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ABSTRACT

Kinematic information for the construction of velocity mald can be extracted in a robust way from
seismic prestack data with the Common-Reflection-SurféaekS This data-driven process results in
a number of kinematic wavefield attributes — wavefront ctumes and normal ray emergence angles
— that parameterise moveout surfaces in the prestack datagiated with each sample in a simulated
zero-offset section. | present a tomographic inversiorhotéthat makes use of this kinematic info
mation to determine smooth, laterally heterogeneous stdzsivelocity models for depth imaging|
The input for the inversion consists of kinematic wavefidldlautes picked at a number of locations
in the simulated zero-offset section. An optimum model igf@ in an iterative way by minimisation
of the misfit between the picked data and the correspondirdefteal values. The required forward
modelled quantities are obtained during each iterationymachic ray tracing along normal rays per-
taining to the input data points. Fréchet derivatives ferttimographic matrix are calculated by ray
perturbation theory. The algorithm is tested on 1D and 2Drgtas and the inversion is successfully
applied to a 2D synthetic prestack data set.

INTRODUCTION

The determination of a suitable velocity model is one of thecial steps for seismic depth imaging in
laterally inhomogeneous media. It is important not onlydorrect positioning of reflection events in the
subsurface but also for obtaining an optimally focused ienidgrestack migration is used. A number of
approaches for the construction of velocity models existictv differ in the criterion used for evaluating
the quality of the current model, in the way model updatesdatermined and in the assumptions made
about the velocity model (blocky, layered, smooth, etc.).

Commonly used migration velocity analysis methods are liysbased on residual moveout analysis
in common image gathers. They make use of the criterion th#té correct velocity model reflector
image depths produced by prestack migration should be et of offset (e.g. Deregowski, 1990; Liu,
1997). Another approach, depth focusing analysis (e.gni®and Faye, 1986; MacKay and Abma, 1992),
employs the fact that during downward continuation in therexct velocity model reflection events should
collapse to zero offset at zero traveltime. Both approacegsire the repeated application of prestack
migration and are therefore expensive in terms of compndiine.

An often used tool for the determination of velcity modelsdafection tomography (e.g. Bishop et al.,
1985; Farra and Madariaga, 1988; Stork, 1992). In refle¢barography rays are traced through a model
defined by a velocity distribution and a number of reflecto@obal model updates are computed to
minimise the misfit between the modelled traveltimes andctiteesponding values picked in the prestack
data. The drawback of reflection tomography is the tremesidmuount of picking that is necessary to
obtain traveltimes from the prestack data and the assumpfi@ontinuous reflectors, often across the
entire section. Although many attempts to automatise tbeqss have been made, the problem of picking
remains.

Recently, Billette and Lambaré (1998) have presented agoapdic velocity inversion method called
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Figure 1: The two eigenwaves associated with;;p and Ry : (a) the NIP wave and (b) the normal wave.

Stereotomography which makes use of the slopes of localigmemt events in shot and receiver gathers
together with traveltimes to obtain a smooth velocity modei advantage of that method lies in the fact
that, as only locally coherent events are considered, revfates need to be introduced in the model.
Consequently, no picking along continuous events is nacgss

In this paper | present a tomographic velocity inversionmdtthat makes use of kinematic information
extracted from the entire prestack data volume in a dataednivay by an application of the Common-
Reflection-Surface Stack (e.g. Mann et al., 1999; Jager,e2@01). Input data for the velocity inversion
may then be picked in the resulting simulated zero-offsetice of significantly improved signal-to-noise
ratio, thus considerably simplifying the picking. Eachkgid data point consits of a number of kinematic
wavefield attributes that can be used to describe an engm@zimate kinematic multi-offset response of
a common reflection point. The velocity inversion is perfechwith a tomographic approach which is in
some respects similar to Stereotomography. While in thahatesource and receiver rays pertaining to
a reflection point are considered, | use properties cakedlatong normal rays by dynamic ray tracing to
approximate the kinematic multi-offset response of reitecpoints.

THE COMMON-REFLECTION-SURFACE STACK AND VELOCITY INVERSI ON

The recently developed Common-Reflection-Surface Sta&S(Stack) (e.g. Mann et al., 1999; Jager
etal., 2001) is a stacking technique that makes use of paltmetric stacking surfaces to obtain optimum
simulated zero-offset sections from seismic multi-cogerdata in a data-driven way.

One of the advantages of the method lies in the fact thatt &oan the simulated zero-offset section,
one obtains a number of additional sections containing &hgeg of so-called CRS attributes or kinematic
wavefield attributes. These attributes are parameterglétatmine the shape of the CRS stacking surface.
Their optimum values are obtained with a coherence andlysige prestack data during the CRS Stack.

