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3-D wavefront-oriented ray tracing: Estimation of travelt imes within
cells
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ABSTRACT

Wavefront construction (WFC) methods permit the computation of multi-valued traveltimes for Kirch-
hoff migration. We present two approaches which increase the efficiency and accuracy of 3-D WFC
methods. First, we apply three criteria for the insertion ofnew rays. In addition to the standard
distance criterion we evaluate the possible crossing of rays, and introduce a criterion based on the
difference in wavefront curvature between adjacent rays. Second, for the estimation of traveltimes
within cells, we suggest a distance-weighted averaging of extrapolated traveltimes. The traveltimes
are extrapolated under consideration of the wavefront curvature. Examples illustrate the high accuracy
of the method.

INTRODUCTION

During the last years several papers have shown the importance of multivalued traveltime tables for the
quality of migrated prestack Kirchhoff depth images. Multivalued traveltime tables are usually computed
by WFC methods (Figure 1). In these methods adjacent rays aregrouped into ray tubes, the ray density
of the ray field is checked at wavefronts, and if necessary, new rays are inserted. The wavefront-oriented
ray-tracing (WRT) technique (Coman and Gajewski, 2001) belongs to the larger group of WFC methods.

Usually in WFC methods, a new ray is inserted by interpolation on the wavefront between two adjacent
rays (parent rays). To avoid interpolation, the WRT technique inserts a new ray by tracing it from the
source. The accuracy of an interpolated ray is always less than the accuracy of the parent rays, while the
accuracy of a traced ray is the same as the accuracy of the parent rays. Moreover, the accuracy of the ray
inserted by tracing does not depend on the distance between the parent rays. The insertion of a new ray
by tracing it from the source leads to higher accuracy and permits a lower ray density than the insertion by
interpolation.

The WFC methods start with few rays which are propagated stepwise through the velocity model. A
new wavefront is constructed from the old one by propagatingthe ray field with a constant traveltime step
(time step of wavefronts). After the construction of a new wavefront, the traveltimes are estimated in the
region between this wavefront and the previous one.

In the following sections, we present a new approach for the estimation of traveltimes within cells and
a new set of criteria for the insertion of new rays. We implement both innovations in the WRT technique.

ESTIMATION OF TRAVELTIMES WITHIN CELLS

The ray tracing procedure computes the traveltimes at nodes, but for Kirchhoff depth migration the travel-
times are needed on a rectangular grid. The node-traveltimes are used to estimate the gridpoint-traveltimes.
The estimation is carried out within cells. Figure 1 shows a 2-D sketch for simplicity. In 3-D, a cell is de-
fined by six nodes (Figure 3). These nodes are the intersection of three adjacent rays and two adjacent
wavefronts.
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Figure 1: Graphical description of a 2-D WFC method. The traveltimes at nodes (large dots) are computed
by ray tracing. The traveltimes at gridpoints (small dots) are estimated within a ray cell. PointS denotes
the source point.

For the estimation of traveltimes within cells, Vinje et al.(1996) project the gridpoint on the old wave-
front (for the old wavefront see Figure 1) and trace a ray backto the gridpoint. Lucio et al. (1996) split the
cell into three tetrahedra and perform linear interpolation within the tetrahedra, while Bulant and Klimeš
(1999) suggested a bicubic interpolation of traveltimes.

In this paper, we propose a distance-weighted averaging of extrapolated traveltimes. The extrapolation
is performed from nodes to gridpoints under consideration of the wavefront curvature. The traveltimes are
estimated and stored on a coarse grid, while the interpolation from the coarse grid to the fine migration
grid is performed during the migration process (e.g., Vanelle and Gajewski, 2002). Our procedure for the
estimation of traveltimes within cells can be split in four steps:

