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ABSTRACT

Traveltime moveout expressions that can well stack refiacgind diffraction events are of prime
interest for the imaging and inversion of seismic data. terg years, the classical hyperbolic single
parameter NMO/DMO stacking formula applied to common-midp(CMP) data is being replaced
by new moveout expressions that make use of more parametdedlaw for arbitrary measurement
configurations. The advantages of the new stacking formaragwofold. Firstly, they can fully use
all the available multi-coverage data, as the sourcevecsymmetry condition of the CMP configuy
ration is no longer required. Secondly, the various parars¢hat are obtained by coherence analysis
directly applied to the multi-coverage data are very uskfufurther imaging and inversion procet
dures. We review a fourth-order traveltime formula and eixants ability to approximate reflections
and diffractions. This formula depends on the same threanpeters as the hyperbolic traveltime
used in the Common-Reflection-Surface (CRS) method. Stiattweamples have shown a better per
formance of the proposed expression compared to the semaled-hyperbolic traveltime: it is more
accurate within a larger aperture size.

=

INTRODUCTION

A significant part of seismic processing is carried out by mseaf stacking of multi-coverage data. The
stacking is performed along traveltime moveout curves diasas that depend on one or more parameters.
The parameters (or attributes) of the selected traveltipesssion are chosen such that a coherence analy-
sis performed on the multi-coverage data yields maximumesl As a result of the stacking process, one
obtains, besides a stacked section of improved image guabb traveltime attributes that can be used for
further processing (e.g., true-amplitude attribute egtiom or macro-velocity model inversion).

In the classical Common-midpoint (CMP) method, the datagawized into an ensemble of CMPs with
corresponding CMP gathers. For each CMP, the correspor@litig gather consists of source-receiver
pairs symmetrically located with respect to the CMP. Tolsthe data along the CMP gather, one uses
the normal moveout (NMO) traveltime, namely a one-paramestpression of hyperbolic type. The only
attribute that is estimated in this way, is the stacking or®Hvelocity.

Over the years, methods have been designed to generaliZgdtRanethod, so as allow the CMP gath-
ers to include, within appropriate apertures, arbitraolyated source-receiver pairs around the CMP. In
this more general situation, the CMP is calledemtral point since it is no longer a point of symmetry
within the gather. Referred in the literature as macro-niodiependent or data driven methods, these pro-
cedures retain the basic structure of stacking the data proppate gathers and along suitable traveltime
moveout expressions. A survey on macro-model independettitads is provided in Hubral (1999).

To allow for an arbitrary location of source and receivergait is necessary to consider traveltime
moveouts that depend on more than one parameter. In thenp&$&esituation, in which multi-coverage
data are recorded on a single seismic line, it is shown, ureterorder ray theory, that the traveltime for an
arbitrary position of a source and a receiver around a fixaettaepoint, depend on three parameters. The
most simple and natural extension of the classical NMO ttiawe is the hyperbolic moveout, which can
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be readily derived as a second-order Taylor expansion ofréveltime (squared) of a primary-reflected
ray around a fixed primary zero-offset reflection ray. A caneat hyperbolic traveltime expression is
represented as a function of midpoint and half-offset cmatgs like, e.g., the one of Ursin (1982).

The Common-Reflection-Surface (CRS) method (Muller, 199@he of the mentioned macro-model
independent methods. Present implementations (seeJaggt et al., 2001; Trappe et al., 2001) use the
hyperbolic traveltime in the form derived in Tygel et al. @1%. Thus, we call this formula the hyperbolic
CRS traveltime. In this expression, the three parametertharemergence angte of the normal ray with
respect to the measurement surface normal at the coincdente-receiver point (called central point)
and two wavefront curvatures; y;p and K, also measured at the central point. These curvatures refer
to the normal-incident-point (NIP) wave and normal (N) waae introduced in Hubral (1983). A short
discussion on the concept of the N and NIP waves is providdtEimext section.

For the classical case of the common-midpoint (CMP) conéitioin, the three parameters reduce to a
single (combined) parameter, namely the normal-moveoM@)\velocity.

