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ABSTRACT

Kinematic information for the construction of velocity models can be extracted in a robust way from
seismic prestack data with the Common-Reflection-Surface Stack. This data-driven process results in
a number of kinematic wavefield attributes – wavefront curvatures and normal ray emergence angles
– that parameterise moveout surfaces in the prestack data, associated with each sample in a simulated
zero-offset section. I present a tomographic inversion method that makes use of this kinematic infor-
mation to determine smooth, laterally heterogeneous subsurface velocity models for depth imaging.
The input for the inversion consists of kinematic wavefield attributes picked at a number of locations
in the simulated zero-offset section. An optimum model is found in an iterative way by minimisation
of the misfit between the picked data and the corresponding modelled values. The required forward
modelled quantities are obtained during each iteration by dynamic ray tracing along normal rays per-
taining to the input data points. Fréchet derivatives for the tomographic matrix are calculated by ray
perturbation theory. The algorithm is tested on 1D and 2D examples and the inversion is successfully
applied to a 2D synthetic prestack data set.

INTRODUCTION

The determination of a suitable velocity model is one of the crucial steps for seismic depth imaging in
laterally inhomogeneous media. It is important not only forcorrect positioning of reflection events in the
subsurface but also for obtaining an optimally focused image if prestack migration is used. A number of
approaches for the construction of velocity models exist, which differ in the criterion used for evaluating
the quality of the current model, in the way model updates aredetermined and in the assumptions made
about the velocity model (blocky, layered, smooth, etc.).

Commonly used migration velocity analysis methods are usually based on residual moveout analysis
in common image gathers. They make use of the criterion that in the correct velocity model reflector
image depths produced by prestack migration should be independent of offset (e.g. Deregowski, 1990; Liu,
1997). Another approach, depth focusing analysis (e.g. Jeannot and Faye, 1986; MacKay and Abma, 1992),
employs the fact that during downward continuation in the correct velocity model reflection events should
collapse to zero offset at zero traveltime. Both approachesrequire the repeated application of prestack
migration and are therefore expensive in terms of computation time.

An often used tool for the determination of velcity models isreflection tomography (e.g. Bishop et al.,
1985; Farra and Madariaga, 1988; Stork, 1992). In reflectiontomography rays are traced through a model
defined by a velocity distribution and a number of reflectors.Global model updates are computed to
minimise the misfit between the modelled traveltimes and thecorresponding values picked in the prestack
data. The drawback of reflection tomography is the tremendous amount of picking that is necessary to
obtain traveltimes from the prestack data and the assumption of continuous reflectors, often across the
entire section. Although many attempts to automatise the process have been made, the problem of picking
remains.

Recently, Billette and Lambaré (1998) have presented a tomographic velocity inversion method called
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Figure 1: The two eigenwaves associated withRNIP andRN : (a) the NIP wave and (b) the normal wave.

Stereotomography which makes use of the slopes of locally coherent events in shot and receiver gathers
together with traveltimes to obtain a smooth velocity model. An advantage of that method lies in the fact
that, as only locally coherent events are considered, no interfaces need to be introduced in the model.
Consequently, no picking along continuous events is necessary.

In this paper I present a tomographic velocity inversion method that makes use of kinematic information
extracted from the entire prestack data volume in a data-driven way by an application of the Common-
Reflection-Surface Stack (e.g. Mann et al., 1999; Jäger et al., 2001). Input data for the velocity inversion
may then be picked in the resulting simulated zero-offset section of significantly improved signal-to-noise
ratio, thus considerably simplifying the picking. Each picked data point consits of a number of kinematic
wavefield attributes that can be used to describe an entire approximate kinematic multi-offset response of
a common reflection point. The velocity inversion is performed with a tomographic approach which is in
some respects similar to Stereotomography. While in that method source and receiver rays pertaining to
a reflection point are considered, I use properties calculated along normal rays by dynamic ray tracing to
approximate the kinematic multi-offset response of reflection points.

THE COMMON-REFLECTION-SURFACE STACK AND VELOCITY INVERSI ON

The recently developed Common-Reflection-Surface Stack (CRS Stack) (e.g. Mann et al., 1999; Jäger
et al., 2001) is a stacking technique that makes use of multi-parametric stacking surfaces to obtain optimum
simulated zero-offset sections from seismic multi-coverage data in a data-driven way.

One of the advantages of the method lies in the fact that, apart from the simulated zero-offset section,
one obtains a number of additional sections containing the values of so-called CRS attributes or kinematic
wavefield attributes. These attributes are parameters thatdetermine the shape of the CRS stacking surface.
Their optimum values are obtained with a coherence analysisin the prestack data during the CRS Stack.

