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ABSTRACT

Traveltime moveout expressions that can well stack reflection and diffraction events are of prime
interest for the imaging and inversion of seismic data. In recent years, the classical hyperbolic single-
parameter NMO/DMO stacking formula applied to common-midpoint (CMP) data is being replaced
by new moveout expressions that make use of more parameters and allow for arbitrary measurement
configurations. The advantages of the new stacking formulasare twofold. Firstly, they can fully use
all the available multi-coverage data, as the source-receiver symmetry condition of the CMP configu-
ration is no longer required. Secondly, the various parameters that are obtained by coherence analysis
directly applied to the multi-coverage data are very usefulfor further imaging and inversion proce-
dures. We review a fourth-order traveltime formula and examine its ability to approximate reflections
and diffractions. This formula depends on the same three parameters as the hyperbolic traveltime
used in the Common-Reflection-Surface (CRS) method. Synthetic examples have shown a better per-
formance of the proposed expression compared to the second-order hyperbolic traveltime: it is more
accurate within a larger aperture size.

INTRODUCTION

A significant part of seismic processing is carried out by means of stacking of multi-coverage data. The
stacking is performed along traveltime moveout curves or surfaces that depend on one or more parameters.
The parameters (or attributes) of the selected traveltime expression are chosen such that a coherence analy-
sis performed on the multi-coverage data yields maximum values. As a result of the stacking process, one
obtains, besides a stacked section of improved image quality, also traveltime attributes that can be used for
further processing (e.g., true-amplitude attribute estimation or macro-velocity model inversion).

In the classical Common-midpoint (CMP) method, the data is organized into an ensemble of CMPs with
corresponding CMP gathers. For each CMP, the correspondingCMP gather consists of source-receiver
pairs symmetrically located with respect to the CMP. To stack the data along the CMP gather, one uses
the normal moveout (NMO) traveltime, namely a one-parameter expression of hyperbolic type. The only
attribute that is estimated in this way, is the stacking or NMO-velocity.

Over the years, methods have been designed to generalize theCMP method, so as allow the CMP gath-
ers to include, within appropriate apertures, arbitrarilylocated source-receiver pairs around the CMP. In
this more general situation, the CMP is called acentral point, since it is no longer a point of symmetry
within the gather. Referred in the literature as macro-model independent or data driven methods, these pro-
cedures retain the basic structure of stacking the data on appropriate gathers and along suitable traveltime
moveout expressions. A survey on macro-model independent methods is provided in Hubral (1999).

To allow for an arbitrary location of source and receiver pairs, it is necessary to consider traveltime
moveouts that depend on more than one parameter. In the present 2-D situation, in which multi-coverage
data are recorded on a single seismic line, it is shown, underzero-order ray theory, that the traveltime for an
arbitrary position of a source and a receiver around a fixed central point, depend on three parameters. The
most simple and natural extension of the classical NMO traveltime is the hyperbolic moveout, which can
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be readily derived as a second-order Taylor expansion of thetraveltime (squared) of a primary-reflected
ray around a fixed primary zero-offset reflection ray. A convenient hyperbolic traveltime expression is
represented as a function of midpoint and half-offset coordinates like, e.g., the one of Ursin (1982).

The Common-Reflection-Surface (CRS) method (Müller, 1999)is one of the mentioned macro-model
independent methods. Present implementations (see, e.g.,Jäger et al., 2001; Trappe et al., 2001) use the
hyperbolic traveltime in the form derived in Tygel et al. (1997). Thus, we call this formula the hyperbolic
CRS traveltime. In this expression, the three parameters are the emergence angle,α of the normal ray with
respect to the measurement surface normal at the coincidentsource-receiver point (called central point)
and two wavefront curvatures,KNIP andKN , also measured at the central point. These curvatures refer
to the normal-incident-point (NIP) wave and normal (N) wave, as introduced in Hubral (1983). A short
discussion on the concept of the N and NIP waves is provided inthe next section.

For the classical case of the common-midpoint (CMP) configuration, the three parameters reduce to a
single (combined) parameter, namely the normal-moveout (NMO) velocity.

In the search of a more accurate traveltime, Höcht et al. (1999) have considered a reflection interface
as a continuous ensemble of circular reflection elements that osculate the original reflector. The reflection
response of the reflector is formulated as the superpositionof the reflection responses of all the circular
reflection elements that constitute the reflector.

