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ABSTRACT

True-amplitude migration based on a weighted diffraction stack is a task of high computa-
tional costs. These can be significantly reduced if the involved summation is carried out only
over traces which really contribute to the stack result, i.e., a limited aperture instead of the
whole aperture of the experiment. We introduce a technique to determine an optimum mi-
gration aperture that needs only traveltime tables as input information. These are also used
for the “on the fly computation” of the true-amplitude weight functions and for an efficient
and highly accurate traveltime interpolation. The new strategy leads to considerable savings
in computational time and storage. A synthetic example illustrates the method.

INTRODUCTION

True-amplitude migration is a particular form of Kirchhoff-type migration. It is based on a
weighted summation stack along diffraction time surfaces. If the summation is carried out over
the whole aperture of the experiment, this becomes a very time consuming process, not only be-
cause of the summation itself, but also for the computation of proper weight functions. Although
this latter problem can be overcome by determining weights from traveltimes directly (Vanelle
and Gajewski, 2001c), the requirements in computational time are not the only difficulty: traces,
where the diffraction time and the traveltime of the associated reflected event differ by more than
the duration of the source pulse (this criterion defines the minimum migration aperture), do not
contribute to the desired migration result. Including them in the summation leads to an increase
in migration noise. Thus, a restriction to the minimum aperture as an optimized migration aper-
ture can significantly enhance the image quality as well as the computational efficiency. Also,
once the minimum aperture is determined, boundary effects can be recognized as such.

Although it is a different physical concept, the definition of the optimized (minimum) aper-
ture bears a strong formal relationship to the (first) Fresnel zone, the intersection surface of the
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Fresnel volume with the reflector surface. In 1992, Červený and Soares propose an algorithm
for Fresnel volume ray tracing. They “believe that Fresnel volume ray tracing will find [. . . ]
applications [. . . ] in the inversion of seismic data in the near future”. Hubral et al. (1993a)
describe the Fresnel zone in paraxial approximation in terms of second-order derivative matrices
of traveltimes. For the zero-offset situation the projection of this paraxial Fresnel zone onto the
earth’s surface is given in Hubral et al. (1993b). Schleicher et al. (1997) derive an expression
for the projected Fresnel zone for arbitrary measurement configurations. They also introduce
an expression for the size of the optimum migration aperture, which is again derived using the
paraxial approximation. They further show that in this approximation both, projected Fresnel
zone and optimum migration aperture, coincide.

Schleicher et al. (1997) compute the optimum migration aperture by means of dynamic ray
tracing. We suggest to determine the optimum aperture from coarse-gridded traveltime tables.
These traveltime tables are needed in any event for the diffraction stack. We apply a fast and
accurate traveltime interpolation from the coarse input grid onto a fine migration grid to compute
the stacking surface. At the same time we use the interpolation coefficients to compute migration
weight functions and to determine the migration aperture. This strategy highly improves the
computational efficiency of true-amplitude migration. Since only traveltime tables on coarse
grids are required, the amount of storage is also considerably reduced.

METHOD

A diffraction stack of the form (Schleicher et al., 1993a)

V (M) = − 1

2π

∫

A

∫
dξ1 dξ2 W (ξ1, ξ2, M)

∂U(ξ1, ξ2, t)

∂t

∣∣∣∣
τD(ξ1,ξ2,M)

(1)

yields a true-amplitude migrated trace for a 3-D medium if proper weight functions W (ξ1, ξ2, M)
are applied. In Equation (1), V (M) represents the migration output at a selected depth image
point M , A is the aperture of the experiment (assumed to provide sufficient illumination). Also,
∂U(ξ1, ξ2, t)/∂t is the time derivative of the input seismic trace in terms of its trace coordinates
(ξ1, ξ2), which describe the source and receiver location according to the given configuration.
That derivative is evaluated at the diffraction traveltime surface, t = τD(ξ1, ξ2, M), that cor-
responds to the fixed image point, M , and varying source and receiver locations described by
(ξ1, ξ2), within the aperture A. Since it is required for all Kirchhoff migration methods, we
assume that an a priori velocity model exists. As described in Schleicher et al. (1993a), the
weight function, W (ξ1, ξ2, M), can be expressed in terms of dynamical quantities that refer to
the ray segments SM and GM , which connect the source at S = S(ξ1, ξ2) and the receiver at
G = G(ξ1, ξ2). We use the weight function