The CRS attributes — in the 2D case the three attributes anecda, Rnxip, and Ry — can be given
a clear physical meaning. Whiteis the normal ray emergence angle at the surface locgfi®r and
Ry can be interpreted as radii of curvature of two so-cadléegenwavegmerging at (Hubral, 1983),
associated with two hypothetical experiments. They arainbt from a point-source and an exploding
reflector element attached to the normal-incidence poit®n a reflector, respectively (Figure 1). The
attribute sections contain physically meaningful infotimaonly where sufficiently high coherence values
were obtained along the CRS operator. These locations caadilg identified with the help of a coherence
section, which is also part of the CRS output. Synthetic gdamof CRS Stack results (simulated ZO
section and kinematic wavefield attribute sectidigr and«) are displayed in Figure 6.

The significance of the kinematic wavefield attribute sexgiles in the fact that these can be used for a
number of different applications (e.g. Bergler et al., 2088ch as the calculation of geometrical spreading
factors and approximate projected Fresnel zones, and ffegag®n of reflections from diffractions. In
particular, the CRS attributes contain information on thiessirface distribution of seismic velocities. In
the following | will briefly discuss their role in velocity nttel inversion.

The approximate (second order in half-offset) common-c&tia-point (CRP) trajectory, i.e. the ap-
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proximate kinematic response of a reflection point, lies pletely within the CRS surface. For a given
point (t9, &) in the zero-offset plane and a given near-surface velagjtthe CRP trajectory in time-
midpoint-offset space can approximately be described byQRS attributesinp and o alone (Hécht
etal., 1999). Ifa # 0 it deviates from the CMP trajectory, which is by definitioméioed to a fixed mid-
point value. Restricting the CRS operator to a single midpaine finds that the normal moveout velocity
UNMO, s it is conventionally defined, can be written in terms ef @RS attributeginp anda:

2 2wvoRnrp
UNMO =

1)

tocos?(a)
Rn1p anda can therefore also be found by stacking-velocity analysisthe determination of local dips
in a stacked zero-offset section. Their determination withCRS Stack should yield much more stable
results, though, especially in the presence of a high Iévebise in the data.

The link between normal moveout velocity on the one hand aadkefront curvature and emergence
angle on the other hand has been recognized by a number efetliffauthors. Shah (1973) used this
relation together with wavefront curvature propagatiavddn a Dix-type inversion for 2D layered models
containing dipping reflectors. Conventional Dix inversi@ix, 1955) is then just a special case for 1D
models andx = 0. Hubral and Krey (1980) generalized Dix-type inversionte tase of 3D curved
layered models. Recently, Biloti et al. (2002) presentedvased version of that algorithm in 2D based
directly on CRS Stack results. They also include verticdbeity gradients within each layer in their
inversion.

The concept of “having a NIP wavefront shrink back into itpbthetical source” (Hubral and Krey,
1980) for the determination of interval velocities can, impiple, be generalised to the case of arbitrary
smooth velocity distributions. As the NIP wavefront paraenge completely describe the approximate
kinematic response of a common reflection point (see abdis),concept is consistent with the well-
known criterion of depth focusing analysis in the deterrtioraof migration velocities. It states that a
migration velocity model is correct, if seismic reflectipmghen downward continuation is performed,
focus at zero traveltime (e.g. Jeannot and Faye, 1986; MaaKd Abma, 1992).

TOMOGRAPHY WITH CRS ATTRIBUTES

In this section | will introduce a tomographic velocity img@n method for 2D isotropic models, based
on the CRS attributeBnp anda. In contrast to Dix-type inversion, a smooth velocity modescription
without any discontinuities is used. This allows the combins reflector assumption to be dropped: in-
dependent data points are picked from the CRS Stack sedtigetlier with the correspondirige and

« sections), each point corresponding to a CRP in the sulzsurfBhe inversion method is based on the
above-mentioned criterion for a correct velocity modek itorrect model, all considered NIP waves, when
propagated back into the earth along the normal ray, focesrattraveltime. A first test of the method has
been presented by Duveneck and Hubral (2002).

