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ABSTRACT

Wavefront construction (WFC) methods permit the compatesif multi-valued traveltimes for Kirch-
hoff migration. We present two approaches which increasefficiency and accuracy of 3-D WFQ
methods. First, we apply three criteria for the insertiomeW rays. In addition to the standar
distance criterion we evaluate the possible crossing of, ragd introduce a criterion based on the
difference in wavefront curvature between adjacent rayecoBd, for the estimation of traveltime
within cells, we suggest a distance-weighted averagingtépolated traveltimes. The traveltime|
are extrapolated under consideration of the wavefrontature. Examples illustrate the high accuracy
of the method.
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INTRODUCTION

During the last years several papers have shown the imperaihmultivalued traveltime tables for the
quality of migrated prestack Kirchhoff depth images. Mudtiled traveltime tables are usually computed
by WFC methods (Figure 1). In these methods adjacent raygratged into ray tubes, the ray density
of the ray field is checked at wavefronts, and if necessawmy,rags are inserted. The wavefront-oriented
ray-tracing (WRT) technique (Coman and Gajewski, 20019thgs to the larger group of WFC methods.

Usually in WFC methods, a new ray is inserted by interpofatio the wavefront between two adjacent
rays (parent rays). To avoid interpolation, the WRT techriinserts a new ray by tracing it from the
source. The accuracy of an interpolated ray is always lesstthe accuracy of the parent rays, while the
accuracy of a traced ray is the same as the accuracy of thetpays. Moreover, the accuracy of the ray
inserted by tracing does not depend on the distance betWegparent rays. The insertion of a new ray
by tracing it from the source leads to higher accuracy anthjgea lower ray density than the insertion by
interpolation.

The WFC methods start with few rays which are propagatedwsepthrough the velocity model. A
new wavefront is constructed from the old one by propagatiegay field with a constant traveltime step
(time step of wavefronks After the construction of a new wavefront, the traveltinage estimated in the
region between this wavefront and the previous one.

In the following sections, we present a new approach for #tienation of traveltimes within cells and
a new set of criteria for the insertion of new rays. We implatimth innovations in the WRT technique.

ESTIMATION OF TRAVELTIMES WITHIN CELLS

The ray tracing procedure computes the traveltimes at nbdéor Kirchhoff depth migration the travel-
times are needed on a rectangular grid. The node-travaltingeused to estimate the gridpoint-traveltimes.
The estimation is carried out within cells. Figure 1 shows@ &etch for simplicity. In 3-D, a cell is de-
fined by six nodes (Figure 3). These nodes are the intergegfithree adjacent rays and two adjacent
wavefronts.
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Figure 1: Graphical description of a 2-D WFC method. The traveltintesaes (large dots) are computed
by ray tracing. The traveltimes at gridpoints (small dotg) estimated within a ray cell. Poistdenotes
the source point.

For the estimation of traveltimes within cells, Vinje et@996) project the gridpoint on the old wave-
front (for the old wavefront see Figure 1) and trace a ray lta¢ke gridpoint. Lucio et al. (1996) split the
cell into three tetrahedra and perform linear interpotatigthin the tetrahedra, while Bulant and Klime$
(1999) suggested a bicubic interpolation of traveltimes.

In this paper, we propose a distance-weighted averagingtpolated traveltimes. The extrapolation
is performed from nodes to gridpoints under consideratidh@wavefront curvature. The traveltimes are
estimated and stored on a coarse grid, while the interpoldtom the coarse grid to the fine migration
grid is performed during the migration process (e.g., Vienahd Gajewski, 2002). Our procedure for the
estimation of traveltimes within cells can be split in fotess:

1. Estimation of the wavefront curvature
2. Decision whether a gridpoint belongs to the cell
3. Extrapolation of traveltimes

4. Distance-weighted averaging of extrapolated travelsim

At a given node, e.g., nodé; (Figure 3), the two principal wavefront curvatures are ligi@mmputed
by dynamic ray tracing. Because the WRT technique does miy agnamic ray tracing, we approximate
the wavefront curvature using the sphere connecting theswdand B, or A; andC; (Figure 3). Figure
2 illustrates the estimation of the wavefront curvaturegshe segment; B;. For this estimation we use
the position of the two nodes and the slowness vector at dgde construct a sphere. We approximate
the radius of the wavefront curvature at naleby the radius of the sphere connectingB;. The same
procedure is used fot, C1, i.e., two wavefront curvatures at poidf are obtained.

