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ABSTRACT

Kirchhoff depth migration is an imaging process that transrs reflection seismic data into the depth
domain in order to obtain a structural image of the subserfaddathematically, it can be formu-
lated as a weighted diffraction stack which is related toKirehhoff integral representation of the
Scalar acoustic wave equation and, hence, usually onlyuftated for imaging of compressional of,
more generally, monotypical waves. In this paper, the s@proach to Kirchhoff imaging based
on zero-order ray theory is extended to handle the full elagavefield recorded with multicompo-
nent receivers by considering the polarization of respedtiave modes scattered at an interface. The
weight functions that remove the effect of geometrical apieg from the recorded amplitude change
for each scattering mode and have thus to be extended foafigeaf an elastic multicomponent mi
gration. The extended weight functions presented herdswevalid for converted waves. It is shown,
that the method allows to retrieve the full elastic scatigrnatrix of target reflectors.

INTRODUCTION

The graphical migration scheme proposed by Hagedoorn §1@8%be formulated as a summation over
the Green’s function of the medium. This leads to the saedabiffraction Stack Integral (DSI) as a
wave-equation related integral representation of thelgcapimage construction technique (Bleistein and
Gray, 2001). In the last two decades, several represensatibthe DSI were developed with slightly
different approaches to approximate the (unknown) Grefemstion of the medium (see, e. g. Bleistein,
1987; Beylkin and Burridge, 1990). These approaches leadueighted diffraction stack in which a
weight function accounts for the amplitude loss due to gedoa spreading along the propagation path.
If other effects on the recorded amplitude can be negletiiexenables the recovery of the angle-dependent
reflection coefficient from the migrated image, and is thukedarue-amplitude migration.

The approach presented by Schleicher et al. (1993) makdisienpe of zero-order ray theory in order
to describe reflections of smoothly-curved first-order aignuities as the part of the wavefield relevant
for imaging. This approach can also be extended to the asyfivgity inverse process of demigration,
which leads to the so-called unified approach theory to deisrmaging (Hubral et al., 1996; Tygel et al.,
1996).

In this paper, the work of the latter three authors, which $méar been strictly formulated only for
monotypical reflections (i. e., it did not account for the gibgity of mode conversions at an interface)
is extended to include the vectorial properties of the Elagavefield, which can also be described by
zero-order ray-theorf?(erveny, 2001). This approach can then also handle modesded reflections.

RAY-THEORETICAL DESCRIPTION OF ELASTIC AMPLITUDES

The correct treatment of the vectorial properties of antielagave within the framework of zero-order ray
theory requires a formulation of the problem in ray-cerdar@ordinates. Assuming that the elastic wave-
field has been recorded in three Cartesian components on girtfplicity) planar measurement surface, |
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can obtain the principle components in ray-centered coatds by means of a rotatioéeérveny, 2001):

oL USV Ua:
UéEty=| Usy | =8H"| U, |. (1)
Up U.

H denotes the local rotation matrix from the ray-centereddioate system to the Cartesian measurement
coordinate system. The amplitud%(g, t) stands for the displacement field and subscfiptefers to

an incoming P-wave that is polarized perpendicular to theefvant and SV and SH refer to the two
principal S wave components within the local tangent plandaé wavefront. The correct rotation of the
recorded seismograms into the ray-centered coordinatensysill thus enable a separation of the wavefield
into its constituting wave modes. The rotation itself regsithe knowledge of the local emergence angle of
a wavefront; a property which is, as we shall see, also napefs the calculation of the weight function.
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Figure 1: Sketch to explain the geometry of any seismic reflection expnt. Generally, waves are
considered that can be described by rays that travel fronugegoint S at the measurement surface to
a depth point M where they are (specularly) reflected by asrfiate and travel back to a receiver point
R at the surface where they are recorded over an aperture éhvididensely covered with sources and
receivers. The depicted emergence angles are needed foalthgation of the elastic weight function.
Note, that for the case of a converted wave, the argjjeandé;, are not equal.

| assume that the recorded displacement amplitude hasatégl from a point source, was reflected
by a first-order discontinuity and may have transmitted a loemof other reflectors in the overburden, see
Figure 1. It can be described by means of the continuatiatioel Cerveny, 2001) as