The CRS attributes – in the 2D case the three attributes are namedα, RNIP, andRN – can be given
a clear physical meaning. Whileα is the normal ray emergence angle at the surface locationξ, RNIP and
RN can be interpreted as radii of curvature of two so-calledeigenwavesemerging atξ (Hubral, 1983),
associated with two hypothetical experiments. They are obtained from a point-source and an exploding
reflector element attached to the normal-incidence point (NIP) on a reflector, respectively (Figure 1). The
attribute sections contain physically meaningful information only where sufficiently high coherence values
were obtained along the CRS operator. These locations can beeasily identified with the help of a coherence
section, which is also part of the CRS output. Synthetic examples of CRS Stack results (simulated ZO
section and kinematic wavefield attribute sectionsRNIP andα) are displayed in Figure 6.

The significance of the kinematic wavefield attribute sections lies in the fact that these can be used for a
number of different applications (e.g. Bergler et al., 2002), such as the calculation of geometrical spreading
factors and approximate projected Fresnel zones, and the separation of reflections from diffractions. In
particular, the CRS attributes contain information on the subsurface distribution of seismic velocities. In
the following I will briefly discuss their role in velocity model inversion.

The approximate (second order in half-offset) common-reflection-point (CRP) trajectory, i.e. the ap-
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proximate kinematic response of a reflection point, lies completely within the CRS surface. For a given
point (t0, ξ) in the zero-offset plane and a given near-surface velocityv0 the CRP trajectory in time-
midpoint-offset space can approximately be described by the CRS attributesRNIP andα alone (Höcht
et al., 1999). Ifα 6= 0 it deviates from the CMP trajectory, which is by definition confined to a fixed mid-
point value. Restricting the CRS operator to a single midpoint, one finds that the normal moveout velocity
vNMO, as it is conventionally defined, can be written in terms of the CRS attributesRNIP andα:

v2
NMO =

2 v0RNIP

t0 cos2(α)
. (1)

RNIP andα can therefore also be found by stacking-velocity analysis and the determination of local dips
in a stacked zero-offset section. Their determination withthe CRS Stack should yield much more stable
results, though, especially in the presence of a high level of noise in the data.

The link between normal moveout velocity on the one hand and wavefront curvature and emergence
angle on the other hand has been recognized by a number of different authors. Shah (1973) used this
relation together with wavefront curvature propagation laws in a Dix-type inversion for 2D layered models
containing dipping reflectors. Conventional Dix inversion(Dix, 1955) is then just a special case for 1D
models andα = 0. Hubral and Krey (1980) generalized Dix-type inversion to the case of 3D curved
layered models. Recently, Biloti et al. (2002) presented a revised version of that algorithm in 2D based
directly on CRS Stack results. They also include vertical velocity gradients within each layer in their
inversion.

The concept of “having a NIP wavefront shrink back into its hypothetical source” (Hubral and Krey,
1980) for the determination of interval velocities can, in principle, be generalised to the case of arbitrary
smooth velocity distributions. As the NIP wavefront parameters completely describe the approximate
kinematic response of a common reflection point (see above),this concept is consistent with the well-
known criterion of depth focusing analysis in the determination of migration velocities. It states that a
migration velocity model is correct, if seismic reflections, when downward continuation is performed,
focus at zero traveltime (e.g. Jeannot and Faye, 1986; MacKay and Abma, 1992).

TOMOGRAPHY WITH CRS ATTRIBUTES

In this section I will introduce a tomographic velocity inversion method for 2D isotropic models, based
on the CRS attributesRNIP andα. In contrast to Dix-type inversion, a smooth velocity modeldescription
without any discontinuities is used. This allows the continuous reflector assumption to be dropped: in-
dependent data points are picked from the CRS Stack section (together with the correspondingRNIP and
α sections), each point corresponding to a CRP in the subsurface. The inversion method is based on the
above-mentioned criterion for a correct velocity model: ina correct model, all considered NIP waves, when
propagated back into the earth along the normal ray, focus atzero traveltime. A first test of the method has
been presented by Duveneck and Hubral (2002).

Data and model components

Each point (t0,ξ) on an event in a CRS Stack section with a sufficiently large value in the corresponding
coherence section can be associated with a common reflectionpoint in the subsurface. Its approximate
kinematic multi-offset response is defined through the corresponding CRS attributesRNIP andα. Instead
of RNIP, I will use

M =
1

v0 RNIP
, (2)

wherev0 is the near-surface velocity value that has been used duringthe CRS Stack. This has a number of
advantages: firstly, the dependence on the chosen value ofv0 is removed, asRNIP appears in the expression
for the CRS operator only in a product withv0. M is the second spatial derivative of the NIP wave
traveltime on the zero-offset ray in the direction normal tothe ray atξ. The second-order approximation in
half-offseth of the CRP-trajectory for a given point(t0, ξ) (Höcht et al., 1999) can be written entirely in
terms ofM andα. It is independent of the near-surface velocityv0. Secondly, the quantity M can be easily



Annual WIT report 2002 95

T
α M

(x,z)
v(x,z)

ξ

θ

Figure 2: Definition of model and data components for the tomographic inversion.

calculated along a ray with dynamic ray tracing. When the raytracing is started at the NIP, it is given by

M =
P2

Q2
, (3)

whereP2 andQ2 are elements of the ray propagator matrixΠ in ray-centered coordinates (e.g.Červený,
2001, see also Appendix A). Thus, the approximate CRP response in the vicinity of a normal ray at any
location along the ray can be directly modelled by dynamic ray tracing.