Data and model components

Each point {p,£) on an event in a CRS Stack section with a sufficiently lardeevin the corresponding
coherence section can be associated with a common reflgmtiohin the subsurface. Its approximate
kinematic multi-offset response is defined through theesponding CRS attributdgxp anda. Instead

of Rn1p, | will use

M=—1 2

vo Rnip

whereuy is the near-surface velocity value that has been used dilmnGRS Stack. This has a number of
advantages: firstly, the dependence on the chosen valyeofemoved, aginip appears in the expression
for the CRS operator only in a product withy. M is the second spatial derivative of the NIP wave
traveltime on the zero-offset ray in the direction normah®e ray att. The second-order approximation in
half-offseth of the CRP-trajectory for a given poifity, £) (Hocht et al., 1999) can be written entirely in
terms of M anda. Itis independent of the near-surface veloeity Secondly, the quantity M can be easily
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Figure 2: Definition of model and data components for the tomograptvierision.

calculated along a ray with dynamic ray tracing. When thetraging is started at the NIP, it is given by

P
M=a ®)

whereP, and@, are elements of the ray propagator maifixn ray-centered coordinates (e@erveny,
2001, see also Appendix A). Thus, the approximate CRP regpionthe vicinity of a normal ray at any
location along the ray can be directly modelled by dynamydracing.

The input for the velocity inversion consists of a number oiings picked in the CRS Stack section,
defined by their values af, and¢, together with the associated valuesxoénd M, taken and calculated
from the corresponding CRS attribute sections. fthalata point is given by

(T5 M,OL,E)Z- ) (4)

where the one-way traveltimB = ¢,/2 is used for convenience and= 1...n4ata, WheNngat, data
points are picked.

One might consider implementing the previously mentiorediition for a correct velocity model — the
focusing of the NIP wave — directly. This would imply fixingand¢ at their picked values and propagate
the NIP wavefronts, described by the picked valueggfp, or the corresponding values 8f, into the
subsurface to check if they focus&t= 0 (i.e. Ryirp = 0 at7T = 0). One would then need to find a
velocity model that effects this focusing for all considiedata points.

On the other hand, all dat@’, M, «, &) must be expected to be affected by noise or a certain mea-
surement error. An inversion that does not allow for thabiecan become unstable. This can be taken
into account if the dynamic ray tracing is started in the sufage at the respective CRPs. As the true
subsurface positions of the CRPs and the ray starting direcof the corresponding normal rays are ini-
tially unknown, these have to be considered as part of theeimodbe inverted for, along with the velocity
distribution. The optimum model is found when the misfit bedw modelled and measured values of
(T, M, «, &) is minimised. This is the approach that will be followed here

In two-dimensional depth models, each CRP is charactebigéd location in the subsurface,(z) and
its local dip anglé, which also gives the direction of the normal ray. The smeethcity model itself can
be described by two-dimensional B-splines:

v, 2) =Y v B(2)Bk(2) (5)
j=1k=1
wheren, andn, are the chosen numbers of knots in the horizontal and vedioection, respectively.
B;(x) andgy(z) are B-spline basis functions inandz for given knot sequences (e.g. de Boor, 1978). As
shown in Appendix A, smooth third derivatives of the velgate needed, therefore, B-spline functions of
degree 4 will be used. Together with the coordinates and tbpa of the reflection points the coefficients
v in equation (5) define the model. Itis given by

(.T,Z,e)i
Vik

(6)

wherei = 1...n4ata,j = 1...1n, andk = 1...n,. Model and data components are illustrated in Fig. 2.
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Solution of the inverse problem

The inversion problem described in the previous sectiorbegiormulated as follows: find a model vector
m consisting of the model components given in (6), that misgaithe misfit between a data vectbr
containing the picked data values given in (4) and the cpmeding modelled valua$,,.q = f(m). Here
the nonlinear operatdrsymbolises the dynamic ray tracing in the given model.

If the least-squares norm (e.g. Tarantola, 1987) is usedrasasure of misfit, the inverse problem
becomes one of minimising a cost function

S(m) = 5 | — £(m)}3, = 5 Ad" (m)Cp' Ad(m) ™)

whereAd(m) = d — f(m). The matrixCp is sometimes called the data covariance matrix, here agsume
to be diagonal, which weights the different data components

The nonlinear modelling operatfris locally lineariseable, therefore an iterative applmatbf least-
squares minimisation to the linearised problem can be usédd the minimum of the cost functiofi.
Starting with a first guess modai,, a sequence of model updatésn is found, hoping that the process
converges to the global minimum 6f

Around a given modein,,, corresponding to theth iteration, the modelling operator can be approxi-
mated locally byf (m,, + Am) ~ f(m,,) + FAm, whereF is a matrix containing the Fréchet derivatives
of f atm,,. The Fréchet derivatives can in the present case be obtdurety forward modelling by ray
perturbation theory (Farra and Madariaga, 1987). Theautation is detailed in Appendix A. Then

Vm S ~ -F'C! (Ad(m,,) — FAm). (8)

SettingV, S = 0 leads to the least-squares solution fam if the inverse ofFTCE,lF exists.