N-1
- 1 1 . . o .
U(R) = - T, | RG(S)e2", 2
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with subscriptS and R denoting properties at the source and receiver, respbgctide » denotes the nor-
malized point-source geometrical spreading that can bmuledéd from the ray JacobiahasLsr =

‘/T{Js' With this definition (which is due to Schleicher et al., 2DaRe geometrical spreading becomes

[SE]

11 will restrict myself to the isotropic case
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reciprocat. In the following, all reciprocal properties are denotedablyat. ~ denotes the KMAH-index
which allows a proper description of the ray Jacobian thfoa:t@nstics.]_[,Q’:’l1 T, denotes the accumu-
lated effect of transmission loss through the overburdsnally called total transmission loss R is a

(3 x 3) matrix of wave-mode specific reflection/conversion coedfits at the target reflector. It is obtained
by satisfying the boundary conditions across the interfatech lead to the well-known Zoeppritz equa-
tions (Zoeppritz, 1919). If the local ray-centered tripsadthosen in such a way that t§é/ component is
aligned parallel to the reflecting interface, these boupdanditions simplify, and one obtains a symmetric
matrix of reflection coefficients with 5 non-zero componeiitsis results in the fact, that P-waves can only
convertinSV-waves and vice versa, whereg -waves cannot convertinto a different propagation mode.
Consequently, | will obtain separate migration formulasfo— SV systems and H-systems.

Finally, the factor@(S) in equation (2) refers to a source term. It contains the sostrength and the
radiation pattern of the seismic source. In case a P wavanergted ab, the source is omnidirectional and
thusG = (0,0, fo)T with f, being the source strength. This would be the representatian explosive
source. For an S wave generated at the sofaegn be much more complex. For the most general case,
it is represented by means of the Seismic Moment TeMgrwhich expresses the source directivity in
terms of nine elementary force couples (see, e.g., Aki actidrds, 1980). For the purpose followed in
this paper, a moment tensor point source can be written iglafnequency asymptotic sense according to
Cerveny et al. (1987) as

G(S) = H” M, pp 3)

wherep, denotes the initial slowness vector at the source. Svigeandpy are expressed in a Cartesian
coordinate system at the source, the rotation madrintroduced in equation (1) has to be employed again
to obtain an expression f@r in ray-centered coordinates.

Definition of elastic true-amplitude traces

It has to be noted that in reality there exist quite a few maopegsses that may affect the amplitude of
the recorded wavefield. Among these are attenuation effiexsiver array directivity, ground coupling of
geophones, just to name a few (Sheriff, 1975). In the foltayl assume that all these effects can be either
neglected or corrected for. Likewise, the transmissios Jéscan be neglected as it is usually a slowly
varying quantity compared to the amplitude variation witfset (AVO) behavior. It could be corrected for
by a layer-stripping approach. As a summary, one can appaigithe elementary reflection in equation
(2) in terms of a transient solution within the framework efa-order ray theory as

G(RE).1) ~ #m % GO Flt — (@), ()

where the source wavelet is specified by an analytic sourse pij¢], shifted to the arrival timey which
denotes the reflection traveltime along the &(f)MRR(E) (see Figure 1)G ° denotes the source direc-
tivity function normalized by the source strength.

A true-amplitude process aims at recovering the reflectaefficientR. from a seismic trace. Since
the reflection coefficient consists of five non-zero compéméour for P — SV systems and one f&fH
systems), we are able to define true-amplitude traces intarsysf five equations by interchanging the
applicable components of each term in equation (4) for eagltode. Each true-amplitude trace consists
of the seismic source signal (at the correct reflection tiongHfe specified ray code) multiplied only by the
respective component of the reflection Matix Consequently, one may write

—

) P
UL = RijFt — 7;5(§)] = ViV RVPSPR G0 Uj(&t —Ti5) (5)

2Als0, defined in this manner, equals the length of the ray between S and R for homogeneadismehich is according to our
physical intuition.
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where the index denotes eitheP, SV, or SH on the source side and indgxikewise the respective
component on the receiver side:

. PSSV for P — SV systems
i,j = (6)

1=7=SH for SH systems

SubscriptsS and R in equation (5) refer now and in the following to properti¢$hee source and receiver,
respectively, and;; refers to the reflection traveltime of the specified ray c@@8.denotes the component
of the source directivity function arld; stands for the respective component (in ray-centered ouaies)
of the recorded signal.

