + v+
M cos(αS

M + αR
M )

. (35)

From Figure 7, one sees immediately thatcos(θ+
M + θ−M ) = cos(αS

M + αR
M ) and I thus obtain by inserting

equation (35) into equation (31) the final result

OC = v+
Mv−M

√
v−Mv+

M

(v+
M + v−M cos(αS

M + αR
M ))(v−M + v+

M cos(αS
M + αR

M ))
, (36)

which is equation (13).