W (ξ1, ξ2, M) =

√
cos αs cos αg

vs

∣∣det[N1
>Σ + N2

>Γ]
∣∣

√
|detN1 detN2 |

e−i π
2
(κ1+κ2) , (2)

which is equivalent to the one derived by Schleicher et al. (1993a), but uses a different notation.
In Equation (2), vs is the velocity at the source. The angles αs and αg are the emergence angle at
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Figure 1: Schematic seismic section for a single reflector and traveltime curve for a diffraction
point on the reflector. Dashed lines: reflection traveltime τR (coinciding with the events) and
τR + τL. Solid line: diffraction traveltime τD. Traces outside the optimum aperture, which is
given by the intersection points between the diffraction curve and the “end” of the signal, do not
contribute to the diffraction stack.

the source and the incidence angle at the receiver. The matrices N1 and N2 contain second-order
traveltime derivatives and are explained further below. The quantities κn are KMAH indices,
where the index 1 in κn and Nn refers to the ray segment SM , and index 2 to GM . The matrices
Σ and Γ are configuration matrices associated with the trace coordinates, e.g., for a Common-
Shot configuration Σ = 0 (zero) and Γ = 1 (the unit matrix). Please refer to Schleicher et al.
(1993a) for details.

Depth migration using Equation (1) leads to high computational costs. For each subsurface
point under consideration the diffraction time surface must be computed and for each combi-
nation of source-subsurface-receiver points the individual weight function is required. We have
shown that the necessary amount of computational time and storage can be significantly reduced
if migration weights are determined “on the fly” (i. e. not kept in the computer memory) from
traveltimes (Vanelle and Gajewski, 2001c). These traveltimes need only be given on coarse grids
and can at the same time be used as input data for an efficient interpolation onto the required fine
migration grid (Vanelle and Gajewski, 2001b).

A further reduction of the computational effort is possible, if only those traces are summed
up that really contribute to the stack (1). Figure 1 shows an extract of a seismic section for a
single reflector and a diffraction traveltime curve for a point on the reflector. One can easily see
that only those traces contribute to the stack where the diffraction traveltime curve τD is within
the reflection traveltime τR and τR plus the duration of the signal, τL. Schleicher et al. (1997) use
this criterion to define the minimum aperture which is also the optimum aperture:

|τF | = |τD − τR| ≤ τL , (3)

where τF is the difference between diffraction and reflection traveltime.
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To find an expression for the optimum aperture as it is given by Equation (3), we expand
τF into a second-order Taylor series with respect to the 2-D source-receiver location coordinates
ξ = (ξ1, ξ2). The expansion is centered at the stationary point ξ∗, where τD = τR and ~∇τF = 0:

τF =
1

2
(ξ − ξ∗) >

HF (ξ − ξ∗) , (4)

in which HF is the Hessian matrix of the traveltime difference τF . With this equation and Equa-
tion (3), the optimum aperture in paraxial approximation is given by (Schleicher et al., 1997):

1

2
|(ξ − ξ∗)>HF (ξ − ξ∗)| = τL . (5)

The matrix HF in Equation (5) can be written in terms of second-order spatial derivatives
of traveltimes. To find an appropriate expression for HF we introduce specific 2-D Cartesian
coordinate systems. These are located on the tangent planes to the recording surface at the
source and the receiver, as well as on the tangent plane to the reflector at the reflection point.
Details can be found in Vanelle and Gajewski (2001a). Using these coordinate systems, we split
up reflection and diffraction traveltimes into the traveltime τ1 of the ray segment from an initial
source at s to the subsurface point at the position r (we denote this ray segment by the index
1), and the traveltime τ2 from a receiver at the coordinate g to r (denoted by the index 2). The
traveltimes τ1 and τ2 are in the paraxial approximation given by

τn(xn, r) = τ0n
+ q0n

∆r − p0n
∆xn −∆xn

>
Nn ∆r +

1

2
∆r>Gn ∆r − 1

2
∆xn

>
Sn ∆xn , (6)

where for n=1 the vector x1=s, and for n=2 the vector x2=g. The traveltime τ0n
is τ(x0n

, r0).
The slowness vectors p0n

at x0n
and q0n

at r0 correspond to the first order derivatives (the index
n for the considered ray branch is omitted in the following equations (7) and (8)):

p0I
= − ∂τ

∂xI

∣∣∣∣
x0,r0

q0I
=

∂τ

∂rI

∣∣∣∣
x0,r0

. (7)

The second order derivatives are given by the matrices Si, Gi and Ni with

SIJ =− ∂2τ

∂xI∂xJ

∣∣∣∣
x0,r0

= SJI

GIJ =
∂2τ

∂rI∂rJ

∣∣∣∣
x0,r0

= GJI

NIJ =− ∂2τ

∂xI∂rJ

∣∣∣∣
x0,r0

6= NJI . (8)

Vectors and matrices have dimension two and represent a suitable projection onto the registration
surface at x0n