The true-amplitude migration introduced in the followirgcon will perform exactly this operation,
i.e., applying a weight piecewise to the data and intercimanthe relevant properties and components
for each ray code in such a way, that the resulting amplitupleks the respective reflection/conversion
coefficients at the migrated interface. This means alsda,ttieamigrated image will consist in the most
general case of five components for each of the five componpétite reflectivity matrix.

TRUE-AMPLITUDE DIFFRACTION STACK

Mathematically, the Kirchhoff migration process is exgexsas an integration over the recorded wavefield
and reads for scalar wavefields in 3-D (Tygel et al., 1996)

V(M) = _% //dfl dés Wps(€, M) %ﬁ’w . (7)
A

t=1p(£,M)

V(M) is the value assigned to one diffraction poitin the depth domain after migration aﬂt{{: t)
denotes the (scalar) data in the time domain. These datssuenad to consist of analytic traces, i. e., the
actual trace recorded in the field as the real part and itseHilibansform as the imaginary part. Sources
and receivers are grouped into pairs, whose locations aeried as a function @f The actual form of
this function depends on the measurement configurationniigeation apertured is the area over which

5 varies to cover all source-receiver pairs used in the stabk. factorWDs(g, M) is the true-amplitude
weight function which removes the effect of geometricalesppling from the migrated amplitude. The
stacking surfacep ({, M) denotes the diffraction traveltime for point M (hence theneaiffraction stack)
and is called Huygens surface. The time derivative is nee@derter to correctly recover the source pulse
(Newman, 1975).

For the purpose followed in this paper, | assume an elastefied recorded with an array of three-
component receivers. Furthermore, | require that at leasteflection event is present in the seismic data
U({, t). A seismic trace with several (primary) events may be desdrby superposition of individual
seismic events of the type of equation (4). Thus, by applgitgurier transform to the integral of equa-
tion (7) and by inserting the ray-theoretical definition offae-amplitude trace (5), | obtain a system of
equations in the frequency domain

(7 [ (6 M) 0 sz
Vi (M, :——F dé, d - Ry;G e 8
§(M,0) //&slszpspRﬁ j 2 ®

where the indices and; are to be permutated as in equation (Bfw) andV;; (M, w) denote the Fourier
transforms off(t) andV;; (M, t), respectively. The Migration resulf, (M) is obtained from¥V;; (M, w)
by an inverse Fourier transform together with the imagingditiont = 0. The termrg; ¢ ;; ({, M) is the
difference between the diffraction and reflection travedtifor the specified ray codep — 7.

As is well known, integrals of the above type can be solved bgams of the method of stationary phase
(see, e. g. Bleistein, 1984). An expression for the weightfion is obtained by (a) expanding the phase
function 7y, ¢,;; into a Taylor series up to the second order at the stationairnt pnd (b) comparing the
result of the method of stationary phase with the definitiba true-amplitude trace (5). The resulting
expression will be a function of the difference betweenrdition and reflection traveltimey; 7 ;.
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ELASTIC WEIGHT FUNCTION

In the following, | will quickly review how an expression dfe¢ weight function can be obtained that con-
sists of the measurable properties along the ray depicteigjime 1 as well as derivatives of the diffraction
traveltimerp. This calculation involves mainly the following steps (ama@omplete compilation of the
matter that has been published in the references cited lmlowee found in Goertz, 2002):

e The geometrical spreading along the s/ R can be decomposed into contributions from the
source brancly M and the receiver brandW g R (Hubral et al., 1992a,b).

e Traveltime derivatives can be expressed by means of thalleddeylkin determinant g (Beylkin,
1985; Bleistein, 1987) which consists entirely of derives of the diffraction traveltimep and is
thus obtainable without the knowledge of a stationary pgint

e The pulse stretch factor (Tygel et al., 1994) has to be redasta more general form that takes into
account the fact that the incidence and emergence afigleend?;, at the depth poind/ are not
equal for converted waves (see Figure 1),

It (&, M 07, 0

v vy,
2=C* M M

Superscript- denotes properties before and superscripefers to properties right after reflection
or conversion from an interface. For monotypical reflectighy, = 61, = 0, as well asvy, =
vy, = v, and thusn p reduces to the formula published in Tygel et al. (1994).