As a result of the investigation, a new, traveltime expression, given by means of a pair of parametric
equations has been has been derived. A particularly attractive feature of this representation is that it is
completely described in terms of the three parameters,α, KN , andKNIP that refer to a fixed zero-offset
primary reflection ray. From the system of parametric equations, a fourth-order Taylor approximation of
the solution could be obtained. As expected, the corresponding second-order Taylor expansion of that
solution recovers the hyperbolic CRS traveltime.

In this paper, we briefly review the derivation of the fourth-order traveltime expansion and discuss first
comparisons with the more classical hyperbolic moveout. Our synthetic examples, calculated by means
of ray tracing for different configurations (common midpoint and common offset), suggest that the new
fourth-order expression can provide a better approximation to true traveltimes of reflection and diffraction
events than the corresponding hyperbolic traveltime approximation.

THEORY

The derivation of the fourth-order CRS traveltime moveout proposed in Höcht et al. (1999) is based on
the construction of theexacttraveltime formula for the case of a circular reflector belowa homogeneous
overburden. As seen below, all quantities appearing in thatexpression can be substituted in a natural way
by combinations of the CRS parameters, namely emergence angle of the normal ray,α, and the wavefront
curvatures,KNIP andKN . Under this substitution, the obtained traveltime expression is expected to be
a valid approximation in any media, where the CRS parametersare well defined. For practical use in an
implementation of the CRS stack, Höcht et al. (1999) propose, as earlier indicated, a fourth-order Taylor
expansion of the moveout that is also fully represented in terms of the three zero-offset CRS parameters.

The circular reflector

We consider the exact parametric representation of the multi-coverage reflection response of a circular
reflector segment under a homogeneous overburden. The situation is depicted in Figure 1, which shows a
coincident source-receiver pair atX0. The (bold dashed) zero-offset ray fromX0 to the normal-incidence
point, NIP, is the central ray with two-way traveltimet0. The central ray emerges atX0 under an angle
α. Moreover, the (hypothetical) N and NIP waves are assumed toexhibit, atX0, circular wavefronts with
curvaturesKN andKNIP , respectively.

Figure 1 also shows an arbitrary source-receiver pair(S, G) with half-offseth in the vicinity of the
central pointX̃0. It determines the (bold) reflection raySÑIPG with traveltimet. Our aim is to find
an approximation of the traveltimet along raySÑIPG in terms of the given traveltimet0 and the CRS
parametersα, KNIP , andKN of the central ray atX0. Moreover, we wish that the moveout formula
provides theexactexpression in the case of a single circular reflector with a homogeneous overburden.

To simplify the constructions, we introduce the (bold dash-dotted) zero-offset reflection ray (see again
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Figure 1: Reflection at a circular reflector in a homogeneous medium.

Figure 1) that is reflected at the reflection point̃NIP of raySÑIPG. We denote its (unknown) emergence
angle at the (unknown) point̃X0 by α̃ and its (unknown) two-way traveltime bỹt0. To find the desired
expression for moveoutt− t0, we firstly investigate the auxiliary zero-offset moveoutt̃0 − t0 and the CMP
moveout atX̃0, t − t̃0, respectively.

The image space

One of the basic ideas of the CRS approach is the introductionof a fictitious medium, called theimage
space. This is a homogeneous medium of velocityv0, which is used to approximately compute the trav-
eltime moveouts in the vicinity of the central point,X0. In the image space, we construct the centers of
curvature,CN andCNIP , of the N and NIP wavefronts, respectively, atX0 (see Figure 2). We also con-
sider the N and NIP wavefronts at̃X0 with curvaturesK̃N andK̃NIP and centers of curvatureCN and
C̃NIP . Note that the N waves atX0 andX̃0 have the same center of curvatureCN . This is a consequence
of our assumption of circular wavefronts, because this implies that the reflector in the image space (i.e., the
segment that contains pointsCNIP andC̃NIP ) has to be circular. Its center of curvature is the same point
CN . Therefore, NIPCN = ÑIPCN and, thus,

RN − RNIP = R̃N − R̃NIP , (1)

whereRNIP = 1/KNIP andR̃NIP = 1/K̃NIP are the radii of curvature of the NIP wavefronts atX0

andX̃0 (short dashes in Figure 2), i.e., the distances NIPX0 andÑIPX̃0, respectively. Correspondingly,
RN = 1/KN andR̃N = 1/K̃N are the radii of curvature of the N wavefronts atX0 andX̃0 (long dashes
in Figure 2), i.e., the distancesCNX0 andCN X̃0, respectively.