1. Estimation of the wavefront curvature

2. Decision whether a gridpoint belongs to the cell

3. Extrapolation of traveltimes

4. Distance-weighted averaging of extrapolated traveltimes

At a given node, e.g., nodeA1 (Figure 3), the two principal wavefront curvatures are usually computed
by dynamic ray tracing. Because the WRT technique does not apply dynamic ray tracing, we approximate
the wavefront curvature using the sphere connecting the nodesA1 andB1 or A1 andC1 (Figure 3). Figure
2 illustrates the estimation of the wavefront curvature using the segmentA1B1. For this estimation we use
the position of the two nodes and the slowness vector at nodeA1 to construct a sphere. We approximate
the radius of the wavefront curvature at nodeA1 by the radius of the sphere connectingA1B1. The same
procedure is used forA1C1, i.e., two wavefront curvatures at pointA1 are obtained.

The second step is performed for each gridpoint within the rectangular box which bounds the cell. To
determine whether a gridpoint is within a cell, we split the cell into three tetrahedra and use the approach
proposed by Lucio et al. (1996). A slight modification of thisapproach permits the computation of the
distances of the gridpoint to the sides of the tetrahedra. These distances are used for the computation of
distance-weights. The last two steps are performed only forgridpoints within the cell.

We have mentioned above that at each node we know two wavefront curvatures. We extrapolate the
traveltime from the node to a gridpoint considering each curvature separately. Because a cell is defined by
six nodes, we have twelve extrapolated traveltimes at the gridpoint.

The traveltimetG at gridpointG (Figure 3) is estimated by a weighted average of the extrapolated
traveltimes:

tG = wa1βta1β + wa1γta1γ + wb1αtb1α + . . . ,

whereta1β is the extrapolated traveltime from nodeA1 to gridpointG using the wavefront curvature for
the segmentA1C1. The weight functionwa1β for the extrapolated traveltimeta1β satisfy the relation

wa1β ∼
(

1

d1

1

da

1

dβ

)2

,

where the meaning of the distancesd1, da, dβ is shown in (Figure 3). The relations for other distance
weights are similar.
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Figure 2: Approximation of the wavefront curvature at nodeA1 using the segmentA1B1. The radius of
the wavefront curvature is approximated by the distance|OA|. PointM is the midpoint of the segment
A1B1. PointO is obtained by the intersection of the continuation of the slowness vectorp atA1 with the
plane normal to the segmentA1B1 atM .
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Figure 3: 3-D ray cell and the distances which are used for the computation of the distance weightwa1β .
d1 is the distance between gridpointG and the upper triangular side,da is the distance betweenG and the
ray segmentA1A2, anddβ is the distance betweenG and the sideβ.
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Figure 4: The geometry of the model is a cube with the side length of 4 km.The source S is located at
the coordinates (0 km, 2 km, 0 km). The results of the computations are shown for two vertical slices at
y=2 km, respectively at x=2 km.

CRITERIA FOR INSERTION OF NEW RAYS

We insert a new ray between two adjacent rays if one of the following criteria is satisfied: (1) the distance
between the adjacent nodes exceeds a predefined node-distance threshold; (2) the difference in wavefront
curvature between the rays exceeds a predefined threshold (time-difference threshold, see below).

Note that we prefer to express the difference in wavefront curvature in time units (milliseconds). For
this reason we divide the difference between the radii of curvature by the velocity at the midpoint between
the adjacent nodes.

The first insertion criterion is used in most WFC methods (e.g., Sun, 1992; Vinje et al., 1996; Ettrich
and Gajewski, 1996; Coman and Gajewski, 2001). The second insertion criterion is new and replaces
the insertion criterion which uses the difference in direction between adjacent rays. Using the difference
in wavefront curvature as an insertion criterion permits a better control of the accuracy of the traveltime
estimation within ray cells.

NUMERICAL EXAMPLES

To show the accuracy of the distance-weighted averaging of extrapolated traveltimes, we use two models
which permit analytical computation of traveltimes. The first example is a homogeneous velocity model,
the second one is a constant velocity gradient model. The geometry of the model in both cases is the same
(Figure 4). The velocity in the homogeneous model is2000 m/s. The velocity distribution in the constant
velocity gradient model is given byv(z) =2000 [m/s]+0.5 [1/s]z, wherev(z) is the velocity at depthz. We
show the results for two vertical slices aty = 2 km, and atx = 2 km respectively (Figure 4).