By consequently considering the difference between imddeand emergence angles in the above outlined
points, | obtain the following expression for the weight dtion:

2 hg Lsmlmr iz (s in
Wi, M) = v;, 5V rv/PsPr Oc — a0 '8 (RsFrn) , (10)

where the factorg ; andx ;, denote the KMAH-indices of the ray branchgs/ andM R. The individual
weight function for each ray code is obtained by permutatibthe indicesi and j for each of the two
ray branches according to equation (6). Furthermore, | heveduced a new facta®. in equation (10)

which reads
vy cosft  cosfOT\
O¢ = f M ( +M + M) . (11)
cos By, cos 0y, Vs Vs

For the case of monotypical reflectionss 6y, = cosf,; = cosf,, andvy, = vy, = v,,. Thus, if
the factorv; qv; r\/PsPr and the normalized source directivity functiolf are neglected, equation (10)
reduces to the well-known formula of Jaramillo et al. (1998)

2
— V3 A ~
Wps (&, M) = -—2— hp LsyLur - (12)
2cos2 0,
Equation (10) represents thus a generalization of the wéigiction for the case of mode-converted re-
flections. Note that the factet v, »./pspr changes for different propagation modes and thus cannot be
neglected.
The factorO. defined in equation (11) can be reformulated in such a wayijtteantains the sum of
the emergence angles of a diffracted raylatmeasured towards the vertical instead of the actual reflec-
tion/conversion angles at a point of specular reflecfig. It then reads

-+
VU
Oc = vy, — M_M , 13
v V 0Ty & vy cos(aly T ) o + o8 cona, + aFy) 3)

wherea?, anda}, denote the angles the source and receiver segments makihevigbrtical axis at the
depth pointM/. These angles are independent of the reflector dip anglde derivation of equation (13)
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can be found in Appendix A.

Equation (13) expresses the important fact, that the wdigidtion of equation (10) is independent
of any reflector properties at poidt. The velocitiesv), andv;, are known from the (elastic) macro-
velocity model. The anglén?, + o) can be calculated for any diffracted ray in the subsurfacst
point M, irrespective of whether it is an actual reflection pald; or not. The geometrical spreading
factors of the two ray branchés\f andM R can be determined by means of dynamic ray tracing. Finally,
the Beylkin determinant consists, as mentioned, only oivd#ves of the diffraction traveltimep. This
means that, although all the derivations so far were madenthd assumption of an actual reflection point
Mg, equation (10) is generally valid fanydepth pointd/ in the macro-velocity model.

Let me finally mention, that the approach presented by Sdideiet al. (1993) results in a weight
function that does not involve the Beylkin determinant.lHeath 5 can be further decomposed (Schleicher
et al., 2002)

m
hs = 2 det (DsNa + DrNas) | -
cos 3

whereI's andT'; are (2 x 2) configuration matrices describing the source and receigsitipns with
respect to the chosen measurement configuration. Theythes e zero matri or the identity matrix

1. For the case of, e.g., a common-shot experiment, the sposigon does not vary, thusg = O and

I'r = I. For a common-offset experiment (which is mainly considerethe following), both matrices
I's andI'r are unity, i.e., the identity matrix. The Matric®ésns and Ny r are second-order mixed-
derivative Hessian matrices of traveltimes with respec¢hé&positions of the source and receiver. These
matrices relate to the geometrical spreading (Hubral £1892a) as

. 0 05, _1 -
o [ cos SC(_)S M (det Ngpr) 2 e i5%sm | (15)
VsV

A cos O cos 07,
Lyur = (|——2L(det Nusr)
VRV

3 e 5 RMR (16)

Upon insertion of relation (15) and (14) into the weight ftiao of equation 10, | obtain an expression
of the weight function which depends only on (mixed) travedt derivatives and the properties at the
measurement surface

Wi(€5, M) = \/vi’svijpSpR c08 05 c0SOR | qet (TsNsar + TrNarr)|
¢ ’ o G? \/detNSM\/detNMR

e~ta(RstRR) o (17)

which can be considered as a generalization of the weigltifimderived by Schleicher (1993). The only
difference, however, are the forefactors under the squeoeand the source ter@? which cannot be
neglected for the case of mode-converted waves.