The input for the velocity inversion consists of a number of points picked in the CRS Stack section,
defined by their values oft0 andξ, together with the associated values ofα andM , taken and calculated
from the corresponding CRS attribute sections. Theith data point is given by

(T, M, α, ξ)i , (4)

where the one-way traveltimeT = t0/2 is used for convenience andi = 1 . . . ndata, whenndata data
points are picked.

One might consider implementing the previously mentioned condition for a correct velocity model – the
focusing of the NIP wave – directly. This would imply fixingα andξ at their picked values and propagate
the NIP wavefronts, described by the picked values ofRNIP, or the corresponding values ofM , into the
subsurface to check if they focus atT = 0 (i.e. RNIP = 0 at T = 0). One would then need to find a
velocity model that effects this focusing for all considered data points.

On the other hand, all data(T, M, α, ξ) must be expected to be affected by noise or a certain mea-
surement error. An inversion that does not allow for that error can become unstable. This can be taken
into account if the dynamic ray tracing is started in the subsurface at the respective CRPs. As the true
subsurface positions of the CRPs and the ray starting directions of the corresponding normal rays are ini-
tially unknown, these have to be considered as part of the model to be inverted for, along with the velocity
distribution. The optimum model is found when the misfit between modelled and measured values of
(T, M, α, ξ) is minimised. This is the approach that will be followed here.

In two-dimensional depth models, each CRP is characterisedby its location in the subsurface (x, z) and
its local dip angleθ, which also gives the direction of the normal ray. The smoothvelocity model itself can
be described by two-dimensional B-splines:

v(x, z) =

nx∑

j=1

nz∑

k=1

vjk βj(x)βk(z) , (5)

wherenx andnz are the chosen numbers of knots in the horizontal and vertical direction, respectively.
βj(x) andβk(z) are B-spline basis functions inx andz for given knot sequences (e.g. de Boor, 1978). As
shown in Appendix A, smooth third derivatives of the velocity are needed, therefore, B-spline functions of
degree 4 will be used. Together with the coordinates and local dips of the reflection points the coefficients
vjk in equation (5) define the model. It is given by

(x, z, θ)i

vjk ,
(6)

wherei = 1 . . . ndata, j = 1 . . . nx andk = 1 . . . nz . Model and data components are illustrated in Fig. 2.
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Solution of the inverse problem

The inversion problem described in the previous section canbe formulated as follows: find a model vector
m consisting of the model components given in (6), that minimises the misfit between a data vectord

containing the picked data values given in (4) and the corresponding modelled valuesdmod = f(m). Here
the nonlinear operatorf symbolises the dynamic ray tracing in the given model.

If the least-squares norm (e.g. Tarantola, 1987) is used as ameasure of misfit, the inverse problem
becomes one of minimising a cost function

S(m) =
1

2
‖d− f(m)‖2

D =
1

2
∆dT (m)C−1

D ∆d(m), (7)

where∆d(m) = d− f(m). The matrixCD is sometimes called the data covariance matrix, here assumed
to be diagonal, which weights the different data components.

The nonlinear modelling operatorf is locally lineariseable, therefore an iterative application of least-
squares minimisation to the linearised problem can be used to find the minimum of the cost functionS.
Starting with a first guess modelm0, a sequence of model updates∆m is found, hoping that the process
converges to the global minimum ofS.

Around a given modelmn, corresponding to thenth iteration, the modelling operator can be approxi-
mated locally byf(mn + ∆m) ≈ f(mn) + F∆m, whereF is a matrix containing the Fréchet derivatives
of f at mn. The Fréchet derivatives can in the present case be obtainedduring forward modelling by ray
perturbation theory (Farra and Madariaga, 1987). Their calculation is detailed in Appendix A. Then

∇m S ≈ −FT C−1
D (∆d(mn) − F∆m) . (8)

Setting∇m S = 0 leads to the least-squares solution for∆m if the inverse ofFTC−1
D F exists.

In practice, however,F is usually ill-conditioned, as not all model components aresufficiently con-
strained by the data alone. Therefore, a stable inverse cannot be computed. Additional information has
to be introduced to further constrain the model parameters and regularise the problem. Constraining the
model vector to have minimum length, as is done in damped least squares (e.g. Lines and Treitel, 1984),
is not reasonable in the present case. Physically, it makes more sense to require the velocity model to be
smooth, as we are looking for the simplest model that explains the data. The smoothness requirement also
assures the applicability of dynamic ray tracing along single normal rays to model approximate kinematic
CRP responses by determining the required attributesRNIP andα. As shown in Appendix B, application
of the smoothness criterion (minimum second spatial derivatives) as an additional constraint, not on the
model update, but on the velocityv(x, z) itself, leads to a matrix equation of the following form:

F̂∆m = ∆d̂, (9)

where

F̂ =

(
C

− 1
2

D F

[0 ,B]