The second step is performed for each gridpoint within tletarggular box which bounds the cell. To
determine whether a gridpoint is within a cell, we split tledl into three tetrahedra and use the approach
proposed by Lucio et al. (1996). A slight modification of thigproach permits the computation of the
distances of the gridpoint to the sides of the tetrahedras@iistances are used for the computation of
distance-weights. The last two steps are performed onlgridpoints within the cell.

We have mentioned above that at each node we know two wavefuovatures. We extrapolate the
traveltime from the node to a gridpoint considering eaclvature separately. Because a cell is defined by
six nodes, we have twelve extrapolated traveltimes at tipgint.

The traveltimets at gridpointG (Figure 3) is estimated by a weighted average of the exteapd!
traveltimes:

ta = Wa,pta, 8+ Wayylayy + Whiatbya + - -y
wheret,, g is the extrapolated traveltime from nodg to gridpointG using the wavefront curvature for
the segment; C;. The weight functionw,, g for the extrapolated traveltimg, 5 satisfy the relation

111\
Yol ™~ \dydy dg )
where the meaning of the distancés d,, ds is shown in (Figure 3). The relations for other distance
weights are similar.
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Figure 2: Approximation of the wavefront curvature at node using the segmem; B;. The radius of
the wavefront curvature is approximated by the distaiize|. Point M/ is the midpoint of the segment
A1 B;. PointO is obtained by the intersection of the continuation of tlusvsless vectop at A; with the
plane normal to the segment B; at M.
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Figure 3: 3-D ray cell and the distances which are used for the comiputat the distance weight,, g.
d, is the distance between gridpoiAtand the upper triangular sidé, is the distance betwee® and the
ray segment; A,, anddg is the distance betweer and the sides.
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Figure 4: The geometry of the model is a cube with the side length of 4 Khe source S is located at
the coordinates (0 km, 2 km, 0 km). The results of the compmrtatare shown for two vertical slices at
y=2 km, respectively at x=2 km.

CRITERIA FOR INSERTION OF NEW RAYS

We insert a new ray between two adjacent rays if one of thevidtig criteria is satisfied: (1) the distance
between the adjacent nodes exceeds a predefined nodesdittamshold; (2) the difference in wavefront
curvature between the rays exceeds a predefined thresimodddifference threshold, see below).

Note that we prefer to express the difference in wavefrontature in time units (milliseconds). For
this reason we divide the difference between the radii ofature by the velocity at the midpoint between
the adjacent nodes.

The first insertion criterion is used in most WFC methods.(€gn, 1992; Vinje et al., 1996; Ettrich
and Gajewski, 1996; Coman and Gajewski, 2001). The secaudtian criterion is new and replaces
the insertion criterion which uses the difference in di@tbetween adjacent rays. Using the difference
in wavefront curvature as an insertion criterion permitse#tdy control of the accuracy of the traveltime
estimation within ray cells.

NUMERICAL EXAMPLES

To show the accuracy of the distance-weighted averagingtedgolated traveltimes, we use two models
which permit analytical computation of traveltimes. Thetfiexample is a homogeneous velocity model,
the second one is a constant velocity gradient model. Themgeg of the model in both cases is the same
(Figure 4). The velocity in the homogeneous mod&(80 m/s. The velocity distribution in the constant
velocity gradient model is given hy(z) =2000 [m/s]+0.5 [1/s}, whereu(z) is the velocity at depth. We
show the results for two vertical slices;at= 2 km, and atz = 2 km respectively (Figure 4).