Special cases

One of the advantages of equation (17) is the fact that caadily simplified for some special cases of the
measurement configuration. For the case of a common-shat@manon-receiver configuration, the sum
in the determinant of equation (14) vanishes since one ofdnéguration matrice§ becomes zero. For
these cases, the numerator of equation (17) simplifies, yediploying equation (15) again, | obtain

Lo 1
Wijcs = +/Ps,iPR,j Vs, costp ; Ogﬂ —g forcommon shot, (18)
' Lyvr G
1 Lyr 1 :
Wijcr = \/Ps,iPRjVR,jcosls,; —~— ——— —5 forcommon receiver (29)
O¢ Lsm G

configurations. Here, the fact@lg contains the incidence and reflection angle at the deptt poiwhich
can be formulated in terms of the diffraction angles meabstoeards the vertical according to equation
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O = vy, cos 0 (35) (v3)% + vy 07, cos(af, + alt) (20)
¢ vy cos Oy, (vi)2 +vyvi; cos(ay, +ak)

For the case of monotypical reflections the faafty vanishes, and by neglecting the forefactors again,
these weights reduce to the expressions published by ahi{d997).

(35):

Since the final aim of a true-amplitude migration is the esttoan of the AVO behavior at a depth point
M, the actually desired measurement configuration is a commafiset (CO) geometry. For this measure-
ment configuration, both matric&sbecome the identity matrix and thus, the sum under the détantin
equation (14) remains. Unfortunately, it is in general nmggible to interchange a summation with taking
the determinant. Mathematically, this is only possiblatifeast one row of the tw@(x 2) matrices to be
summed is identical. This is the case fdaterally homogeneousedium, i.e., when the velocity is only
a function of depthy = v(z). Then, every rays M R in a 3-D acquisition geometry is confined to a plane,
and the derivatives perpendicular to this plane (and thesow of the matriceN) are identical. For this
special case only, equation (17) can be simplified by emptpsigain equations (15) and (35)

VP5.iPR; ( Lsm 1 KMR), 1)

Wiiniz) = vg,;co80p O =—— +vp ;cosfg,;

s G? & g Lyr g & OQ Lsy

where the facto©g is again given by equation (20). The validity of equation)(&i a laterally homo-
geneous medium only may seem as a strong restriction, bustigigble in many practical applications.
For arbitrary 3-D media, however, the derivatives of eitierMatricesN in equation (17) or the Beylkin
determinant in equation (10) have to be calculated directly

Wavefield separation

All the derivations so far were made under the assumptiat,ttie data in the time domain was acquired
in ray-centered coordinates where the P and S wavefielddraeelg separated. This separation of the P
and S wavefields can be done independently for each difftaateduring migration by means of equation
(1). The rotation angles are the angle of emergehge that occur already in the weight function of
equation (17). | can therefore extend the diffraction stimt&gral of equation (7) for the migration of
elastic wavefields as follows:

—

Vi (M) =——//d£1d«52 () 2 (R ER),0) @

t=rp . (EM)

where the weight function (drue-amplitude kerngliV; is given by either equation (10) or, alternatively,
equation (17)H;;. denotes the components of the rotation makfik introduced in equation (17, then
refers to the recorded wavefield in Cartesian coordinates.cbmponents of the rotation matrix consist of
direction cosines,

Us(R) = Hu(RUK(R) = 240,

o (23)

For practical use, the rotation into ray-centered cooteém&s best performed during migration together
with the application of the weight function. Then, the difen cosines of the rotation matrix can easily be
combined with the ones of the source directivity functigh A table of direction cosines combined in this
manner can be found in Traub (1999) for the most commonly &sadd S wave sources. These direction
cosines contain not only the angle of emergethg¢dowards the vertical at the receiver (see Figure 1), but
also the azimutlp g, i.e., the emergence angle within the (horizontal) measarg plane.

ELASTIC MIGRATION IN 2.5-D

In 2.5-D, i.e., when the medium does not vary with respechéodoordinate perpendicular to the seismic
line (crossline direction), the out-of-platigintegration in equation (8) can be evaluated analytic8igce
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all data acquired on lines parallel to the actual seismie Vimuld be identical, the migration apertude
can be assumed to be infinite in thedirection. Kirchhoff migration then reduces to an in-astack
over the aperture intervdh, b) in the &;-direction covered by the seismic line. Singeis now the only
integration variable, we can drop the index 1 to write the &irchhoff migration integral as

b

_ [—iw - 1 2.5) O iwrais s
‘/i 1 ]\/[7 w) = — F(w / d _ M}z( , M Rz 'Gi eWTdif i , 24
]( ) o7 ( ) g viysvj_’R PPn A (5 ) J ( )