The traveltime differencẽt0− t0 in the true medium corresponds to the distanceRN − R̃N between the
wavefronts of the N waves (long dashes in Figure 2). We approximatet̃0 − t0 by the equivalent traveltime
differencẽτ0 − τ0 in the image space. Here,τ0 andτ̃0 denote the traveltimes calculated in the image space
along raysX0CNIP X0 (dashed thin line) and̃X0C̃NIP X̃0 (dash-dotted thin line), respectively. Thus, we
may write the desired traveltime approximation as

τ̃0 − τ0 =
2

v0
(R̃NIP − RNIP ) ≈ t̃0 − t0 . (2)

Note that because of equation (1),R̃N −RN = R̃NIP −RNIP . This implies that equation (2) is exact for
truly circular N and NIP wavefronts even in inhomogeneous media (see again Figure 2). Therefore, it can
be expected to be a very good approximation in most seismic media.

In the same way, we approximate the (real-space) traveltimemoveout,t − t̃0, by its corresponding
(image space) moveout,τ − τ̃0, whereτ0 is defined as before and whereτ is the traveltime along the ray
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Figure 2: Centers of curvature of the N and NIP waves in the image space.

SC̃NIP G in the image space. Referring again to Figure 2, we have

τ − τ̃0 = τ − 2R̃NIP /v0 ≈ t − t̃0 . (3)

The combination of the above two moveout expressions (2) and(3) yields the following relationship be-
tween the searched-for traveltime,t, and the corresponding one in the image space,τ ,

t − (t0 − 2RNIP /v0) ≈ τ . (4)

Observe thatτ is the reflection traveltime of a circular reflector in a homogeneous medium. It can be
obtained from basic geometrical considerations (Höcht et al., 1999).

Traveltime for a circular reflector

As shown in Höcht et al. (1999), the traveltimeτ can be expressed as a function ofα̃, and the half-offset,
h, determined by the pair(S, G), by

τ2 =
4h2

v2
0

+
2R̃2

NIP

v2
0

(√
h2

r̃2
T

+ 1 − 1

)
, (5)

where

r̃T =
R̃NIP

2 sin α̃
. (6)

In the above expressions, the unknownR̃NIP geometrically relates to the givenRN andRNIP (see Fig-
ure 2) as

R̃NIP = R̃N − RN + RNIP = RN (cosα/ cos α̃ − 1) + RNIP . (7)
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Thus, squaring equation (4) and substitutingτ2 by expression (5), we obtain

[
t −
(

t0 −
2

v0
RNIP

)]2
=

4h2

v2
0

+
2R̃2

NIP

v2
0

(√
h2

r̃2
T

+ 1 − 1

)
. (8)

This result is an approximation for the traveltimet as a function of̃α andh, i.e.,t(α̃, h).
The last unknown in the above traveltime approximation is the emergence anglẽα of the zero-offset ray

at X̃0. For its determination, it needs to be related to the midpoint coordinate,xm, of the source-receiver
pair (S, G). Denoting the coordinates ofX0 andX̃0 by x0 andx̃0, respectively, Höcht et al. (1999) find

xm = x̃0 + r̃T

(√
h2

r̃2
T

+ 1 − 1

)
, where x̃0 = x0

tan α

tan α̃
. (9)

Thus, the searched-for traveltimet = t(xm, h) along raySÑIPG can be approximated by the above pair
of equationst = t(α̃, h) andxm = xm(α̃, h) parametrized bỹα.

The most important property of the traveltime approximation given by the parameterized equations (8)
and (9) is that it is completely described with the help of thezero-offset CRS parametersα, KNIP , and
KN at the central pointX0. This means it can be calculated once these parameters are given or, inversely,
these parameters can be determined by fitting such traveltime curves to the seismic data. It is the latter use
that we are looking for in the CRS method.

We stress once more that the parameterized traveltime givenby equations (8) and (9) is based on the
assumptions of circular wavefronts and a circular reflector. Therfore, it is, in principle, like the parabolic
and hyperbolic traveltimes, a second-order approximation. The expectation that it will be a more accurate
approximation than the latter ones is justified by the fact that underlying assumptions are more realistic,
i.e., more probable to be met in practice. Thus, in the same way as practice has shown that the hyperbolic
traveltime generally approximates true traveltimes better than the parabolic one, the new parameterized
traveltime is expected to provide even better approximations. The first numerical tests presented in the last
section of this paper confirm this expectation.

