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ABSTRACT

We propose a method that is capable to filter out noise as well as suppress outliers of sampled real
functions under fairly general conditions. From ana priori selection of the number of knots that
define the adjusting spline, but not their location in that curve, the method automatically determines
the adjusting cubic spline in a least-squares optimal sense. The method is fast and easily allows for
selection of various possible number of knots, adding a desirable flexibility to the procedure. As an
illustration, we apply the method to some typical situations found in geophysical problems.

INTRODUCTION

In experimental sciences we are often required to representa set of measured data in the form of a smooth
curve from which desirable parameters or attributes are to be extracted. A common problem is the presence
of noise in the data. In the literature we find several methodsthat try to filter and/or smooth the data. Many
of them provide us, after application, a different sampled dataset that, following some criteria, can be seen
as smoother than the original one. We can also think of an interpolation approach, where the noisy data is
replaced by corresponding points that belong to an interpolating function.

The natural question is how should we choose the “interpolating points” from the data so as to construct
the desired smoothing function. Normally, these points areextracted from the data, in a regular fashion or
manually selected.

We propose a method that optimally selects points to define a cubic spline that best represents the data
in the least-squares sense. An interesting feature of the method is that the knot points are no longer required
to belong to the original data set. As we will see below, the method is suitable, not only for smoothing,
but also for discarding outliers. The method is designed to handle datasets composed by samples of rather
complicated real functions. It is to be stressed that, by construction, the obtained function is naturally
smooth up to second-order derivative.

The proposed method is applied to two important problems in geophysics. The first problem is to
recover horizons as part of a macro-velocity model inversion from multi-coverage seismic data and to
smooth seismic traveltime attributes (see Biloti et al. (2002)). The second application refers to smoothing
well-log data for anomaly detection and inversion purposes.

FORMULATION

Consider a noisy dataΩ = {(xj , yj) ∈ IR2 | j = 1, . . . , M}. Let N be the number of interpolating points
andΓ = {(Xi, Yi) ∈ IR2 |Xi−1 < Xi, i = 1, . . . , N} be the set of these points that defines the sought-for
cubic spline. To obtain the best setΓ, in the least-squares sense, we must solve the2N -variable problem

min
Γ

M∑

j=1

|yj − s(xj)|2 , s. t.





s is the cubic spline defined byΓ
X1 ≥ minj xj

XN ≤ maxj xj

. (1)
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To solve this problem, we have employed the optimization solver called GENCAN proposed by Birgin
and Martínez (2002). GENCAN is an active-set method for smooth box-constrained minimization. The
algorithm combines an unconstrained method, including a line search which aims to add many constraints
to the working set at a single iteration, with a recently introduced technique (spectral projected gradient) for
dropping constraints from the working set. As usual, the optimization process needs an initial approxima-
tion. For this purpose, we chose the initial set as composed by N regularly sampled pairs on the originally
given setΩ, that is,(Xi, Yi) = (xj , yj), with j = b1 + (i − 1) · (M − 1)/(N − 1)c, for i = 1, . . . , N ,
wherebxc denotes the greater integer less than or equal tox.

Note that we have not made any consideration on how to choose the number,N , of interpolating points.
The method is designed to automatically find, in the least-squares sense, the best cubic spline for the
specified number of knotsN . Of course, for a small number of pointsN , the obtained spline will not be
able to represent more than the general trend of the curve. Onthe other extreme, for large values ofN , the
spline will tend to fit even the outliers. Since the method is fast, it is reasonable to estimate the cubic spline
for several choices ofN . This flexibility can be very useful to the user or interpreter, in the sense that a
number of inexpensive trials can be implemented before a final decision on which level of smoothness is
the best choice for the problem.

APPLICATIONS

We now illustrate the application of the proposed method to some common practical situations. We start by
testing the ability of the method to smooth a sequence of the four datasets of increasing difficulty, shown
in Figure 1. We next apply the procedure to two problems related to seismic imaging and inversion, shown
if Figures 2 and 3, respectively.

General situations

Figure 1(a) shows that the method efficiently handles and removes white noise. In the next example (Fig-
ure 1(b)), besides the noise, some outliers were added. Again, the optimized cubic spline represents the
data very well. In Figure 1(c), we see that the obtained curveis able to well describe abrupt variations of
the data. Finally, in Figure 1(d), we see that the method is robust enough to provide good results even in
the presence of discontinuities. Note that, in particular,there are no Runge effects near the discontinuities.

Horizon reconstruction

We present the results of an algorithm for reconstruction ofinterfaces and inversion of attributes from
2D-multi-coverage seismic data. As reported in Biloti et al. (2001), the procedure has been successfully
applied to invert a layered macro-velocity model from the data. Figure 2(a) depicts the inverted model,
where the estimated interfaces (solid lines) were approximated byconventionalcubic splines (constructed
by selection of knots among the sampled set). In Figure 2(b),we can see the improvement of the inverted
model, when the interfaces where constructed upon the application of the proposed technique.

Well-log analysis

Well logs play the important role of linking rock parametersto seismic data. As an example, impedance
functions derived from well logs are generally used for identification and characterization of reservoir
anomalies. Well data (e.g., P-and S-velocities and density) are, in general, very noisy, so it may be desirable
to consider the parameters as smooth functions of depth (or time). Figure 3 shows the application of the
method to smooth a couple real data well logs. On the top of thefigure, the new method was used with
N = 20 knots. On the bottom of the figure, the number of knots wasN = 30.

CONCLUSIONS

We presented an automatic method for smoothing and outlier suppression of data sets that consist of sam-
pled real function points. After ana priori selection of the number of knots, the procedure automatically
finds the location of the interpolating points, in such a way that the resulting smoothing function (a cubic
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Figure 1: Examples of cubic spline optimal adjust. In all graphs the black line represent the noisy data
(linearly interpolated), the blue line states for the initial approximation for the optimization solver, the red
line is the optimized cubic spline obtained, and the red dotsare the knots that define that spline.
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Figure 2: Multiparametric traveltime attributes inversion. The dashed lines represent the real interfaces
and the solid lines represent the obtained ones. In (a) the interfaces were approximated by interpolating
splines, and in (b) they were approximated by optimal splines. The real and the estimated velocities arevi

andve
i , respectively.
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Figure 3: P- and S-velocities and density well logs, in black, and ajusted cubic spline, in red, with (a)
N = 20 and (b)N = 30.
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spline) is optimal in the least-squares sense. As the methodis fast, it allows the user to apply the procedure
to different numbers of knots, so as to choose the degree of smoothness that best fits the data. A particular
feature of the method is its ability to adjust to abrupt discontinuities on the data.

The few illustrations presented in the text show a wide applicability of the method. As further applica-
tions, the method could be useful for purposes such as tomographic inversion and automatic picking.
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