In the search of a more accurate traveltime, Hocht et al.{LB8ve considered a reflection interface
as a continuous ensemble of circular reflection elementottalate the original reflector. The reflection
response of the reflector is formulated as the superposifitime reflection responses of all the circular
reflection elements that constitute the reflector.

As a result of the investigation, a new, traveltime exp@ssgiven by means of a pair of parametric
equations has been has been derived. A particularly atteaietature of this representation is that it is
completely described in terms of the three parameter® , and Ky p that refer to a fixed zero-offset
primary reflection ray. From the system of parametric equiati a fourth-order Taylor approximation of
the solution could be obtained. As expected, the correspgrekcond-order Taylor expansion of that
solution recovers the hyperbolic CRS traveltime.

In this paper, we briefly review the derivation of the foudtder traveltime expansion and discuss first
comparisons with the more classical hyperbolic moveoutr §uthetic examples, calculated by means
of ray tracing for different configurations (common midpoimd common offset), suggest that the new
fourth-order expression can provide a better approximatidrue traveltimes of reflection and diffraction
events than the corresponding hyperbolic traveltime appration.

THEORY

The derivation of the fourth-order CRS traveltime moveoutpgosed in Hocht et al. (1999) is based on
the construction of thexacttraveltime formula for the case of a circular reflector belWwomogeneous
overburden. As seen below, all quantities appearing ingkatession can be substituted in a natural way
by combinations of the CRS parameters, namely emergende afilpe normal rayy, and the wavefront
curvatures K xrp and K. Under this substitution, the obtained traveltime expogsis expected to be

a valid approximation in any media, where the CRS paramatersvell defined. For practical use in an
implementation of the CRS stack, Hocht et al. (1999) propasesarlier indicated, a fourth-order Taylor
expansion of the moveout that is also fully representedringeof the three zero-offset CRS parameters.

The circular reflector

We consider the exact parametric representation of thei-cautrage reflection response of a circular
reflector segment under a homogeneous overburden. Théaitisndepicted in Figure 1, which shows a
coincident source-receiver pair &. The (bold dashed) zero-offset ray frok to the normal-incidence
point, NIP, is the central ray with two-way traveltimg The central ray emerges at, under an angle
«. Moreover, the (hypothetical) N and NIP waves are assumedhibit, at X, circular wavefronts with
curvaturesk y andK n;p, respectively.

Figure 1 also shows an arbitrary source-receiver Q&i(5) with half-offseth in the vicinity of the
central pointX,. It determines the (bold) reflection r@NAI'ﬁG with traveltimet. Our aim is to find
an approximation of the traveltimealong raySNIPG in terms of the given traveltim& and the CRS
parametersy, Kyrp, and K of the central ray afX,. Moreover, we wish that the moveout formula
provides theexactexpression in the case of a single circular reflector withmdgeneous overburden.

To simplify the constructions, we introduce the (bold ddsitted) zero-offset reflection ray (see again
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Reflector

Figure 1: Reflection at a circular reflector in a homogeneous medium.

Figure 1) that is reflected at the reflection pdﬂi\ﬁ of ray SNIPG. We denote its (unknown) emergence
angle at the (unknown) point,, by & and its (unknown) two-way traveltime by. To find the desired
expression for moveoit- ¢4, we firstly investigate the auxiliary zero-offset movegqyit- t, and the CMP
moveout atX, t — to, respectively.

The image space

One of the basic ideas of the CRS approach is the introduofienfictitious medium, called thienage
space This is a homogeneous medium of velocity which is used to approximately compute the trav-
eltime moveouts in the vicinity of the central poid{,. In the image space, we construct the centers of
curvatureC'y andCn;p, of the N and NIP wavefronts, respectively, 6§ (see Figure 2). We also con-
sider the N and NIP wavefronts at, with curvaturesk y and K y;p and centers of curvatu@y and
Cn1p. Note that the N waves &y andXo have the same center of curvatdrg. This is a consequence
of our assumption of circular wavefronts, because thisisghat the reflector in the image space (i.e., the
segment that contains poindsy;p andCy;p) has to be circular. Its center of curvature is the same point
Cy. Therefore, NIE'y = NIPC'y and, thus,