Taylor expansions

The above parametric form of the traveltimet(xm, h) cannot be conveniently used in an implementation of
the CRS method. For practical use, it is thus advantageous torewrite it as an explicit power series around
xm = x0 andh = 0. Up to second order, i.e., in hyperbolic approximation, thecorresponding Taylor
expansion reads

t22(xm, h) =

[
t0 +

2 sinα

v0
xm

]2
+

2t0 cos2 α

v0

[
KN x2

m + KNIP h2
]

, (10)

wherexm = (xm − x0). This is the expression that has been previously derived by Tygel et al. (1997).
The fourth-order expansion has the form

t24(xm, h) = t22 +
cos2 α

v2
0

[
Axmh2 + Bx3

m + Cx4
m + Dx2

mh2 + Eh4
]

, (11)

with the coefficients

A = 2KNIP sinα[2 − 2v0t0KN − v0t0KNIP ],
B = 2KN sinα[2 − v0t0KN ],
C = K2

N [5 cos2 α − 4][1 − v0t0KN/2],
D = KNIP{2v0t0[3 − 4 cos2 α]K2

N

−[KN(4 − 5 cos2 α) + 2KNIP sin2 α][2 − v0t0KNIP ]},
E = K2

NIP [2v0t0KN sin2 α − v0t0KNIP cos2 α/2 + cos2 α] .

(12)

CoefficientsA to E can be calculated for any given triplet of parametersα, KNIP , andKN . Therefore,
expression (11) can be as easily used in an implementation ofthe CRS stack as equation (10).
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Important configurations

For particular configurations, the above traveltime expressions reduce to simpler forms.
Common midpoint (CMP) configuration.—For the CMP configuration, we havexm = x0 or xm = 0.
As a consequence, we find for the CMP traveltime

t24,CMP (h) = t20 +
2t0 cos2 α

v0
KNIP h2 +

cos2 α

v2
0

E h4 , (13)

with E given above. Note that the second-order approximation, commonly known as the NMO moveout
formula, depends on a single (combined) parameter,

v2
NMO =

2v0

t0KNIP cos2 α
. (14)

The fourth-order CMP traveltime, on the other hand, dependson two coefficients that are combinations of
all three CRS parameters.
Zero-Offset configuration.—The zero-offset (ZO) configuration is characterized by the conditionh = 0.
The CRS traveltime expression reads then

t24,ZO(xm) =

[
t0 +

2 sinα

v0
xm

]2
+

2t0 cos2 α

v0
KNx2

m +
cos2 α

v2
0

(Bx3
m + Cx4

m). (15)

Note that the second, third, or fourth-order zero-offset traveltime depend on two, three, or four coefficients
that are combinations of only two CRS parameters (α andKN ).

Diffraction events

The N- and NIP-wave are fictitious waves that start at the reflection point NIP and propagate along the
normal ray to the central pointX0. The NIP-wave starts from a point source at NIP while the N-wave starts
from the exploding reflector at NIP.

Let us now consider the case of a pure diffraction, that is, the situation where the reflector reduces to a
single diffraction point. Then, the N- and NIP-waves reduceto identical waves, both starting from a point
source at NIP. As a consequence, they have identical curvatures atX0, i.e., KN = KNIP . Therefore,
we can use the latter identity as adiffraction conditionin the above second- or fourth-order traveltime
expressions. Upon the substitution of this diffraction condition KN = KNIP = K, the second-order
(hyperbolic) diffraction traveltime reads

t22,dif (xm, h) =

[
t0 +

2 sinα

v0
xm

]2
+

4µ cos2 α

v2
0

[
x2

m + h2
]

, (16)

where we have introduced the notation

µ =
v0t0
2

K . (17)

Note that in a homogeneous medium with wave velocityv0, this factor reduces toµ = 1.
The fourth-order diffraction traveltime is again given by equation (11) witht22 replaced byt22,dif . The

coefficientsA to E reduce to

A = 4K sin α[1 − 3µ],
B = 4K sin α[1 − µ],
C = K2[5 cos2 α − 4][1 − µ],
D = 2K2[(7 cos2 α − 6) − 3µ(5 cos2 α − 4)],
E = K2[cos2 α − µ(5 cos2 α − 4)] .