a

WhereWi(Q'E’) is the 2.5-D weight factor that guarantees true amplitudekis 1-D stack. It is composed
of the 3-D weight factor and the result of the analytic santof the out-of-plane integral. Since in the
2.5-D situation, the target model does not vary in g¢halirection, it suffices to regard only one S wave
component. One may therefore skip the treatmeritdfsystems and instead restrict the situation to only
two components recorded at the surface, a P component arélamaponent aligned with the acquisition
line. However, we still consider a 3-dimensional wave pggin and thu€ carries the full 3-D geomet-
rical spreading.

For the derivation of a 2.5-D weight function, the followitigee points have to be considered:

e The (3-D) geometrical spreadingjcan be split into an in-plane paftand an out-of-plane past,
with £ = £,/0.

e According to equation (24), the migration integral reducesn in-plane stack and the corresponding
stacking operators reduce to lines. The out-of-plane ratégn can be evaluated analytically and
1

yields (Bleistein et al., 1987) a factc(r(% + Ui)_E which has to be applied additionally to the
S R
weight function.

e The Beylkin determinant, and, due to equation (14), alsaltterminant in the numerator of equa-
tion (17) simplify which allows to extract an additional fac (ai + - ). In the same manner as

S R
described above, one may then interchange the summatibaking the determinant which allows
to give an expression for a 2.5-D common-offset weight fiomcthat does not contain traveltime
derivatives.

The out-of-plane spreading factarg ando , are defined by the path integral= | v ds with s being the
arc length along the raysM and M R. Altogether, | obtain for the 2.5-D common-offset case

/s iPr Ls 1 L
Wij2.5D = % (US,i cosHR_’jOg Z5M + g, cosﬁsyl-— ﬂ)w/as +og, (25)
GY Lyr Og Lsm

where the facto©g is defined in equation (20) anfidenotes now the (2-D) in-plane geometrical spread-
ing. For the case of monotypical reflections, the facfer vanishes again, and equation (25) reduces to
the formula published by Hanitzsch (1997), if constantdextare neglected again. Weight functions for
common-shot and common-receiver configurations can beeteedccordingly. These are, however, of
less importance since a true-amplitude migration aimsavering the AVO behavior of target reflectors
which implies a common-offset migration of multicoveraggal

Please note, that all the derivations so far were maderformalized point-source geometrical spread-
ing as defined by Schleicher et al. (2002) . Many textbooks, heweaise different notations for the ge-
ometrical spreading (includingerveny, 2001). Furthermore, the above formulae for themtduinction
include the source directivity pattern in the denominathiolr may become zero for certain source types.
The problem can be circumvented in practical implemematthrough a simple case discrimination.

SIMPLE SYNTHETIC EXAMPLE

In the following, | will show a 2.5-D synthetic data exampta & flat horizontal interface in a depth of
1 km. The P-wave velocity was chosen to bei:/s above the interface and 2/5n/s below. The
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density of the model was kept constant at 2/@m? and the ratio between P- and S-wave velocity was
set to 2. A synthetic multicoverage dataset was shot, asguenroll-along acquisition with an aperture
of 3 km in order to illuminate the target reflector well up tceoeritical angles. Sources cover a line from
3.0 km to 7.0 km over the model with a spacing of 20 m and geedyath P- and S-waves with (for
simplicity) a unidirectional radiation pattern for the &we. The dominant frequency of the source signal
was chosen at 10 Hz in order to safely exclude aliasing effiectall wave modes. The synthetic dataset
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Figure 2: Sketch showing the simple model of a horizontal interfaaktae chosen acquisition geometry
above it. On the right hand side, the prestack depth migrageult of the target zone is shown for P to P
reflections. Only every second trace is plotted.

consists of 60501 traces that ensure an equal illuminatioalf offsets for a small target zone between
3.0 km and 4.0 km (see Figure 2). Figure 3 shows one examptegsitiver for the vertical component
(left) and the horizontal component (right). Both seisnamgrsections show the four principal scattering
modes generated at the interface. For this simple case? the S and.S — P conversion arrive at the
same traveltime. Nevertheless, the contributions of treew&ve modes can clearly be separated by the
multicomponent migration.
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Figure 3: Example shot gather of the vertical (left) and horizontaht) component of the synthetic
multicoverage dataset for a flat layer. Only every 5th tracghbwn.
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Amplitude evaluation