In practice, howeverF" is usually ill-conditioned, as not all model components suéficiently con-
strained by the data alone. Therefore, a stable inverseotdencomputed. Additional information has
to be introduced to further constrain the model parametedsragularise the problem. Constraining the
model vector to have minimum length, as is done in damped $epsres (e.g. Lines and Treitel, 1984),
is not reasonable in the present case. Physically, it makes sense to require the velocity model to be
smooth, as we are looking for the simplest model that expldia data. The smoothness requirement also
assures the applicability of dynamic ray tracing along lgimgprmal rays to model approximate kinematic
CRP responses by determining the required attribRtes anda. As shown in Appendix B, application
of the smoothness criterion (minimum second spatial déves) as an additional constraint, not on the
model update, but on the velocityz, =) itself, leads to a matrix equation of the following form:

FAm = Ad, (9)

where

. [ CiF ~ [ CpiAd(m,)
F‘( 0.8] ) | Ad_( ~10.BJm, ) | 4o

HereB’B = ¢ D”, and the matrixD” is explained in Appendix B. The factarweights the relative
contribution of the regularisation to the cost functionh8w equation (9) in the least-squares sense yields
the desired model updatem, which minimises the cost function

1 1
S(m) = 5AdT(m)c;Ad(m) + 3¢ m{, D"m,,). (11)

If the dimensions of" are not too large the least-squares solution of equationg®)be found e.g. by
singular value decomposition (SVD) (e.g. Lines and Treit®B4). For larger matrices this becomes com-
putationally too expensive and we need to apply more efficieihods, that take advantage of the sparsity
of I during the solution of (9). Here the LSQR algorithm (Paigd 8aunders, 1982a,b) is used. Itis an
iterative method, based on conjugate-gradients, whiakesdinear systems of the form of (9) in the least-
squares sense without explicitly performing any matri>eirsion. The LSQR algorithm is well-known for
its favourable numerical properties and is frequently usedomographic problems in seismology (e.g.
Nolet, 1987).
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Practical aspects

Before the inversion process can be started, input dataspodéed to be picked in the simulated zero-offset
section produced by the CRS Stack. Picks are independerichf @her and do not have to follow an
event over successive traces. Their lateral separatiandhe smaller than the horizontal knot interval,
though, and they should be well distributed over the engctisn. The required values éff and« are
then automatically extracted and calculated from the spwading CRS attribute sections.

An initial velocity model is set up by defining B-spline knatgiences in the horizontal and vertical
directions and assigning initial values to the velocityfioents, such that these describe a 1D velocity
distribution with some constant vertical velocity gradien

For each of the picked data point¥, M, «, &), kinematic ray tracing in the downward direction is
performed in the initial velocity model to obtain initial oalinates and local dip valu€s, z, 6) for the
corresponding CRPs. Starting with these values, dynamitraaing in the upward direction is performed
until the rays reach the measurement surface. Initidlly,will consist solely of the discrepancy between
the measured and modelled values\6f

During ray tracing the Fréchet derivatives are calculaté the help of equations (A1) to (Al11) in
Appendix A. With these ingredients and a chosen value efuation (9) can be set up. Its least-squares
solution Ad is found in the 1D case by SVD or in the 2D case with the LSQRrélym. The updated
model parametem,,+1 = m,, + AAm, where0 < X\ < 1, are then determined and new modelled data
values are calculated by dynamic ray tracing. If the costtion (11) has increased,is decreased and the
cost function recalculated, otherwise the next iterat®started by calculating Fréchet derivatives in the
new model.

In the course of increasing iteration numbers the value adn be decreased as the model misfit de-
creases, allowing more and more details to be resolved. Mfesion is stopped, if a given maximum
number of iterations has been reached, if the data misfitlenfbelow a specified value, or if a minimum
of the cost function (11) has been reached, i.e. decreasitags not lead to a further decrease of the cost
function.

SYNTHETIC TESTS

To test the inversion algorithm introduced in the previoasti®n it is firstly applied to two synthetic
examples, one in 1D and one in 2D, where the input data have daeulated directly by dynamic ray
tracing. They are thus exact, and any limitations of the #thue to the assumption that measured CRP-
responses can be modelled by dynamic ray tracing along tieeaftset ray do not play a role here. An
application to an example where the input data really haea legtracted from seismic prestack data with
the CRS Stack follows in the subsequent section.