)
, ∆d̂ =

(
C

− 1
2

D ∆d(mn)
− [0 ,B]mn

)
. (10)

HereBTB = ε D′′, and the matrixD′′ is explained in Appendix B. The factorε weights the relative
contribution of the regularisation to the cost function. Solving equation (9) in the least-squares sense yields
the desired model update∆m, which minimises the cost function

S(m) =
1

2
∆dT (m)C−1

D ∆d(m) +
1

2
ε mT

(v)D
′′m(v). (11)

If the dimensions of̂F are not too large the least-squares solution of equation (9)can be found e.g. by
singular value decomposition (SVD) (e.g. Lines and Treitel, 1984). For larger matrices this becomes com-
putationally too expensive and we need to apply more efficient methods, that take advantage of the sparsity
of F̂ during the solution of (9). Here the LSQR algorithm (Paige and Saunders, 1982a,b) is used. It is an
iterative method, based on conjugate-gradients, which solves linear systems of the form of (9) in the least-
squares sense without explicitly performing any matrix inversion. The LSQR algorithm is well-known for
its favourable numerical properties and is frequently usedfor tomographic problems in seismology (e.g.
Nolet, 1987).
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Practical aspects

Before the inversion process can be started, input data points need to be picked in the simulated zero-offset
section produced by the CRS Stack. Picks are independent of each other and do not have to follow an
event over successive traces. Their lateral separation should be smaller than the horizontal knot interval,
though, and they should be well distributed over the entire section. The required values ofM andα are
then automatically extracted and calculated from the corresponding CRS attribute sections.

An initial velocity model is set up by defining B-spline knot sequences in the horizontal and vertical
directions and assigning initial values to the velocity coefficients, such that these describe a 1D velocity
distribution with some constant vertical velocity gradient.

For each of the picked data points(T, M, α, ξ), kinematic ray tracing in the downward direction is
performed in the initial velocity model to obtain initial coordinates and local dip values(x, z, θ) for the
corresponding CRPs. Starting with these values, dynamic ray tracing in the upward direction is performed
until the rays reach the measurement surface. Initially,∆d will consist solely of the discrepancy between
the measured and modelled values ofM .

During ray tracing the Fréchet derivatives are calculated with the help of equations (A1) to (A11) in
Appendix A. With these ingredients and a chosen value ofε equation (9) can be set up. Its least-squares
solution∆d is found in the 1D case by SVD or in the 2D case with the LSQR algorithm. The updated
model parametersmn+1 = mn + λ∆m, where0 < λ ≤ 1, are then determined and new modelled data
values are calculated by dynamic ray tracing. If the cost function (11) has increased,λ is decreased and the
cost function recalculated, otherwise the next iteration is started by calculating Fréchet derivatives in the
new model.

In the course of increasing iteration numbers the value ofε can be decreased as the model misfit de-
creases, allowing more and more details to be resolved. The inversion is stopped, if a given maximum
number of iterations has been reached, if the data misfit has fallen below a specified value, or if a minimum
of the cost function (11) has been reached, i.e. decreasingλ does not lead to a further decrease of the cost
function.

SYNTHETIC TESTS

To test the inversion algorithm introduced in the previous section it is firstly applied to two synthetic
examples, one in 1D and one in 2D, where the input data have been calculated directly by dynamic ray
tracing. They are thus exact, and any limitations of the method due to the assumption that measured CRP-
responses can be modelled by dynamic ray tracing along the zero-offset ray do not play a role here. An
application to an example where the input data really have been extracted from seismic prestack data with
the CRS Stack follows in the subsequent section.

1D test example

As a first simple test I consider the 1D case, i.e. no lateral velocity variation exists and all rays propagate
in the vertical direction (α = 0). Obviously, this significantly simplifies the forward modelling. Only two
different data comonents,M andT , remain:

M =

[∫ s1

s=s0

v(s) ds

]−1

, T =

∫ s1

s=s0

1

v(s)
ds. (12)

The Fréchet derivatives (see Appendix A) can be obtained from the following simple expressions (z is
defined positive upwards):

∆M =

[
v(s0)∆z −

∫ s1

s=s0

∆v(s) ds

] [∫ s1

s=s0

v(s) ds

]−2

∆T =
−∆z

v(s0)
−
∫ s1

s=s0

∆v(s)

v2(s)
ds

(13)

I apply the 1D tomographic inversion to data that have been calculated in a model with layers of constant
velocity (solid line in Fig. 3(a)). The 13 velocity discontinuities act as reflectors and the input data are
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Figure 3: 1D inversion test. (a) The solid line indicates the originallayered velocity model, while the
dotted line gives the smooth velocity inversion result. Seetext for details. (b) The absolute value of the
depth error between real and inverted reflector depths remains below 3 m. This is a relative depth error of
less than 0.1 % for the deepest reflector.
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Figure 4: 2D inversion test. (a) Original smooth velocity model described by 56 B-spline coefficients. For
this test 126 data points are modelled directly by dynamic ray tracing along the shown rays. The initial ray
direction (vertical) is the same for all rays. (b) Inverted velocity model. The velocity model and all rays
are well reconstructed. (c) Difference between the original and the inverted velocity models.

calculated with simple wavefront curvature propagation laws, as given ,e.g., in Hubral and Krey (1980).
The model is described by B-spline coefficients at 15 knot positions with a 200 m spacing in the vertical

direction (in 1D, cubic B-splines are used, as no third derivatives are needed). The problem is thus obvi-
ously underdetermined, therefore the regularisation termin the cost function (11) is essential andε must be
chosen accordingly.