Ry — Ryip = Ry — Ryip 1)

WhereRNIp =1/Knrp andRy p = 1/I~(N1p are the radii of curvature of the NIP wavefrontsX&§
and X, (short dashes in Figure 2), i.e., the distancesXJyRNdNIPX,, respectively. Correspondingly,
Ry = 1/Ky andRy = 1/Ky are the radii of curvature of the N wavefronts’$ and X, (long dashes
in Figure 2), i.e., the distancésy X, andONXO, respectively. N

The traveltime differencg, — t, in the true medium corresponds to the distaRge— Ry between the
wavefronts of the N waves (long dashes in Figure 2). We appratet, — t, by the equivalent traveltime
differencery — 7o in the image space. Hers, and7, denote the traveltimes calculated in the image space
along raysXoCnpXo (dashed thin line) andoCnp Xy (dash-dotted thin line), respectively. Thus, we
may write the desired traveltime approximation as

~ 2 ~ -
To — To = U—O(RNIP—RNIP)%to—to . (2)

Note that because of equation (EN — Ry = Ry1p — Ry1p. This implies that equation (2) is exact for
truly circular N and NIP wavefronts even in inhomogeneoudimésee again Figure 2). Therefore, it can
be expected to be a very good approximation in most seismitiame

In the same way, we approximate the (real-space) travelitesout,t — ¢y, by its corresponding
(image space) moveout,— 7y, Wherer, is defined as before and wherés the traveltime along the ray
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Figure 2: Centers of curvature of the N and NIP waves in the image space.

SCy1pGinthe image space. Referring again to Figure 2, we have
T—Fo=T7—2RNip/vo~t—1o. (3)

The combination of the above two moveout expressions (2)@ndields the following relationship be-
tween the searched-for traveltimieand the corresponding one in the image space,

t—(to—2Rnip/vo) = T . 4)
Observe that is the reflection traveltime of a circular reflector in a horangous medium. It can be
obtained from basic geometrical considerations (Hocht £1899).
Traveltime for a circular reflector

As shown in Hocht et al. (1999), the traveltimecan be expressed as a functiomgfand the half-offset,
h, determined by the pa{iS, G), by

4h:  2R2 h?
=+ R@”( g+11>, (5)
Yo Yo T
where _
Fr o= f{v £ (6)
SN &

In the above expressions, the unknofg; » geometrically relates to the givey and Ry ;p (see Fig-
ure 2) as B B
RN]p:RN*RN+RNIP:RN(COSOz/COSafl)JrRN]p. (7)
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Thus, squaring equation (4) and substitutiigoy expression (5), we obtain

2 > 4An®  2R2 h?
{t - (to - %Rmp)] =7+ Ufng Z+l-1]. (8)
0 0 T

This result is an approximation for the traveltimas a function ofv andh, i.e.,t(a, h).

The last unknown in the above traveltime approximationésaimergence angéeof the zero-offset ray
at Xo. For its determination, it needs to be related to the midpmordinate,,, of the source-receiver
pair (S, G). Denoting the coordinates d&f, and X, by =, andz, respectively, Hécht et al. (1999) find

- [ h? ~ t
:z:mxo+rT< q+11> , where zy = xg an%. 9
ro tan

Thus, the searched-for traveltime= ¢(x,,, h) along raySKITIE‘G can be approximated by the above pair
of equationg = ¢(«, h) andx,,, = x.,, (@, h) parametrized byk.

The most important property of the traveltime approximatioven by the parameterized equations (8)
and (9) is that it is completely described with the help of zeeo-offset CRS parametetis K y;p, and
Ky at the central poink,. This means it can be calculated once these parameters/areayj inversely,
these parameters can be determined by fitting such trawettinves to the seismic data. It is the latter use
that we are looking for in the CRS method.