(18)

The application of the CRS method to seismic data using any ofthe so-obtained diffraction traveltime
formulas will coherently stack the energy that belongs to diffraction events, thus resulting in a stacked
section of diffractions rather than reflections.
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It is interesting to observe the values of the above coefficients in a homogeneous medium, whereµ = 1,
as mentioned above. We immediately see that in this situation, the coefficients read

A = −8K sin α,
B = 0,
C = 0,
D = −4K2(4 cos2 α − 3),
E = 4K2 sin2 α .

(19)

These expressions can be readily verified from a fourth-order Taylor expansion of the square of the exact
diffraction traveltime of a diffractor in a homogeneous medium, which using the above variables, reads

tdif =
1

v0

(√
(xm − h + R sin α)2 + (R cosα)2 +

√
(xm + h + R sinα)2 + (R cosα)2

)
. (20)

Here,R = 1/K = v0t0/2 is the distance from the diffractor to the central pointX0.

Maximum aperture

The hyperbolic CRS moveout approximates the kinematic reflection response of a curved interface in a
paraxial vicinity of the central ray. To use it in a CRS stack,it is necessary to define an appropriate aperture
inside of which the approximation is sufficiently accurate.Ideally, the aperture for the CRS stack is an
elliptical surface in the offset-midpoint domain. One axisis defined in the CMP section and the other in
the zero-offset section (Mann et al., 2000).

The above fourth-order approximation can be used to define a practically feasible CRS aperture. Its
border is located where the difference between the second- and fourth-order traveltime approximations
reaches the tolerance∆t2 for the accuracy of the traveltime approximation. In the full data volume, this is
the solution of the equation

∆t2 =
cos2 α

v2
0

[
Axmh2 + Bx3

m + Cx4
m + Dx2

mh2 + Eh4
]

, (21)

where the coefficientsA to E are given by equations (12). However, the solution of equation (21) is rather
complicated. Instead, the half-axes of the aperture ellipse can be approximated in the CMP and zero-offset
sections.

In the CMP section, the situation is much simpler since the right-hand side of equation (21) reduces to
its last term. Solving forh, we find for the aperture half-axis

hap =

[
v2
0∆t2

E cos2 α

]1/4

, (22)

whereE is given by the last of equations (12). The same formula can beused to compute an aperture for
the stack along the diffraction traveltime in the CMP section, if E given by the last of equations (18) is
used.

In the zero-offset section, the terms ofx3
m andx4

m remain in equation (21). Thus, the determination of
the aperture would still require the solution of a fourth-order equation. However, since usuallyKN � 1,
which impliesC � B, the aperture half-axis can be determined using the third-order approximation as

xap
m =

[
v2
0∆t2

B cos2 α

]1/3

, (23)

whereB is given by the second of equations (12). Again, the same formula can be used to compute an
aperture for the stack along the diffraction traveltime in the zero-offset section, ifB given by the second of
equations (18) is used.
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Figure 3: 2-D Earth model.

SYNTHETIC EXPERIMENTS

To demonstrate the quality of the second and fourth-order traveltime approximations discussed above, we
present some simple numerical examples. They are based on the 2-D synthetic model consisting of three
homogeneous layers bounded by curved interfaces depicted in Figure 3. We have compared the capability
of the hyperbolic and fourth-order traveltime expansions to approximate reflections and diffraction travel-
times under different measurement configurations in the vicinity of several pointsX0 at the earth’s surface.
One of the chosen central pointsX0, together wit the corresponding zero-offset ray to the dome-like reflec-
tor, is also indicated in Figure 3. Both approximations are compared with the exact traveltimes as computed
by ray tracing.

Figure 4 illustrates the traveltime approximations for theCMP configuration at three different central
points. In Figure 4a, we see the exact common-midpoint reflection traveltime in the vicinity of point
X0 = 1.0 km (solid line) as computed by ray tracing, together with itssecond-order (plus signs) and
fourth-order (circles) approximations. Figure 4b compares the corresponding diffraction traveltime with its
approximations. As we can clearly see, the fourth-order approximation follows the true reflection traveltime
curve more closely over the whole range of offsets than the second-order approximation. More or less the
same behaviour can be observed in parts (e) and (f) of Figure 4, which depict common-midpoint reflection
and difraction traveltimes in the vicinity ofX0 = 1.8 km. At the central pointX0 = 1.4 km (parts (c) and
(d) of Figure 4), the traveltime approximations exhibit a slightly different behaviour. At this central point,
both the second and fourth order traveltimes provide good approximations up to large offsets. Differently
from the results of our numerical experiments at all other central points, the second order approximation is
here slightly superior to the fourth order approximation.