1D test example

As a first simple test | consider the 1D case, i.e. no lateralcity variation exists and all rays propagate
in the vertical directiondq = 0). Obviously, this significantly simplifies the forward mdiiteg. Only two
different data comonent3/ and7’, remain:

The Fréchet derivatives (see Appendix A) can be obtained fitee following simple expressions (z is
defined positive upwards):

AM = {U(SO)AZ— " Au(s) ds} { / ") ds]_Q

A N o (13)
AT = ZAZ / Au(s)
v(s0)  Jsms, V2(5)

| apply the 1D tomographic inversion to data that have be&utaed in a model with layers of constant
velocity (solid line in Fig. 3(a)). The 13 velocity discontiities act as reflectors and the input data are
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Figure 3: 1D inversion test. (a) The solid line indicates the origilzglered velocity model, while the

dotted line gives the smooth velocity inversion result. &ee for details. (b) The absolute value of the
depth error between real and inverted reflector depths renelow 3 m. This is a relative depth error of
less than 0.1 % for the deepest reflector.
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Figure 4: 2D inversion test. (a) Original smooth velocity model désea by 56 B-spline coefficients. For
this test 126 data points are modelled directly by dynamyidnacing along the shown rays. The initial ray
direction (vertical) is the same for all rays. (b) Inverteglocity model. The velocity model and all rays
are well reconstructed. (c) Difference between the origind the inverted velocity models.

calculated with simple wavefront curvature propagatiovslaas given ,e.g., in Hubral and Krey (1980).
The model is described by B-spline coefficients at 15 knoitjpos with a 200 m spacing in the vertical
direction (in 1D, cubic B-splines are used, as no third dgives are needed). The problem is thus obvi-
ously underdetermined, therefore the regularisation tetime cost function (11) is essential anchust be
chosen accordingly.
The inversion is started with a velocity at the surface ofdl&0s and a vertical gradient of 25 After
12 iterations the velocity distribution given by the dottiee in Fig. 3(a) is obtained (stopping after fewer
iterations gives a similar result). It agrees very well witle exact, discontinuous velocity distribution.
A comparison of the true and inverted reflector depths (F{b))3lso shows very good agreement. The
maximum depth error amounts to less than 3 m at a depth of hare000 m.

2D test example

The ability of the inversion algorithm to handle lateralbrying velocity distriubitons is demonstrated with
the model given in Fig. 4(a). It is described Dy 8 B-spline coefficients with a horizontal spacing of 500
m and a vertical spacing of 400 m. 126 data points are genkdatectly by dynamic ray tracing. For this

test the ray starting points are distributed regularly & shhibsurface with a horizontal interval of 300 m
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Figure 5: Blocky velocity model used to produce prestack data by ragitig modelling.

and a vertical interval of 400 m. The initial ray directionvisrtical for all rays.

Of course, in a velocity model of this degree of high ampksthort-wavelength lateral variation, the
traveltimes associated with a common reflection point irstifesurface can be described by the parameters
(T, M, a, &) only for small offsets. In general, the moveout curve is ihgperbolic for larger offsets and
CRS Stack results obtained from prestack data in such a maxdt not be reliable for inversion. Still
the model presented here is useful to test the inversionitiigoitself, given perfect input data.

The data associated with the 126 modelled rays are direstyl as input for the inversion. A start
model with a near-surface velocity of 2000 m/s and a vertietbcity gradient of 0.5 3! is used. The
inversion result after 15 iterations is displayed in Figb)4(Except for some differences in the lower left
part of the model, the velocity distribution and ray trages have been very well retrieved. Figure 4(c)
shows the difference section between the modelled and ¥eet@d velocity distributions.

A 2D SYNTHETIC DATA EXAMPLE

Having demonstrated the applicability of the describeéision algorithmin 1D and 2D | will now present
a more realistic synthetic data example. Seismic prestatklthve been modelled by ray tracing in the
blocky velocity model given in Fig. 5 in a marine acquisitigepometry. The shot and receiver intervals
were 50 m and the maximum offset was 2000 m, which leads to a foMPf 20. Also, random noise was
added to the data. This multi-coverage seismic datasetd@w the starting point for the construction of
a smooth velocity model based on the application of the CR8kSind subsequent tomographic velocity
inversion using CRS attributes, as described in the prevdeations.

As a first step, the CRS Stack was applied to the multi-covedagaset, resulting in the sections
displayed in Figure 6, along with aRly section and a coherence section (not displayed). 505 dattspo
were then picked in the CRS Stack section, resulting in afseloes [, M, «, £). These data served as
the input for the tomographic velocity inversion.