After a common-offset multicomponent migration employthg weight function of equation (25), one
obtains separate migrated images for every offset as widl asery ray code. Figure 4 shows the migrated
image gathers for the four principal wave modes containgddrsynthetic multicoverage dataset. As can
be seen, all four image gathers show a flat event at a depth wf Which corresponds to the respective
reflection or conversion event from the interface depicteBigure 2. The reflectivity becomes complex-
valued for overcritical angles which results in a phaset stfithe migrated signal that is observable at high
offsets.
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Figure 4: Image gathers of the migration result for the principal waxades: a) P to P reflection. b) P
to S conversion. c) S to P conversion. d) S to S reflection. Balers behind the wiggle traces denote
positive amplitudes and red colors denote negative angdg#u Only every 5th trace is shown as wiggle
line. Events with moveout stem from other wave modes tha¢appn the same principal component (see
text for discussion).

By picking the amplitudes along the flat events in the imagiaa one obtains the desired AVO
behavior. If the correct weight function was applied, thekpd values should directly yield the reflectivity
for the corresponding depth point on a reflector. Figure Svsheocomparison of the complex magnitudes
picked from the migrated image gathers with the theordfiexipected values from the Zoeppritz equations
for all of the four wave modes. Furthermore, Figure 6 showsraparison of the phase of the complex
reflectivity with the phase shifts picked from the migratathge gathers. As can be seen, both Figure 5
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Figure 5: Comparison of amplitudes picked from the migrated imagbeyatwith theoretical values from
Zoeppritz equations for every scattering mode: shown amgbex magnitudes for P to P (upper left), P to
S (upper right), S to P (lower left), and S to S (lower right).

and Figure 6 show a very good agreement of the picked amp#tudth the expected theoretical values.
The synthetic time-domain data was generated by using a evomaly available wavefront ray tracer that
unfortunately proved to calculate the phase of the S to Pctafleincorrectly, which explains observable
differences in the lower left graph of Figure 6.

Offset stacking

Even after rotation into ray-centered coordinates, thpaetive input data for one (ray-centered) principal
component will contain more than one event since always twdes are arriving at the receiver on the
same principal component. In this case, P to P and S to P ewéhtsccur on the principal component
perpendicular to the wavefrontand P to S and S to S eventseillr on the principal component tangent
to the wavefront. This implies, that the diffraction stacll find stationary points also for events that do
not belong to the respective wave mode considered. Thesésawviél be mapped incorrectly and thus occur
with a considerable moveout in the image gathers. Such eegetvisible below th& — S conversion in
Figure 4 (b) and above the — P conversion in Figure 4 (c). These are remnants of the S to &tiefh
and P to P reflection, respectively. The kinematically atritaage for every wave mode is obtained, if all
image gathers are stacked in the offset direction. Thery,tbel correctly migrated (flat) events remain in
the final stacked image and all events with moveout in the égadhers will be summed up destructively
and thus yield zero.

However, care has to be taken when stacking events with pieseges at overcritical angles (this is
the case especially for the conversion modes where the palaéty is reversed at high offsets). In order
to avoid a destructive summation of such events, one ussttks the image gathers only for ranges of
offsets where phase changes can be neglected. If more tiearefdector is present in the data (which is
usually the case), these phase changes occur at diffefeatofor every depth. If furthermore a laterally
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Figure 6: Comparison of the phase of the complex reflectivity pickexdrfithe migrated image gathers
with theoretical values from Zoeppritz equations for evecgttering mode: shown are values for P to P
(upper left), P to S (upper right), S to P (lower left), and Stflower right).

heterogeneous macro velocity model has to be taken intauatcthe suitable range for stacking would
either have to be chosen individually for every image poartiCh is impracticable), or the migrated image
would have to be sorted according to reflection angle (whigblies the knowledge of the reflector dip).
In practice, and if the signal-to-noise ratio is sufficigritigh, this problem is circumvented by applying
several stacks for small ranges of offsets, so-calkar-offseandfar-offsetstacks.