Corresponding experiments have been realized for common-offset reflection and diffraction traveltimes
for different central points and offsets. As in the case of CMP traveltimes (see again Figure 4), the diffrac-
tion traveltimes exhibit practically the same behaviour asthe reflection traveltimes. We therefore restrict
the following discussion to the latter.

We have calculated reflection traveltimes for four different values of the half-offseth, these being
h = 0.0 km,h = 0.2 km,h = 0.5 km, andh = 1.0 km. The results in the vicinity of the same three central
pointsX0 = 1.0 km, X0 = 1.4 km, andX0 = 1.8 km, are depicted in Figures 5, 6, and 7, respectively.
We see from parts (a) of these figures that in the chosen range of midpoints, the zero-offset traveltimes
are equally well approximated by the second and fourth orderformulas. At larger offsets, the fourth order
formula generally provides the better approximation. An exception is again observed at the central point at
x0 = 1.4 km. At this point, the second-order approximation is, for a certain range of midpoints, slightly
superior to the fourth-order one (see Figure 6c). Parts (d) of of Figures 5 to 7 demonstrate that neither
the second nor the fourth order formula provides an acceptable traveltime approximation for offsets of
h = 1.0 km or larger.
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Figure 4: CMP traveltime approximations. Exact (solid line) versus second-order (plus signs) and fourth-
order (circles) approximations. (a) Reflection traveltimes atXo = 1.0km. (b) Diffraction traveltimes at
Xo = 1.0km. (c) Reflection traveltimes atXo = 1.4km. (d) Diffraction traveltimes atXo = 1.4km. (e)
Reflection traveltimes atXo = 1.8km. (f) Diffraction traveltimes atXo = 1.8km.
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Figure 5: CO times forX0 = 1.0 km. (a)h = 0.0 km. (b)h = 0.2 km. (c)h = 0.5 km. (d)h = 1.0 km.
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Figure 6: CO times forX0 = 1.4 km. (a)h = 0.0 km. (b)h = 0.2 km. (c)h = 0.5 km. (d)h = 1.0 km.
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Figure 7: CO times forX0 = 1.8 km. (a)h = 0.0 km. (b)h = 0.2 km. (c)h = 0.5 km. (d)h = 1.0 km.

As a general remark, we observe that our numerical experiments show a significant improvement, both
in accuracy and in aperture range, of the fourth-order over the hyperbolic traveltime approximation for all
configurations. The behaviour observed in the examples shown in this paper has been typical for reflections
and diffractions in most of our numerical experiments. Thus, weighing in all our numerical results, we can
conclude that the fourth order formula (11) generally provides more reliable approximations to the exact
traveltimes than the hyperbolic traveltime (10).

CONCLUSIONS

The fourth-order traveltime moveout expression of Höcht etal. (1999) has been reviewed, implemented,
and tested on a simple synthetic model. For multi-coverage data acquired along a single seismic line, this
formula approximates reflection and diffraction traveltimes at coincident source-receiver pairs arbitrarily
located around a reference source-receiver pair at a fixed central point. The investigated moveout ex-
pression is useful to provide simulated zero-offset sections. An attractive feature of this formula is that its
coefficients depend on the same three parameters as its more conventional hyperbolic CRS traveltime coun-
terpart. Our first results indicate that the fourth-order formula provides better traveltime approximations
within a significantly larger aperture than the hyperbolic formula.

Although these result are only preliminary, we feel they arevery promising for the following reasons.
A CRS stack based on a better traveltime approximation, suchas the fourth-order expression seems to
provide, promises better stacking properties as it allows to use more data and thus more redundancy. As a
result, one can expect not only better stacked sections witha higher signal-to-noise ration, but also better
estimates of the CRS parametersα, KNIP , andKN . Since these parameters are the input to a velocity
model building in an analogous way as the NMO or stacking velocities in the standard CMP method, their
improvement should reflect in the achievable quality of the obtained velocity model.

As a second potential application for the higher-order traveltime approximation, we have seen that it
can be used to define the aperture range for a CRS stack with thehyperbolic traveltime approximation. In
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this way, the otherwise arbitrarily chosen aperture of the CRS stack can be replaced by one that is based on
the actual traveltimes under investigation.
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