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ABSTRACT

We propose a new strategy for true-amplitude migration of PS converted waves. Supple-
mentary to PP imaging for AVO analysis this provides additional constraints for the shear
properties of the target layer. Our method needs only coarse gridded traveltime information
as input data. The coefficients for a fast and accurate traveltime interpolation algorithm and
the weight functions are computed on-the-fly. This makes the method highly efficient in
terms of computational time, and particularly storage. A synthetic example illustrates the
method.

INTRODUCTION

One of the main goals of true-amplitude migration is the study of AVO behavior to investigate
shear properties. PP imaging, however, fails in the presence of gas clouds. Also, to examine, e.g.
the saturation of gas sands, it does not yield sufficient information (Castagna and Backus, 1993).
Therefore processing of PS data has become a tool for looking through gas clouds. The use of
techniques like weighted stacking inversion (Smith and Gidlow, 1987) leads to approximated
PP and PS reflection amplitudes. We introduce a new strategy for true-amplitude migration of
PS waves, that is an extension of Schleicher et al.’s (1993) method to converted waves. As we
have shown previously for amplitude preserving migration of PP waves (Vanelle and Gajewski,
2001c), all required quantities can be determined from traveltimes on coarse grids. This makes
the algorithm highly efficient in terms of computational time and storage.

METHOD

A diffraction stack of the form (Schleicher et al., 1993)
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yields a true-amplitude migrated trace if proper weight functions W (ξ1, ξ2, M) are applied. In
equation (1) A is the aperture of the experiment (assumed to provide sufficient illumination).
∂U(ξ1, ξ2, t)/∂t|τD(ξ1,ξ2,M) is the time derivative of the magnitude of the displacement vector U

in trace coordinates (ξ1, ξ2), that describe the source and receiver location, taken at the diffrac-
tion traveltime τD for a diffractor at a subsurface point M . Schleicher et al. (1993) derive the
following expression for the weight functions:

W (ξ1, ξ2, M) = L
√
|detHF | e

i π
2

�
1− sgnHF

2 � . (2)

In equation (2) the quantity L is the geometrical spreading. The matrix HF is the Hessian matrix
of the difference τF = τD − τR between diffraction and reflection traveltime at the stationary
point ξ∗1 , ξ

∗
2 , where ~∇τF = 0. This means that in this point the diffraction and reflection travel-

time curves are tangent to each other. HF and L can be expressed in terms of second-order spatial
derivatives of traveltimes. Please note, that equation (2) is a generic formulation of the weight
functions applicable to monotypic waves and converted waves. It even holds for anisotropic me-
dia if appropriate expressions for L and HF are used. For PS and SS waves in anisotropic media,
however, the situation is more complicated, because shear wave coupling has to be considered.

Provided that a traveltime curve is locally smooth and single-valued, τ can be expanded into
a Taylor series. This corresponds to the paraxial approximation

τ(s, g) = τ0 + q0 ∆g − p0 ∆s −∆s>N ∆g +
1

2
∆g>

G ∆g − 1

2
∆s>S ∆s . (3)

The approach is the same for multi-valued traveltimes, but the different branches of the trav-
eltime curve have to be treated separately. In equation (3) p0 and q0 are the slowness vectors
at the source (s0 = s(τ0)) and receiver coordinates (g0 = g(τ0)). The matrices G, S and N

are the second-order derivatives of the traveltime with respect to receiver, source and mixed co-
ordinates. Vectors and matrices have dimension two and represent a projection onto reference
surfaces, e.g., the reflector (for further details, see Bortfeld 1989). Multi-fold traveltime tables
are available, since they are required for the diffraction time surface anyway. Traveltimes for
certain source-receiver combinations are inserted into (3), which can then be solved for the cor-
responding slowness components and matrix elements. If traveltime data is not directly available
in the reflector surface, the coefficients can nevertheless be determined by using a form of (3)
that is not restricted to a projection surface (Vanelle and Gajewski, 2001c).

Diffraction traveltimes can be decomposed into the downgoing and upgoing ray segments,
each of them written in terms of (3) using appropriate labels to distinguish between both seg-
ments, e.g., by the indices 1 for the downgoing and 2 for the upgoing raypath. Expressing also
the reflection traveltimes by equation (3) leads to the following result for HF (Schleicher et al.,
1993):

HF =
(
N1

>
Σ + N2

>
Γ
)> (G1 + G2)

−1 ×
(
N1

>
Σ + N2

>
Γ
)

. (4)

In the case of a PS converted wave, the downgoing ray (index 1) corresponds to the P wave
and the upgoing ray (index 2) is an S wave. Therefore matrices N1 and G1 are determined from
traveltimes for the P wave, and N2 and G2 from S-traveltimes. The matrices Σ and Γ are con-
figuration matrices associated with the trace coordinates, e.g., for a common-shot configuration
Σ = 0 (zero) and Γ = 1 (the unit matrix) (Schleicher et al., 1993).
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That the diffraction traveltime can be constructed from two segments means that the diffrac-
tion time surface along which the summation stack is carried out can be obtained by interpolation
using (3) from the coarse input traveltime grid onto the fine migration grid. We have, however,
shown (Vanelle and Gajewski, 2001b), that a hyperbolic variant of equation (3) yields better re-
sults than the parabolic approximation (3) itself. It is obtained by expanding τ 2 into a Taylor
series, that reads