The inversion is started with a velocity at the surface of 1500 m/s and a vertical gradient of 2 s−1. After
12 iterations the velocity distribution given by the dottedline in Fig. 3(a) is obtained (stopping after fewer
iterations gives a similar result). It agrees very well withthe exact, discontinuous velocity distribution.
A comparison of the true and inverted reflector depths (Fig. 3(b)) also shows very good agreement. The
maximum depth error amounts to less than 3 m at a depth of more than 3000 m.

2D test example

The ability of the inversion algorithm to handle laterally varying velocity distriubitons is demonstrated with
the model given in Fig. 4(a). It is described by7× 8 B-spline coefficients with a horizontal spacing of 500
m and a vertical spacing of 400 m. 126 data points are generated directly by dynamic ray tracing. For this
test the ray starting points are distributed regularly in the subsurface with a horizontal interval of 300 m
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Figure 5: Blocky velocity model used to produce prestack data by ray tracing modelling.

and a vertical interval of 400 m. The initial ray direction isvertical for all rays.
Of course, in a velocity model of this degree of high amplitude short-wavelength lateral variation, the

traveltimes associated with a common reflection point in thesubsurface can be described by the parameters
(T, M, α, ξ) only for small offsets. In general, the moveout curve is non-hyperbolic for larger offsets and
CRS Stack results obtained from prestack data in such a modelwould not be reliable for inversion. Still
the model presented here is useful to test the inversion algorithm itself, given perfect input data.

The data associated with the 126 modelled rays are directly used as input for the inversion. A start
model with a near-surface velocity of 2000 m/s and a verticalvelocity gradient of 0.5 s−1 is used. The
inversion result after 15 iterations is displayed in Fig. 4(b). Except for some differences in the lower left
part of the model, the velocity distribution and ray trajectories have been very well retrieved. Figure 4(c)
shows the difference section between the modelled and the inverted velocity distributions.

A 2D SYNTHETIC DATA EXAMPLE

Having demonstrated the applicability of the described inversion algorithm in 1D and 2D I will now present
a more realistic synthetic data example. Seismic prestack data have been modelled by ray tracing in the
blocky velocity model given in Fig. 5 in a marine acquisitiongeometry. The shot and receiver intervals
were 50 m and the maximum offset was 2000 m, which leads to a CMPfold of 20. Also, random noise was
added to the data. This multi-coverage seismic dataset served as the starting point for the construction of
a smooth velocity model based on the application of the CRS Stack and subsequent tomographic velocity
inversion using CRS attributes, as described in the previous sections.

As a first step, the CRS Stack was applied to the multi-coverage dataset, resulting in the sections
displayed in Figure 6, along with anRN section and a coherence section (not displayed). 505 data points
were then picked in the CRS Stack section, resulting in a set of values (T, M, α, ξ). These data served as
the input for the tomographic velocity inversion.

The velocity model is defined by 15× 13 B-spline coefficients on a grid with a spacing of 500 m in
the horizontal and 300 m in the vertical direction. The startmodel was chosen to consist of a near-surface
velocity of 2000 m/s and a vertical velocity gradient of 2/3 s−1, which is in fact relatively close to the
true average vertical velocity gradient (a useful simple start model can also be obtained by performing one
inversion iteration, starting with a constant initial velocity, and choosing a very high value ofε).

The inversion was stopped after 12 iterations. The result, consisting of the velocity model itself and the
reconstructed normal ray trajectories, is displayed in Figures 7(a) and (b). In most parts the reconstructed
model resembles a smoothed version of the true discontinuous velocity distribution. Locations where it
deviates from that, e.g. in the lower part of the model, especially around x = 3000 m, can be correlated
with low ray coverage. The inverted velocity model is kinematically correct, i.e. local reflector elements
or dip bars, which can be attached to the end points of reconstructed normal rays, are placed in the correct
subsurface positions. This is demonstrated in Figure 7(c),where the inverted dip bars are plotted into the
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Figure 6: 2D inversion test. (a) CRS Stack section obtained from synthetic multicoverage data modelled
by ray tracing in the velocity model shown in Fig. 5. A maximumoffset of 2000 m has been used and
random noise has been added to the prestack data. Diffractions have not been modelled. (b)RNIP section,
(c) emergence angleα section.

original velocity model. In particular, the lowermost horizontal reflector is well reconstructed.
In linear inversion problems the effects of errors or noise in the input data on the inversion result can

be determined by the calculation of the posterior model covariance matrix (e.g. Tarantola, 1987), given an
estimate of the data uncertainties in the data covariance matrix. In nonlinear problems the effect of data
errors on the solution is not as easy to determine. To examinethe sensitivity of the velocity inversion to
noise, Gaussian noise with the following standard deviations was added to the picked input data:

σT = 5 · 10−3 s (σt0 = 10−2 s) ,

σM = 10−8 s/m
2

(σt ≈ 10−2 s at 2000 m offset) ,
σα = 1◦ ,
σξ = 10 m .