, and the assumed reflector at r0. Suitable in this context means that the curvature
of the registration surface and the reflector are also taken into consideration.
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The matrices introduced in Equation (8) are ingredients of a propagator matrix that is used
in surface-to-surface propagation (Schleicher et al., 1993b). One result of the application of the
propagator formalism is the following expression for the matrix HF :

HF =
(
N1

>
Σ + N2

>
Γ
)> (G1 + G2)

−1 (
N1

>
Σ + N2

>
Γ
)

. (9)

The matrix HF , more precisely the matrices Gn depend on the curvature of the reflector under
consideration. Therefore, the determination of HF is possible for reflection points M , where
the inclination and curvature of the reflector have been estimated from the a priori information,
e.g., the velocity model or an image which results from a previous migration step. If the depth
point M is such that these properties can not be determined, e.g., if no identified reflector surface
exists, we may nevertheless consider it, because the migration described by Equation (1) yields
non-negligible results only if the depth point M is on, or in the near vicinity of a reflector. There-
fore we treat each depth point M , meaning each candidate for a reflection point as if it were a
reflection point. It is in this sense that the term “reflector candidate” and the reflection traveltime
τR are to be understood.

Schleicher et al. (1997) apply dynamic ray tracing for the computation of the second order
derivative matrices that form HF . We suggest to determine these matrices directly from the
traveltimes that are in any event required for the diffraction time surface and the weight functions.
As we will show in the following section, they can also be employed for an efficient traveltime
interpolation onto the fine migration grid and to compute the true-amplitude weight functions.

IMPLEMENTATION

In this section we will explain how the migration weight functions and the optimum migration
aperture are determined. Both can be expressed in terms of traveltime derivatives that are also
used for traveltime interpolation. A three-dimensional variant of Equation (6) can be used for the
traveltime interpolation. We have, however, shown, that a hyperbolic form of (6) yields higher
accuracy than (6) (Vanelle and Gajewski, 2001b). Therefore we use a hyperbolic expansion of
the traveltimes instead of (6). It is obtained by expanding τ 2 into a Taylor series of second order:

τ 2(x̂, r̂) = (τ0 + q̂0 ∆r̂− p̂0 ∆x̂)2 − 2 τ0∆x̂>
N̂ ∆r̂ + τ0∆r̂>Ĝ ∆r̂ − τ0∆x̂>

Ŝ ∆x̂ . (10)

The vectors and matrices in this equation are not the same as in Equation (6) as they have di-
mension three (denoted by the hat) in an arbitrary Cartesian coordinate system. Since multi-fold
traveltime tables are required for the stack anyway, we will use these to determine the coeffi-
cients of (10): Traveltimes for certain source-receiver combinations are inserted into (10). The
resulting equations can then be solved for the slownesses and matrices. The procedure can be
found in detail in Vanelle and Gajewski (2001b). Please note that Equation (10) also allows for
the interpolation of sources, not only receivers.

The matrices Nn and Gn which are needed for the computation of HF (matrix Nn is also
needed for the weight functions) can be determined from N̂n and Ĝn by rotating the latter onto
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the tangent planes of the recording surface and the reflector candidate. Moreover, the curvature
of the recording surface and the reflector has to be considered. The procedure is described in
the Appendix. To do this, we assume that a priori information on the velocity model is avail-
able. For simple models the inclination of a reflector can be computed from the gradient of the
velocity model. More generally, for example if the velocity model is smooth, it can be extracted
from a previous migration. The determination of the reflector curvature follows similar lines.
For image points that are not located on a reflector, this information will not be available. For
these cases, however, the inclination and curvature are irrelevant, because the migration output
will be negligible, regardless of inclination and curvature. For simplicity, we assume both to be
zero for those points. If the reflector’s inclination but not its curvature can be determined for
a point which is located on the reflector, we expect that the approximation of the reflector by a
locally plane surface will yield satisfactory results in many cases. This assumption appears to be
acceptable since applicability of the ray method requires that the radius of reflector curvature is
large compared to the wavelength. Moreover, the recovered reflection coefficient is a plane wave
reflection coefficient.

The migration weight functions as well as the size of the optimum migration aperture can
now be computed. We must, however, still determine the center of the aperture, that corresponds
to the stationary ray. For this we can also use the coefficients of Equation (10), more precisely
the slowness vectors. Again, we assume that the inclination angle of the reflector candidate be
known and the slownesses are given accordingly. The incidence angle αinc on the reflector is
then given by

cos αinc =
√

1 − v2
inc q01 ·q01 , (11)

where q01 is the (2-D) slowness vector at the candidate reflector of the ray from the source to the
reflector. Similarly, q02 is the slowness vector of a ray from a geophone to the candidate reflector.
The reflection angle αref is expressed by an equivalent of (11) but using q02 instead. Since the
stationary ray obeys Snell’s law, the center of the aperture is the geophone position where the
difference between αinc and αref is minimal.