CONCLUSIONS

The zero-order ray-theory approach to true-amplitude intaas been restricted so far to the treatment
of monotypical reflections, i.e., it did not account for masaversions at an interface. Here, an extension
to this approach is presented that account for the vecianiglerties of the elastic wavefield recorded with
multicomponent receivers. The resulting weight functichange for every propagation mode and can
also be applied to converted waves. Therefore, the proeallows to retrieve the full matrix of elastic
reflection coefficients for all wave modes.

An application of the proposed method to real data requitesfarm and highly controlled coupling of
receivers. These requirements may be met for data acquisiithin a borehole for vertical seismic profil-
ing (VSP) or on the seafloor for data acquisition with an Odgatiom Cable (OBC). The true-amplitude
multicomponent imaging method can then have an impact anfaitude-versus-offset (AVO) inversion
which in current applications uses only two parametéartercept(zero-offset reflection coefficient) and
gradient (near-offset slope of the reflection coefficient) of P to Pemtfbns. If additional information
could be retrieved from mode-converted and S-wave reflestimuch more parameters can be added to
the inversion and less effort needs to be put into calibnatiith borehole logs from the vicinity.
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Detailed results were published by Goertz (2002).
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APPENDIX A

In this appendix, | will proof that the factd?. introduced in equation (10) is independent of the reflector
properties at a point of specular reflectibfy, i.e., it is to proof that

[ vy, cos0F, cosfy\
Oc = MOM__ ( M _M> (26)
cos 0, cos b, Vs Vi

can be written in such a way that it is independent of the iddial angle®,, andd;,. It will be shown in
the following that the factor (26) depends rather on the stiineoangles between the two ray segments (see
Figure 7). This sum can be also expressed as the sum of thgles ameasured towards the vertical which
can be calculated for every diffracted ray. As a consequeaheeweight function (10) will be generally
valid for every subsurface poitit/, whether or not it is an actual reflection point.

With the use of the trigonometrical addition theorem

cos(a+ ) = cosacos f —sinasin 3, (27)

I may write for the inverse of the second term in in equatids) (2

¥ = T =
Unm UM UM Unm
1 cos 0y, cos b, n cos? 0y,
cos 0y, vy Vs
_ 1 <cos(9;1 +05;) +sinf;, sin 07, N cos? 09;4)

cos 9];1 N cosfy, (cos 9]& N cosfy, ) cosfy,

cos 0y,

(28)

+

cos 0y, (e Unpm

By using Snell’s law for the termin 67,
sin 07, sin 67,
+M M (29)

Unpm s

and recalling the fact thain® = + cos® 2 = 1, | may write for the right hand side of equation (28)
1 (cos(é’xj +05) N i) . (30)

— + —
cos by Um s

By inserting this preliminary result into equation (26) dtain
B Vv cos 03,01,V
Oc = + = = + = T
cosf, cosOy, \vy,cos(0y, +63,) + vy

— + —
_ /v* o costy, ViV .
MEMAL cos 07, \ vy, cos(03, + 0y,) + v,

(31)




132 Annual WIT report 2002

Figure 7: Slowness vectors of a wavefront impinging on an interface.

Now, | turn my attention to the cosines under the square rbetoation (31). These can be expressed in
terms of the slowness vectors, according to Figure 7 as/sllo

P +5t)
[P lp~ + P
The numerator can be calculated by recalling that the leafithe slowness vector equals (by definition)
the inverse of the velocity, and by expressing its compakeyimeans of the angles towards the vertical.

Since the two slowness vectors span up a plane, | can conneathulation to a local (Cartesian) 2-D
coordinate system and obtain for the numerator

(32)

cosf,, =

P+ =)+ (07) +pyps +pipd =

@7 sin’af;  cos?af;  cos(af; +ak) (33)
(var)? (var)? Upr Vs

Therefore, | obtain for equation (32) by replacing offfy | = - in the denominator
Ym

1 vl + vy cos(ay, +aky)
UarVis = + 97

costy, =

(34)

cos 03, can be calculated accordingly and | finally obtain for théoraf cosines under the square root in

equation (31)
cosly,  [vi; + vy cos(ay + aly) (35)
cos 03, vy + v cos(as; +aft)

From Figure 7, one sees immediately that(0}, + 0;,) = cos(a3, + %) and | thus obtain by inserting
equation (35) into equation (31) the final result

+

VU
Oc = viv7, MM ) 36
i \/ (1 + vy conlefy + o)) vy + oy con(aly + o) 59

which is equation (13).