(14)

The value ofσM was chosen based on the assumed standard deviation of traveltimes at 2000 m offset and
using a parabolic traveltime moveout approximation, whichdepends linearly onM . The inversion was then
performed with a number of different realisations of the Gaussian noise added to the data. The resulting
inverted CRP locations (end points of normal rays) for five realisations of noise are displayed together
in Fig. 8. As might be expected, the scatter of the inverted CRP positions increases with depth, but the
overall reflector structure is well reconstructed. For the examined example, I thus find that the tomographic
inversion is stable with respect to noise in the input data, assuming a suitable value for the regularisation
weightε has been chosen.

DISCUSSION

I will now briefly discuss some of the advantages and limitations of the tomographic velocity inversion in-
troduced and tested in the previous sections. Firstly, I would like to note that the required input, emergence
angles and NIP wave curvatures at different zero-offset locations, is a by-product of the CRS Stack, which
has originally been developed for the purpose of producing simulated zero-offset sections from prestack
multi-coverage data.

Picking of input data, which is the weak point in conventional reflection tomography, is simplified
significantly by a number of features of the inversion methodpresented here:

• As already pointed out, data points are picked in a simulatedzero-offset section, which has a much
higher S/N ratio than the original prestack data. Structures can be much better identified in a zero-
offset section and multiples, if present, avoided during picking.
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Figure 7: (a) Inverted smooth velocity model and inverted normal ray trajectories. (b) Inverted smooth ve-
locity model and local dip bars calculated from inverted rayendpoints. (c) Inverted dip bars superimposed
onto the original velocity model.
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Figure 8: Sensitivity of the inversion to noise. Plot of inverted CRP locations for different noisy input
data. Five realisations of Gaussian noise were added to the picked data prior to the inversion. See text for
details.
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• Each pick already represents the approximate traveltimes of a CRP for different offsets, therefore no
picking of data points for different offsets is necessary.

• In a smooth velocity model without discontinuities, as is used here, reflection points do not define
the position of velocity block or layer boundaries. Therefore it is not necessary to pick successive
samples along a reflector. In fact picked events may lie on a diffraction as well as on a reflection
event.

The approximations made during the CRS attribute-based tomographic inversion, namely the descrip-
tion of entire CRP responses with quantities calculated along the normal ray, result in some restrictions for
the applicability of the method to complex subsurface velocity distributions. While the method has been
designed for the inversion of laterally varying velocities, there is a limit on the minimum wavelength of
lateral variation to ensure approximately hyperbolic traveltime moveout within the CRS aperture. This is
in accordance with the smoothness criterion imposed on the data by the regularisation during the inversion.

The fulfilment of this requirement can be checked by inspection of a number of CMP gathers in the
prestack data. If necessary, the maximum offset used duringthe CRS Stack should be restricted. A too
small aperture, on the other hand, will result in a degraded resolution of the CRS attribute determination,
as is well known from conventional stacking velocity analysis.

During the CRS Stack the kinematic wavefield attributes are determined by coherence analysis from a
large number of traces with various offsets around the zero-offset trace atξ. If the subsurface properties
are laterally heterogeneous, the optimum determined CRS attributes represent spatial averages and cannot
strictly be attributed to the zero-offset ray alone. This may be taken into account in the inversion by using
locally averaged values of the higher derivatives of velocity during dynamic ray tracing and the application
of ray perturbation theory. Although such a procedure is heuristic, it may broaden the applicability of the
inversion to velocity distributions of stronger lateral variation.

The smooth velocity model obtained by the inversion is optimised for depth imaging. The velocities
between successive reflection events cannot necessarily beinterpreted as interval velocities in geological
terms.

CONCLUSIONS

I have presented a new tomographic velocity model inversionmethod based on kinematic wavefield at-
tributes extracted from the prestack seismic data with the CRS Stack. The method makes use of the CRS
attributesRNIP andα, which are suited to approximately describe the kinematic multi-offset response of a
common reflection point in the subsurface in the vicinity of the zero-offset ray. The model parametrisation
– smooth velocity and reflection point positions and angles corresponding to the input data points – allows
to consider each data point independently during picking, without having to follow continuous reflectors.
Picking of the input data is performed in a simulated zero-offset section obtained with the CRS Stack.

The inversion algorithm has been tested on 1D and 2D synthetic examples where the input data have
been calculated directly by exact forward modelling. The entire inversion procedure, starting with the
CRS Stack, followed by picking and the subsequent application of the tomographic inversion has been
demonstrated on a 2D synthetic data example involving prestack seismic data modelled in a laterally het-
erogeneous velocity model. The results are very encouraging, a kinematically correct smooth version of
the original velocity model can be reconstructed.