We stress once more that the parameterized traveltime giy@mguations (8) and (9) is based on the
assumptions of circular wavefronts and a circular reflecttwerfore, it is, in principle, like the parabolic
and hyperbolic traveltimes, a second-order approximafite expectation that it will be a more accurate
approximation than the latter ones is justified by the faat tmderlying assumptions are more realistic,
i.e., more probable to be met in practice. Thus, in the sanyeasgractice has shown that the hyperbolic
traveltime generally approximates true traveltimes Ibeatian the parabolic one, the new parameterized
traveltime is expected to provide even better approximatid he first numerical tests presented in the last
section of this paper confirm this expectation.

Taylor expansions

The above parametric form of the traveltitie,,,, ») cannot be conveniently used in an implementation of
the CRS method. For practical use, it is thus advantageaesvdte it as an explicit power series around
Tm = 29 andh = 0. Up to second order, i.e., in hyperbolic approximation, ¢beresponding Taylor
expansion reads

) 2
2sina _ 2ty cos? a
T -

t2(xm, h) = [to + [KN 72, + Knrp hQ] ; (10)

Vo Vo

wherez,, = (z.,, — xo). This is the expression that has been previously derived/ggllet al. (1997).
The fourth-order expansion has the form

cos? a
2
Yo

t2(xm, h) = t2 +

[AZ,,h* + BTS + CZ,, + DT, h* + Eh'] | (11)

with the coefficients

A = 2KNIP sina[2 — 2UOtOKN — UQtQKN[p],
B = 2KN sina[2 — ’UonKN],
C = K3%[bcos®a—4][1—votoKn/2],
2 2 (22)
D = Knip{2voto[3 —4cos® a]Ky
—[Kn(4 —5cos? a) + 2K nrpsin? a][2 — voto K n1pl},
E = KJQVIP[QUOtOKN sin? o — voto K y1p cos> a/2+ cos? ] .

CoefficientsA to E can be calculated for any given triplet of parameters{y;p, and K. Therefore,
expression (11) can be as easily used in an implementatitie @RS stack as equation (10).
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Important configurations

For particular configurations, the above traveltime exgiess reduce to simpler forms.
Common midpoint (CMP) configuration.—For the CMP configuration, we havg, = zy orz,, = 0.
As a consequence, we find for the CMP traveltime

2to cos? o cos? «
ticup(h) =15 + OTKNIP h? + 2 En*, (13)
0 0

with E given above. Note that the second-order approximationnoonty known as the NMO moveout
formula, depends on a single (combined) parameter,

20
2 0
0= ————— . 14
UNMO toK n1p COSZ (14)
The fourth-order CMP traveltime, on the other hand, depemndsvo coefficients that are combinations of
all three CRS parameters.

Zero-Offset configuration.—The zero-offset (ZO) configuration is characterized by thedition~ = 0.

The CRS traveltime expression reads then

. 2
2sina_ 2ty cos? a 9 cos? o
Tm ——KnNT:, +

z — (BT, + CTy). (15)

t2 ,0(xm) = [t0+
1,20(Tm) o o2

0
Note that the second, third, or fourth-order zero-offsmteitime depend on two, three, or four coefficients
that are combinations of only two CRS parametersiid i v ).

Diffraction events

The N- and NIP-wave are fictitious waves that start at the gtfle point NIP and propagate along the
normal ray to the central poitk,. The NIP-wave starts from a point source at NIP while the Neengtarts
from the exploding reflector at NIP.

Let us now consider the case of a pure diffraction, that issituation where the reflector reduces to a
single diffraction point. Then, the N- and NIP-waves redtelentical waves, both starting from a point
source at NIP. As a consequence, they have identical cuesmbti X, i.e., Ky = Kyrp. Therefore,
we can use the latter identity asdifraction conditionin the above second- or fourth-order traveltime
expressions. Upon the substitution of this diffractiondition Ky = Kxy;p = K, the second-order
(hyperbolic) diffraction traveltime reads

— [z2, + 1*] , (16)

. 2
2sina _ 41 cos? o
Tm, R

Yo

t%,dif(xmvh) = [to + ™

where we have introduced the notation y
o= “OTO K. (17)

Note that in a homogeneous medium with wave velogitythis factor reduces to = 1.
The fourth-order diffraction traveltime is again given byuation (11) witht3 replaced b;tjdif. The
coefficientsA to F reduce to

= 4Ksina[l — 3y,
= 4Ksinall — y,
K?[5cos? a — 4][1 — pl, (18)

2K2?[(7cos? a — 6) — 3u(5 cos? a — 4)],
= K?[cos’a— p(5cos? a —4)] .