τ 2(s, g) = (τ0 + q0 ∆g − p0 ∆s)2 − 2 τ0∆s>N ∆g + τ0∆g>
G ∆g − τ0∆s>S ∆s . (5)

The vectors and matrices are the same as in equation (3) and can be determined from traveltimes
in a similar fashion as for the parabolic variant (Vanelle and Gajewski, 2001b).

The geometrical spreading can also be written in terms of second-order traveltime derivatives
as shown by Hubral et al. (1992). Their results were, however, derived for monotypic waves.
For a converted wave we must include an additional factor to allow for the discontinuity of the
spreading at the interface (Červený et al., 1977). This leads to

L =
1

vs
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1√
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e−i π
2
κ . (6)

where the matrix N is given by

N = N1 (G1 + G2)
−1

N2
> . (7)

The angles ϑs and ϑg in (6) are the emergence and incidence angles at the source and receiver.
ϑ1 is the incidence angle at the interface and ϑ2 the reflection angle. vs is the velocity of the
downgoing wave at the source. In the case of a PS converted wave this will be the P-velocity.
Equation (6) is also valid for monotypic waves, where ϑ1 = ϑ2, and thus the discontinuity factor√

cos ϑ1/ cosϑ2 equals 1. All angles can be computed from the slownesses, and therefore from
traveltimes, e.g., for ϑs:

cos ϑs =
√

1 − v2
s p01 ·p01 . (8)

The expression for the weight function resulting from (6) is

W (ξ1, ξ2, M) =
1
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where κi are the KMAH indices of the down- and upgoing ray branches. These need not be
computed, if a suitable traveltime generation tool is used, as, e.g., the technique by Coman and
Gajewski (2001), which outputs multi-valued traveltimes sorted for the KMAH index. Equation
(9) for monotypic waves results in the equations given by Schleicher et al. (1993).

APPLICATION

A 2-D example is given: ray synthetic seismograms (Figure 1) were obtained for a two-layers
model with a horizontal interface in a common-shot configuration. The P-velocity is α1=5km/s
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Figure 1: Synthetic common-shot section: The receiver spacing is 10m but only every fifth trace
is shown here.

in the upper layer and α2=6km/s in the lower layer that lies at a depth of 2km below the source.
The S-velocity is βi = αi/

√
3 and the density is given by ρ = 1.7 + 0.2α (ρ in g/cm3 and α

in km/s). 300 receivers with a spacing of 10m were distributed starting 10m away from a line
source. Only PS reflections were considered in this example. Note that in two dimensions the
analytic trace U must be (iω)1/2-filtered. This corresponds to the time derivation in equation (1)
in three dimensions.

Traveltimes were computed analytically on a 10m grid. They were the only input data for
the determination of the migration weights in a 2-D variant of equation (2) as well as for the
(hyperbolic) traveltime interpolation. All coefficients were computed from the hyperbolic ap-
proximation (5).

The migrated depth section is shown in Figure 2. Reflection coefficients were picked from
the section and are compared to analytical results. Figure 3 shows good accordance between
the two curves. The (negative) peak at a distance of 1.8km is a boundary effect caused by the
limited extent of the receiver line, which provides sufficient illumination of the reflector only for
distances smaller than 1.8km. This also causes the diffraction that shows in the migrated section
(Figure 2).

CONCLUSIONS

We have presented a new strategy for true-amplitude migration of PS converted waves. It is
based on the determination of all required properties alone from traveltime data. The traveltime
tables need only be sampled on coarse grids, leading to considerable savings in storage. The on-
the-fly computation of migration weight functions as well as a fast and highly accurate traveltime
interpolation scheme reduce the necessary amount of computational time. A numerical example
shows good accordance between the reconstructed reflector and theoretical values in terms of
position as well as in reflection coefficients.
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Figure 2: Migrated depth section: The reflector was migrated to the correct position. The
amplitude matches the reflection coefficient. The diffraction is a boundary effect (see text).
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Figure 3: Recovered reflection coefficients from the common-shot gather in Figure 1: Solid
line: picked reflection coefficients from the migrated section in figure 2. The peak at 1.8km is a
boundary effect (see text). Dashed line: analytical values for the reflection coefficients.
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PUBLICATIONS

The method of traveltime-based true-amplitude migration was introduced by Vanelle and Gajew-
ski (2001c). More details on the traveltime interpolation and the determination of the coefficients
can be found in Vanelle and Gajewski (2001c). In Vanelle and Gajewski (2001a) the authors de-
scribe how the optimum migration aperture can be obtained from traveltimes.
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