Although the subsurface velocity distribution may not be arbitrarily complex (e.g. complicated salt
bodies) the method should be applicable to a wide range of situations arising in seismic exploration. In
very complex environments the inversion results may provide a useful start model for detailed migration-
based velocity analysis.

A generalisation to the 3D case is possible, the input data for the inversion are then taken from the
results of the 3D CRS Stack.
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APPENDIX A

Calculation of the Fréchet derivatives

For the solution of the inverse problem the elements of the matrix F, the Fréchet derivatives∂(T,M,α,ξ)
∂(x,z,θ,v) , are

needed. For their calculation I make use of ray perturbationtheory as described by Farra and Madariaga
(1987). As the calculation of M and its derivatives is significantly simplified by the use of ray-centered
coordinates (in 2D:q, s) (e.g.Červený, 2001), ray perturbation theory will be applied in these coordinates
(s is the arclength along the ray andq is the coordinate normal to the ray direction). The results will then
be transformed into cartesian coordinates and angles at theray starting and end points. Perturbations of the
coordinateq and its corresponding slowness componentp at the positions1 along the ray can be related to
perturbations∆q and∆p ats0 and to perturbations of the velocity∆v along the ray by:

(
∆q1

∆p1

)
= Π(s1, s0)

(
∆q0

∆p0

)
+

∫ s1

s0

Π(s1, s)∆B(∆v, s) ds (A1)

where∆B = (0, vq∆v/v3 − ∆vq/v2)T , an indexq denotes a partial derivative with respect toq, ∆q1 :=
∆q(s1), etc., and

Π =

(
Q1 Q2

P1 P2

)
(A2)

is the ray propagator matrix. Its elements are solutions of the dynamic ray tracing system for normalised
plane wave (Q1, P1) and normalised point source (Q2, P2) initial conditions, respectively (̌Cervený, 2001):

d

ds
Π =

(
0 v

1
v2 vqq 0

)
Π . (A3)

Π(s1, s) = Π(s1, s0)Π
−1(s, s0), so that (A1) can easily be evaluated during ray tracing.M = P2/Q2,

therefore∆M is directly related to perturbations of the elements ofΠ:

∆M =
∆P2

Q2
− P2

Q2
2

∆Q2 . (A4)

These can be linearly related to perturbations∆q, ∆p and ∆v along the ray, as shown by Farra and
Madariaga (1987):

∆Π =

(
∆Q1 ∆Q2

∆P1 ∆P2

)
=

∫ s1

s0

Π(s1, s)∆S(s)Π(s, s0) ds , (A5)

where∆S is given by∆S = ∆S1(∆v) + ∆S2(∆q, ∆p). Evaluated in ray-centered coordinates in 2D,
their expressions for∆S1 and∆S2 become (see also: Nowack and Lutter, 1988):

∆S1(∆v) =

(
0 ∆v

2
v3 (vqq∆v + vq∆vq − ∆v

v v2
q − v

2∆vqq) 0

)
(A6)
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Figure 9: Geometrical relation between perturbations of the ray endpoints in ray-centered coordinates and
cartesian coordinates

and

∆S2(∆q, ∆p) =

(
2vq∆p 2vq∆q

( 3
v3 vqvqq − 1

v2 vqqq)∆q −2vq∆p

)
, (A7)

where∆q and∆p are related to∆q0 and∆p0 through the ray propagator matrix (A2). Obviously, smooth
third spatial derivatives of the velocity are needed in (A7). Also required is∆Π(∆s0), which can be
calculated from the dynamic ray tracing system:

∆Π(∆s0) = Π

(
0 −v∆s0

− vqq

v2 ∆s0 0

)
. (A8)

From geometrical considerations (Fig. 9) I find that:

∆q0 = cos(θ)∆x − sin(θ)∆z ∆ξ = 1
cos(α)∆q1

∆p0 ≈ 1
v(s0)∆θ ∆α ≈ v(s1)∆p1

∆s0 = sin(θ)∆x + cos(θ)∆z .

(A9)

Using the results (A1) to (A8) the quantities∂M
∂q0

, ∂M
∂p0

, ∂M
∂s0

, ∂M
∂v , ∂q1

∂v , and∂p1

∂v can be calculated. Together
with (A9), these can be used to obtain the required Fréchet derivatives involvingM , α andξ:

∂M
∂x = cos(θ)∂M

∂q0
+ sin(θ)∂M

∂s0

∂α
∂x = v(s1) cos(θ)P1

∂ξ
∂x = cos(θ)

cos(α)Q1

∂M
∂z = − sin(θ)∂M

∂q0
+ cos(θ)∂M

∂s0

∂α
∂z = −v(s1) sin(θ)P1

∂ξ
∂z = − sin(θ)

cos(α)Q1

∂M
∂θ = 1

v(s0)
∂M
∂p0

∂α
∂θ = v(s1)

v(s0)P2
∂ξ
∂θ = 1

v(s0) cos(θ)Q2

∂M
∂v = directly from (A4) - (A6) ∂α

∂v = v(s1)
∂p1

∂v
∂ξ
∂v = 1

cos(α)
∂q1

∂v .