SEGEONWILS
I

The application of the CRS method to seismic data using atlyeo§o-obtained diffraction traveltime
formulas will coherently stack the energy that belongs fératition events, thus resulting in a stacked
section of diffractions rather than reflections.
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Itis interesting to observe the values of the above coeffisimm a homogeneous medium, where- 1,
as mentioned above. We immediately see that in this situgti@ coefficients read

A = -—-8Ksina,

B = 0,

c = 0, (29)
D = —4K?*(4cos’a —3),

E = 4K?sin’a.

These expressions can be readily verified from a fourthrdrdglor expansion of the square of the exact
diffraction traveltime of a diffractor in a homogeneous rod, which using the above variables, reads

1
taif = — (\/(Em —h+ Rsina)? + (Rcosa)? 4+ \/(Zm + h 4+ Rsina)? 4 (R cos oz)Q) . (20)
Vo
Here,R = 1/K = vpto/2 is the distance from the diffractor to the central poifiit

Maximum aperture

The hyperbolic CRS moveout approximates the kinematicatifie response of a curved interface in a
paraxial vicinity of the central ray. To use it in a CRS stdtls necessary to define an appropriate aperture
inside of which the approximation is sufficiently accuratdeally, the aperture for the CRS stack is an
elliptical surface in the offset-midpoint domain. One aisiglefined in the CMP section and the other in
the zero-offset section (Mann et al., 2000).

The above fourth-order approximation can be used to defimactipally feasible CRS aperture. Its
border is located where the difference between the secardtifaurth-order traveltime approximations
reaches the toleranct? for the accuracy of the traveltime approximation. In thé fiaita volume, this is
the solution of the equation

COS2 «

2
Yo

At? =

[AZ,,h* + BT}, + C7,, + DT h* + Eh'] | (21)

where the coefficientd to F are given by equations (12). However, the solution of equg21) is rather
complicated. Instead, the half-axes of the aperture ellijgs be approximated in the CMP and zero-offset
sections.

In the CMP section, the situation is much simpler since thktrhand side of equation (21) reduces to
its last term. Solving foh, we find for the aperture half-axis

v At? } 1/4

hor = | 020
{E cos? «

(22)

whereF is given by the last of equations (12). The same formula camske to compute an aperture for
the stack along the diffraction traveltime in the CMP sattib £ given by the last of equations (18) is
used.

In the zero-offset section, the termsxf, andz?, remain in equation (21). Thus, the determination of
the aperture would still require the solution of a fourtlil@requation. However, since usualfyy < 1,
which impliesC <« B, the aperture half-axis can be determined using the thidé+t@approximation as

2042 71/3
—ap _ vg At 23
Fm {B cos? o ’ (23)

where B is given by the second of equations (12). Again, the sameltaman be used to compute an
aperture for the stack along the diffraction traveltimetia rero-offset section, i given by the second of
equations (18) is used.
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Figure 3: 2-D Earth model.

SYNTHETIC EXPERIMENTS

To demonstrate the quality of the second and fourth-ordgettime approximations discussed above, we
present some simple numerical examples. They are based @hsynthetic model consisting of three
homogeneous layers bounded by curved interfaces depictadure 3. We have compared the capability
of the hyperbolic and fourth-order traveltime expansianagproximate reflections and diffraction travel-
times under different measurement configurations in thiaiyoof several pointsX, at the earth’s surface.
One of the chosen central poinky, together wit the corresponding zero-offset ray to the ddikeereflec-

tor, is also indicated in Figure 3. Both approximations am@pared with the exact traveltimes as computed
by ray tracing.