In the first example (homogeneous model), we compare the distance-weighted averaging of extrapo-
lated traveltimes to the linear interpolation between plane triangular sides. These sides approximate the
wavefronts. For the propagation of the wavefront in the WRT technique, we use a time step of wavefronts
of 0.1 s. A new ray is inserted if the distance between adjacent raysgets larger than 500 m.

The wavefronts constructed from analytical traveltimes are shown in Figure 5a and 5b. The traveltime
errors due to the linear interpolation are shown in Figure 5cand 5d, and the errors due to the distance-
weighted averaging of extrapolated traveltimes are shown in Figure 5e and 5f. Note that even in this ho-
mogeneous velocity model, the linear interpolation leads to errors up to10 ms. The traveltime errors when
using the distance-weighted averaging of extrapolated traveltimes are much smaller (less than10−3 ms).

In the second example (constant velocity gradient model) weshow the influence of the distance depen-
dent weights on the accuracy of computed traveltimes. To analyze this influence we compute the traveltimes
with and without distance weights. For the computation of traveltimes with the WRT technique, we use a
time step of wavefronts of70 ms, a node-distance threshold of300 m and a time-difference threshold of
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Figure 5: Results of the computation in the homogeneous velocity model in two vertical slices: (a), (c)
and (e) for the vertical slice aty = 2 km; (b), (d) and (f) for the vertical slice atx = 2 km. (a) and (b)
Wavefronts constructed from analytically computed traveltimes. (c) and (d) Traveltime errors due to the
linear interpolation. (e) and (f) Traveltime errors due to the distance-weighted averaging of extrapolated
traveltimes. Note the different error scales.
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1 ms.
The wavefronts constructed from analytical traveltimes are shown in Figure 6a and 6b. The traveltime

errors due to the the non-weighted averaging of extrapolated traveltimes (Figure 6c and 6d) are small along
the rays and along the wavefronts, but the errors are large within the cells. The errors can be substantially
reduced when using the distance dependent weights (Figure 6e and 6f). In this example, the maximal
traveltime error has been reduced by a factor20 (from 0.3 ms to0.015 ms)

The distribution of the errors for traveltimes computed by the distance-weighted averaging of extrapo-
lated traveltimes in the vertical slice defined byy = 2 km (Figure 6e) leads to two observations. First, the
traveltime error increases with the increase of the difference in the wavefront curvature between adjacent
ray. In the second numerical example, this difference is large at small traveltimes. In these regions the
traveltime error is controlled by the time-difference threshold. Second, the insertion of a new ray reduces
the traveltime errors. Note that this is true only if the new ray is traced from the source.

CONCLUSIONS

The insertion of a new ray by tracing it directly from the source increases the accuracy of traveltimes and
permits a lower ray density, i.e., larger cells, than in other WFC methods. For an efficient estimation of
traveltimes within large cells, we have presented the distance-weighted averaging of extrapolated travel-
times. The extrapolation of traveltimes uses the wavefrontcurvature. We have shown that not only the
extrapolation of traveltimes but also the distance dependent weights are important for the accuracy of the
traveltime estimation. Because the accuracy of the estimation depends on the difference in wavefront cur-
vature, we use this difference as an insertion criterion fornew rays. This criterion permits a better control
of the traveltime errors and of the ray density.
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Figure 6: Results of the computation in the constant velocity gradient model in two vertical slices: (a),
(c) and (e) for the vertical slice aty = 2 km; (b), (d) and (f) for the vertical slice atx = 2 km. (a) and
(b) Wavefronts constructed from analytically computed traveltimes. (c) and (d) Traveltime errors due to
the non-weighted averaging of extrapolated traveltimes. (e) and (f) Traveltime errors due to the distance-
weighted averaging of extrapolated traveltimes.