(A10)

The Fréchet derivatives involvingT follow from:

∆T = − sin(θ)

v(s0)
∆x − cos(θ)

v(s0)
∆z −

∫ s1

s0

∆v(s)

v2(s)
ds . (A11)

These expressions need to be evaluated for each ray pertaining to the input data and each B-spline knot of
the velocity model. For a given B-spline knot(j, k) the velocity perturbation is∆v(x, z) = βj(x)βk(z).

APPENDIX B

Regularisation of the tomographic matrix

As the matrixF is in general ill-conditioned, the inversion problem needsto be regularised by introducing
additional constraints on the model parameters. A physically sensible way of doing this is to require the
velocity model to have minimum curvature, i.e. minimum second derivatives, as we are looking for a
smooth model with no artificial structure. This minimum curvature condition is often implemented with
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the use of second-derivative finite-difference operators applied to the model parameters. To ensure that
the solution of the inverse problem is as much as possible independent of the model discretisation (i.e. the
B-spline knot interval) I impose the minimum curvature condition not on the velocity model parameters
(the B-spline coefficients), but directly on the smooth model itself.

In the 1D case the second spatial derivative of the velocity,described by B-splines, is:

∂2v(z)

∂z2
=
∑

j

vj
∂2βj(z)

∂z2
. (B1)

Its norm can be given by
∥∥∥∥

∂2v

∂z2

∥∥∥∥
2

2

=

∫

z

(
∂2v(z)

∂z2

)2

dz =

∫

z

∑

ij

vivj
∂2βi(z)

∂z2

∂2βj(z)

∂z2
dz = vT D̃

zz
v , (B2)

where

D̃zz
ij =

∫

z

∂2βi(z)

∂z2

∂2βj(z)

∂z2
dz . (B3)

If for the regularisation not only second derivatives ofv are considered, but alsov itself, I obtain:
∫

z

ε1

(
∂2v(z)

∂z2

)2

+ ε2 v2(z) dz = vT D̃
′′
v (B4)

with D̃
′′

= ε1 D̃
zz

+ ε2 D̃ andD̃ij =
∫

z βi(z)βj(z)dz. (B4) may then be considered a norm squared for
v if ε2 6= 0 (otherwise it is a seminorm).ε2 6= 0 is necessary, as in the course of further calculations we

will need to find a matrix̃B with B̃
T
B̃ = D̃

′′
, which is only possible if̃D

′′
is positive definite;̃D

zz
alone

is not positive definite.
This can be generalised to the 2D case, where the following expression is included in the cost function:

∫

x

∫

z

ε1

(
∂2v(x, z)

∂z2

)2

+ ε2

(
∂2v(x, z)

∂x2

)2

+ ε3 v2(x, z) dz dx = mT
(v)D

′′m(v). (B5)

HereD′′ = ε1 Dxx + ε2 Dzz + ε3 D and the matricesDxx, Dzz , andD contain products of the elements
of D̃

zz
andD̃ given above and of the corresponding matrixD̃

xx
. m(v) is the part of the model parameter

vectorm that contains the B-spline coefficientsvjk. The factorsε1, ε2, andε3 are used for normalisation
and to balance the contributions of the different terms. Thetermε3 D should be much smaller than those
containing derivatives of velocity, as there is no physicalreason for minimising the velocity itself.

The minimum curvature constraints are to be applied to the model itself, not to the model update (e.g.
Ory and Pratt, 1995). The cost function is then given by:

2 S(m) = ∆dT (m)C−1
D ∆d(m) + ε mT

(v)D
′′m(v) , (B6)

where∆d(m) = (d − f (m)) and C−1
D is a diagonal matrix effectively weighting the different data

components (the data covariance matrix) (Tarantola, 1987), andε > 0. Assume that around the current
modelmn the forward modelling operatorf(m) can be approximated byf(m) ≈ f(mn) + F∆m, where
m = mn + ∆m andF contains the Fréchet derivatives off atmn, we obtain

∇m S = −FT C−1
D (d− f (m)) + εD′′m(v)

≈ −FT C−1
D ∆d(mn) + FTC−1

D F∆m + εD′′ (m(v) n + ∆m(v)

)
!
= 0 .

(B7)

It can be easily shown that

∇m S = 0 ⇔ F̂
T
F̂∆m = F̂

T
∆d̂ (B8)

with

F̂ =

(
C

− 1
2

D F

[0 ,B]

)
∆d̂ =

(
C

− 1
2

D ∆d(mn)
− [0 ,B]mn

)
, (B9)

whereBT B = ε D′′. The searched-for model update∆m is therefore the least-squares solution to
F̂∆m = ∆d̂. The updated model components are then given bymn+1 = mn +λ ∆m, where0 < λ ≤ 1.