In the first example (homogeneous model), we compare thamtistweighted averaging of extrapo-
lated traveltimes to the linear interpolation between glatangular sides. These sides approximate the
wavefronts. For the propagation of the wavefront in the W&hhique, we use a time step of wavefronts
of 0.1 s. A new ray is inserted if the distance between adjacentgetgslarger than 500 m.

The wavefronts constructed from analytical traveltimessirown in Figure 5a and 5b. The traveltime
errors due to the linear interpolation are shown in Figuresd 5d, and the errors due to the distance-
weighted averaging of extrapolated traveltimes are showFigure 5e and 5f. Note that even in this ho-
mogeneous velocity model, the linear interpolation lead=rtors up td.0 ms. The traveltime errors when
using the distance-weighted averaging of extrapolategiienes are much smaller (less thesT3 ms).

In the second example (constant velocity gradient modeBhasv the influence of the distance depen-
dent weights on the accuracy of computed traveltimes. Ttyaa#his influence we compute the traveltimes
with and without distance weights. For the computation a¥ettimes with the WRT technique, we use a
time step of wavefronts df0 ms, a node-distance threshold380 m and a time-difference threshold of
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Figure 5: Results of the computation in the homogeneous velocity nadevo vertical slices: (a), (c)
and (e) for the vertical slice at = 2 km; (b), (d) and (f) for the vertical slice at = 2 km. (a) and (b)
Wavefronts constructed from analytically computed traneds. (c) and (d) Traveltime errors due to the
linear interpolation. (e) and (f) Traveltime errors duelie tistance-weighted averaging of extrapolated
traveltimes. Note the different error scales.
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1 ms.

The wavefronts constructed from analytical traveltimessirown in Figure 6a and 6b. The traveltime
errors due to the the non-weighted averaging of extraptateeltimes (Figure 6¢ and 6d) are small along
the rays and along the wavefronts, but the errors are lartpgnithe cells. The errors can be substantially
reduced when using the distance dependent weights (Figuené 6f). In this example, the maximal
traveltime error has been reduced by a fa@td(from 0.3 ms t00.015 ms)

The distribution of the errors for traveltimes computed lhy tlistance-weighted averaging of extrapo-
lated traveltimes in the vertical slice defined#y- 2 km (Figure 6e) leads to two observations. First, the
traveltime error increases with the increase of the diffeegin the wavefront curvature between adjacent
ray. In the second numerical example, this difference igdat small traveltimes. In these regions the
traveltime error is controlled by the time-difference sireld. Second, the insertion of a new ray reduces
the traveltime errors. Note that this is true only if the newy is traced from the source.

CONCLUSIONS

The insertion of a new ray by tracing it directly from the sceiincreases the accuracy of traveltimes and
permits a lower ray density, i.e., larger cells, than in oM#-C methods. For an efficient estimation of

traveltimes within large cells, we have presented the digtaveighted averaging of extrapolated travel-
times. The extrapolation of traveltimes uses the wavefcomtature. We have shown that not only the

extrapolation of traveltimes but also the distance depeingeights are important for the accuracy of the

traveltime estimation. Because the accuracy of the estimdepends on the difference in wavefront cur-

vature, we use this difference as an insertion criteriom&w rays. This criterion permits a better control

of the traveltime errors and of the ray density.
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Figure 6: Results of the computation in the constant velocity gradiendel in two vertical slices: (a),
(c) and (e) for the vertical slice gt = 2 km; (b), (d) and (f) for the vertical slice at = 2 km. (a) and
(b) Wavefronts constructed from analytically computedetames. (c) and (d) Traveltime errors due to
the non-weighted averaging of extrapolated traveltime}afd (f) Traveltime errors due to the distance-
weighted averaging of extrapolated traveltimes.