Figure 4 illustrates the traveltime approximations for @dP configuration at three different central
points. In Figure 4a, we see the exact common-midpoint t@ledraveltime in the vicinity of point
Xo = 1.0 km (solid line) as computed by ray tracing, together withsésond-order (plus signs) and
fourth-order (circles) approximations. Figure 4b comgdhe corresponding diffraction traveltime with its
approximations. As we can clearly see, the fourth-order@pmation follows the true reflection traveltime
curve more closely over the whole range of offsets than thersk-order approximation. More or less the
same behaviour can be observed in parts (e) and (f) of Figwrhidh depict common-midpoint reflection
and difraction traveltimes in the vicinity ofy = 1.8 km. At the central poiny = 1.4 km (parts (c) and
(d) of Figure 4), the traveltime approximations exhibitiglstly different behaviour. At this central point,
both the second and fourth order traveltimes provide go@icgmations up to large offsets. Differently
from the results of our numerical experiments at all othete points, the second order approximation is
here slightly superior to the fourth order approximation.

Corresponding experiments have been realized for comrffeatoeflection and diffraction traveltimes
for different central points and offsets. As in the case offCtvaveltimes (see again Figure 4), the diffrac-
tion traveltimes exhibit practically the same behaviouttesreflection traveltimes. We therefore restrict
the following discussion to the latter.

We have calculated reflection traveltimes for four différealues of the half-offset, these being
h =0.0km,h =0.2km,h = 0.5 km, andh = 1.0 km. The results in the vicinity of the same three central
points Xy = 1.0 km, Xo = 1.4 km, andX, = 1.8 km, are depicted in Figures 5, 6, and 7, respectively.
We see from parts (a) of these figures that in the chosen rangédpoints, the zero-offset traveltimes
are equally well approximated by the second and fourth diatenulas. At larger offsets, the fourth order
formula generally provides the better approximation. Aoeption is again observed at the central point at
xo = 1.4 km. At this point, the second-order approximation is, foreata@in range of midpoints, slightly
superior to the fourth-order one (see Figure 6c). Parts f(df &igures 5 to 7 demonstrate that neither
the second nor the fourth order formula provides an accéptadveltime approximation for offsets of
h = 1.0 km or larger.
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Figure 7: CO times forX, = 1.8 km. (&)h = 0.0 km. (b)h = 0.2 km. (c)h = 0.5 km. (d)h = 1.0 km.

As a general remark, we observe that our numerical expetsséiow a significant improvement, both
in accuracy and in aperture range, of the fourth-order dvehiperbolic traveltime approximation for all
configurations. The behaviour observed in the examplessiothis paper has been typical for reflections
and diffractions in most of our numerical experiments. Thusighing in all our numerical results, we can
conclude that the fourth order formula (11) generally pdeg more reliable approximations to the exact
traveltimes than the hyperbolic traveltime (10).

CONCLUSIONS

The fourth-order traveltime moveout expression of Hochile{1999) has been reviewed, implemented,
and tested on a simple synthetic model. For multi-coveradg alcquired along a single seismic line, this
formula approximates reflection and diffraction traveblsrat coincident source-receiver pairs arbitrarily
located around a reference source-receiver pair at a fixetlatgpoint. The investigated moveout ex-
pression is useful to provide simulated zero-offset sastid\n attractive feature of this formula is that its
coefficients depend on the same three parameters as its orwentional hyperbolic CRS traveltime coun-
terpart. Our first results indicate that the fourth-ordenfola provides better traveltime approximations
within a significantly larger aperture than the hyperbatimfiula.

Although these result are only preliminary, we feel theyary promising for the following reasons.
A CRS stack based on a better traveltime approximation, asctie fourth-order expression seems to
provide, promises better stacking properties as it allmnsse more data and thus more redundancy. As a
result, one can expect not only better stacked sectionsanhiigher signal-to-noise ration, but also better
estimates of the CRS parametersK y;p, and K. Since these parameters are the input to a velocity
model building in an analogous way as the NMO or stackingaiti&s in the standard CMP method, their
improvement should reflect in the achievable quality of theamed velocity model.

As a second potential application for the higher-orderditaime approximation, we have seen that it
can be used to define the aperture range for a CRS stack willygigebolic traveltime approximation. In
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this way, the otherwise arbitrarily chosen aperture of tR&SGtack can be replaced by one that is based on
the actual traveltimes under investigation.
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