The velocity model is defined by 15 13 B-spline coefficients on a grid with a spacing of 500 m in
the horizontal and 300 m in the vertical direction. The staotel was chosen to consist of a near-surface
velocity of 2000 m/s and a vertical velocity gradient of 2/3' swhich is in fact relatively close to the
true average vertical velocity gradient (a useful simpdetsnodel can also be obtained by performing one
inversion iteration, starting with a constant initial veity, and choosing a very high value 9f

The inversion was stopped after 12 iterations. The resnitsisting of the velocity model itself and the
reconstructed normal ray trajectories, is displayed iufég 7(a) and (b). In most parts the reconstructed
model resembles a smoothed version of the true discontswelocity distribution. Locations where it
deviates from that, e.g. in the lower part of the model, egigcaround x = 3000 m, can be correlated
with low ray coverage. The inverted velocity model is kineicelly correct, i.e. local reflector elements
or dip bars, which can be attached to the end points of reaaristl normal rays, are placed in the correct
subsurface positions. This is demonstrated in Figure W(egre the inverted dip bars are plotted into the
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Figure 6: 2D inversion test. (a) CRS Stack section obtained from stigimulticoverage data modelled
by ray tracing in the velocity model shown in Fig. 5. A maximweffset of 2000 m has been used and
random noise has been added to the prestack data. DifinadiiEve not been modelled. (Bxip section,
(c) emergence angle section.

original velocity model. In particular, the lowermost hmntal reflector is well reconstructed.

In linear inversion problems the effects of errors or noiséhie input data on the inversion result can
be determined by the calculation of the posterior model damae matrix (e.g. Tarantola, 1987), given an
estimate of the data uncertainties in the data covariantexmén nonlinear problems the effect of data
errors on the solution is not as easy to determine. To exath@asensitivity of the velocity inversion to
noise, Gaussian noise with the following standard deviativas added to the picked input data:

or =5-107%s (04, =1072%5),

o = 1078s/m®> (oy ~102s at 2000 m offset,
o = 1°,

og = 10m.

(14)

The value ofr); was chosen based on the assumed standard deviation ofitmnaseht 2000 m offset and
using a parabolic traveltime moveout approximation, wiiepends linearly on/. The inversion was then
performed with a number of different realisations of the &aan noise added to the data. The resulting
inverted CRP locations (end points of normal rays) for fivalisations of noise are displayed together
in Fig. 8. As might be expected, the scatter of the inverted @Bsitions increases with depth, but the
overall reflector structure is well reconstructed. For tkereined example, | thus find that the tomographic
inversion is stable with respect to noise in the input dagauming a suitable value for the regularisation
weighte has been chosen.

DISCUSSION

I will now briefly discuss some of the advantages and lintagiof the tomographic velocity inversion in-
troduced and tested in the previous sections. Firstly, llsvtke to note that the required input, emergence
angles and NIP wave curvatures at different zero-offsettlons, is a by-product of the CRS Stack, which
has originally been developed for the purpose of producimgilated zero-offset sections from prestack
multi-coverage data.

Picking of input data, which is the weak point in conventioredlection tomography, is simplified
significantly by a number of features of the inversion metpesented here:

e As already pointed out, data points are picked in a simulaged-offset section, which has a much
higher S/N ratio than the original prestack data. Strustesn be much better identified in a zero-
offset section and multiples, if present, avoided durirakipig.
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Figure 7: (a) Inverted smooth velocity model and inverted normal rajettories. (b) Inverted smooth ve-
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e Each pick already represents the approximate traveltima€<&R P for different offsets, therefore no
picking of data points for different offsets is necessary.

¢ In a smooth velocity model without discontinuities, as iedibere, reflection points do not define
the position of velocity block or layer boundaries. Therefit is not necessary to pick successive
samples along a reflector. In fact picked events may lie orffeadiion as well as on a reflection
event.

The approximations made during the CRS attribute-baseddoaphic inversion, namely the descrip-
tion of entire CRP responses with quantities calculatedgtbe normal ray, result in some restrictions for
the applicability of the method to complex subsurface vigyatistributions. While the method has been
designed for the inversion of laterally varying velocitiisere is a limit on the minimum wavelength of
lateral variation to ensure approximately hyperbolic étitne moveout within the CRS aperture. This is
in accordance with the smoothness criterion imposed onateely the regularisation during the inversion.

The fulfilment of this requirement can be checked by inspectif a number of CMP gathers in the
prestack data. If necessary, the maximum offset used dthen@€RS Stack should be restricted. A too
small aperture, on the other hand, will result in a degradedlution of the CRS attribute determination,
as is well known from conventional stacking velocity anays

During the CRS Stack the kinematic wavefield attributes aterthined by coherence analysis from a
large number of traces with various offsets around the oéfiget trace at. If the subsurface properties
are laterally heterogeneous, the optimum determined CiR8ues represent spatial averages and cannot
strictly be attributed to the zero-offset ray alone. Thig/rha taken into account in the inversion by using
locally averaged values of the higher derivatives of vajoduring dynamic ray tracing and the application
of ray perturbation theory. Although such a procedure igis#g, it may broaden the applicability of the
inversion to velocity distributions of stronger lateratiaion.

The smooth velocity model obtained by the inversion is ojsd for depth imaging. The velocities
between successive reflection events cannot necessaiifydopreted as interval velocities in geological
terms.

CONCLUSIONS

| have presented a new tomographic velocity model inversiethod based on kinematic wavefield at-
tributes extracted from the prestack seismic data with tR& Stack. The method makes use of the CRS
attributesRnp anda, which are suited to approximately describe the kinematittiroffset response of a
common reflection point in the subsurface in the vicinityred zero-offset ray. The model parametrisation
— smooth velocity and reflection point positions and angtesasponding to the input data points — allows
to consider each data point independently during pickinthout having to follow continuous reflectors.
Picking of the input data is performed in a simulated zerfsaifsection obtained with the CRS Stack.

The inversion algorithm has been tested on 1D and 2D syothrtimples where the input data have
been calculated directly by exact forward modelling. Thérerinversion procedure, starting with the
CRS Stack, followed by picking and the subsequent applinatif the tomographic inversion has been
demonstrated on a 2D synthetic data example involving pcesteismic data modelled in a laterally het-
erogeneous velocity model. The results are very encougagikinematically correct smooth version of
the original velocity model can be reconstructed.

Although the subsurface velocity distribution may not bbitaarily complex (e.g. complicated salt
bodies) the method should be applicable to a wide range wdtfins arising in seismic exploration. In
very complex environments the inversion results may pwadiseful start model for detailed migration-
based velocity analysis.

A generalisation to the 3D case is possible, the input datéhte inversion are then taken from the
results of the 3D CRS Stack.
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APPENDIX A
Calculation of the Fréchet derivatives

For the solution of the inverse problem the elements of thieimE, the Fréchet derivative%%;f)), are
needed. For their calculation | make use of ray perturbatieory as described by Farra and Madariaga
(1987). As the calculation of M and its derivatives is sigrafitly simplified by the use of ray-centered
coordinates (in 2Dy, s) (e.g.éerveny, 2001), ray perturbation theory will be appliediade coordinates
(s is the arclength along the ray ands the coordinate normal to the ray direction). The resultstihen

be transformed into cartesian coordinates and angles edytstarting and end points. Perturbations of the
coordinatey and its corresponding slowness componeat the positiors; along the ray can be related to
perturbation®\q andAp at sy and to perturbations of the velocityv along the ray by:

whereAB = (0, v,Av/v3 — Av, /v?)T, an indexg denotes a partial derivative with respectta\g; :=

Ag(s1), etc., and
_( @& @
IT = ( Pll P22 ) (A2)

is the ray propagator matrix. Its elements are solutionb@fdynamic ray tracing system for normalised
plane wave@;, P;) and normalised point sourc€¢, P,) initial conditions, respectivelyderveny, 2001):

in:( 0 8)1‘[. (A3)

ds vz Vqq
II(s1,s) = II(s1, s0)I1 ' (s, s0), SO that (A1) can easily be evaluated during ray tracihg= P, /Q,
thereforeA M is directly related to perturbations of the element§lof
AP, P
Q2 Q3
These can be linearly related to perturbatiakg Ap and Av along the ray, as shown by Farra and
Madariaga (1987):

AM =

AQs . (A4)

A A 5t
AII = ( ACPgll A%j > = /50 II(s1,5)AS(s)II(s, sq) ds , (A5)
whereAS is given byAS = AS;(Av) + AS2(Ag, Ap). Evaluated in ray-centered coordinates in 2D,
their expressions foAS; andAS; become (see also: Nowack and Lutter, 1988):

0 Av
ASy(Av) = < %(quAv + vgAvg — %vg —5Avq) 0 > (A6)
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Figure 9: Geometrical relation between perturbations of the ray eimdg in ray-centered coordinates and
cartesian coordinates

and

B 2vsAp 2v,Aq
AS2(Ag, Ap) = < (U%Uq”qq - v%quq)Aq —2v4Ap )7’ (A7)

whereAq andAp are related ta\gy andAp, through the ray propagator matrix (A2). Obviously, smooth
third spatial derivatives of the velocity are needed in (AA)so required iISATII(Asg), which can be
calculated from the dynamic ray tracing system:

_ 0 —vAsg
AII(Asg) =1I < By 0 ) . (A8)

From geometrical considerations (Fig. 9) | find that:

Ago = cos(0)Ax —sin(0)Az AL = COb(a) Aqp
Apg ~ U(SO)AH Aa = v(s1)Apy (A9)
Asg = sin(0)Ax + cos(0)Az

Using the results (A1) to (A8) the quantitiés! 6;” gM OM 541, and% can be calculated. Together

with (A9), these can be used to obtain the reqU|red Fréchetadees mvolvmgM « andg:

90— cos()PL +sin()%L B2 =uv(s))cos(O)P1 55 = 28,
%—Aj = —sin(@)aM + cos(@)% g—z‘ = —v(s1)sin(0) Py % = —:;252))@1 A10
OM _ _1 oM B_afv(él)P %fiQ ( )
(59]& - v_(so) dpo 30 — w(so) 5 gg - v(slg)coas(e) 2
Sy = directly from (A4) - (A6) 5% = v(s1) 7+ 5 = m% .
The Fréchet derivatives involvirig follow from:
. siA
Ap = S0, cosO) / a () 4 (A11)
v(s0) v(s0) so V()

These expressions need to be evaluated for each ray peg#inihe input data and each B-spline knot of
the velocity model. For a given B-spline kngt &) the velocity perturbation i&v(z, z) = §;(x) 8k (2).

APPENDIX B

Regularisation of the tomographic matrix

As the matrixF is in general ill-conditioned, the inversion problem netxlbe regularised by introducing
additional constraints on the model parameters. A phygisehsible way of doing this is to require the
velocity model to have minimum curvature, i.e. minimum gsetaerivatives, as we are looking for a
smooth model with no artificial structure. This minimum cattwe condition is often implemented with
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the use of second-derivative finite-difference operatpydiad to the model parameters. To ensure that
the solution of the inverse problem is as much as possibkpi@ddent of the model discretisation (i.e. the
B-spline knot interval) | impose the minimum curvature citioth not on the velocity model parameters
(the B-spline coefficients), but directly on the smooth nidtdelf.

In the 1D case the second spatial derivative of the velod@gcribed by B-splines, is:

0%v(2) 0?3;(2)
9.2 Z”jT; ' (B1)
J
Its norm can be given by
0v(z 0?85z 825]-(,2) T2z
5], = [(F55) = [ S R0 = vy e
where 0B(2) 925,(2)
Nzz _ i\ (2
Dif = / 5a g e (B3)
If for the regularisation not only second derivatives)cdre considered, but algoitself, | obtain:
02 2 -
/Z61 ( 81;(22)) + e v?(2) dz = vID"v (B4)
with D" = ¢, D + ¢, D andD;; = [, Bi(2)B;(2)dz. (B4) may then be considered a norm squared for

v if €2 # 0 (otherwise it is a seminormys 7é 0 |s necessary, as in the course of further calculations we

will need to find a matrisB with B’ B = D", which is only possible iD” is positive definiteD”” alone
is not positive definite.
This can be generalised to the 2D case, where the followipgession is included in the cost function:

Pv(z,2)\> Pv(z,2)\>
/w/zﬁl (%) te (%) + €5 v2(x, 2) dz de = m,,D"m,). (B5)

HereD” = ¢; D™ 4 ¢; D** + €3 D and the matriceD””, D**, andD contain products of the elements
of D”” andD given above and of the corresponding maldix . m,, is the part of the model parameter
vectorm that contains the B-spline coefficients,. The factors, ez, andes are used for normalisation
and to balance the contributions of the different terms. tEhm ez D should be much smaller than those
containing derivatives of velocity, as there is no physiealson for minimising the velocity itself.

The minimum curvature constraints are to be applied to theéahitself, not to the model update (e.g.
Ory and Pratt, 1995). The cost function is then given by:

2 9(m) = Ad" (m)CL'Ad(m) + ¢ m{,;D"m,) , (B6)

where Ad(m) (d — f(m)) and C' is a diagonal matrix effectively weighting the differenttaa
components (the data covariance matrix) (Tarantola, 138We > 0. Assume that around the current
modelm,, the forward modelling operatd¥m) can be approximated yfm) =~ f(m,,) + FAm, where
m = m,, + Am andF contains the Fréchet derivativesfoatm,,, we obtain

Vm S = —F'Cp'(d-f(m))+eD"m,
? —FTCglAd(mn) + FTCBIFAm +eD” (m(v) n+ Am(v)) (B7)
= 0.
It can be easily shown that
VmS=0 < F FAm=F Ad (B8)
with
[0,B] —[0,B]m,

vyhereBT]5: = ¢ D”. The searched-for model updatem is therefore the least-squares solution to
FAm = Ad. The updated model components are then givemhy; = m,, + A Am, where) < A < 1.