EXAMPLE

We have applied our algorithm to simple generic models. These have the advantage of known
analytic solutions for the involved quantities. Therefore they are very useful for the validation
of the method. The example we give here is a two-layer model with an inclined interface. The
inclination angle is 63◦ and the model has a velocity of 5km/s above and 6km/s below the re-
flector. A ray-synthetic common-shot section was computed using a Gabor wavelet with a signal
length of 25ms. The migration was carried out first using the original noise-free data, and then
for the same dataset with white (random) noise added, having a signal-to-noise ratio of 2. The
noisy input section is shown in Figure 2. In both cases we have applied the optimum aperture as
well as the complete aperture for comparison. In limiting the aperture we must, however, take
into account that boxcar filtering produces undesirable effects like ringing or overshooting in the
migrated image. Therefore a taper was applied at the endpoints of the aperture.
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Figure 2: Synthetic common-shot section for a 63◦ inclined reflector: The receiver spacing is
10m but only every fifth trace is shown here. The signal-to-noise ratio is 2.

Figure 3 shows the recovered reflection coefficients from the noise-free section and analytic
values. Compared to the whole aperture result, application of the optimum aperture leads to
slightly overestimated reflection coefficients. This effect is more pronounced if the taper is omit-
ted. For example, at 2.7 km distance the error of the recovered reflection coefficient is 1.3% if
the whole aperture is used, it is 1.7% for the tapered optimum aperture and 3.0% for the opti-
mum aperture without taper. The reason for the overestimation of the reflection coefficients is
that the paraxial optimum aperture given by Equation (5) represents an approximation for the
optimum aperture. Figure 4 demonstrates the difference between the exact optimum aperture
(which can be computed for this type of model, but closed form solutions do not exist for arbi-
trary models) and the optimum aperture in paraxial approximation. Please observe in Figure 4
that traces within the required aperture, but not within the paraxial aperture would give negative
contributions to the stack. This is why the reflection coefficients are overestimated. By apply-
ing the taper, additional traces outside of the paraxial aperture are allowed to contribute. This
leads to a partial compensation of the overestimation caused by the errors of the paraxial aperture.

The AVO behavior, however, by which we signify the gradient or the general shape of the
AVO is of more interest for interpretation than the absolute value of the reflection coefficients.
It is less affected by the effect described above than the absolute value: Figure 3 shows that the
AVO trend is preserved for all three cases, whether the whole aperture is used or the optimum
aperture, with or without taper. For reflectors with moderate or no inclination the effect takes
place on a smaller scale.

The reflection coefficients that result from the noisy input data on the 63◦ reflector are shown
in Figure 5 together with the analytic values. Please keep in mind that in this example the quality
of the input section is very poor. For a better signal-to-noise ratio the scatter in the recovered re-
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Figure 3: Recovered reflection coefficients from noise-free data for a 63◦ inclined reflector:
Dashed line: analytic reflection coefficients. Dotted line: recovered coefficients if the whole
aperture is used. Solid lines: recovered coefficients if the optimum aperture is used. The black
line results from applying a taper to the aperture, the gray line follows without tapering. The
reflection coefficients from the optimized aperture migration are overestimated (see text). The
peak near 2.5km is a boundary effect caused by insufficient illumination of the reflector due to
the limited extent of the receiver line.
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Figure 4: Exact and paraxial optimum migration aperture for a point on the 63◦ inclined reflector.
Dashed line: reflection traveltime plus signal length τR + τL. Solid line: diffraction traveltime
curve τD. The center of the paraxial aperture that corresponds to the stationary ray is located at
ξ∗.
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Figure 5: Results from noisy data for a 63◦ inclined reflector: Dashed line: analytic reflection
coefficients. Solid line: recovered reflection coefficients if the optimum aperture is used. Dotted
line: recovered coefficients if the whole aperture is used.

flection coefficients is significantly smaller. The migrated depth sections of the noisy data using
the optimum aperture and the whole aperture are shown in Figure 6. In both cases the reflector
has been migrated to the correct position but the image quality is improved if the optimum aper-
ture is used. This effect may be more apparent if more than one arrival is present in the input
section. If e.g., another reflection event in the data would cut through the one under consider-
ation, it would add unwanted contributions to the stack, thus increasing the noise. By limiting
the aperture, this higher noise can at least be averted for unwanted events that lie outside of the
aperture.

We have shown that the application of our method to simple types of models yields good
results in terms of image quality and recovered amplitude. The goal of our strategy is to pro-
vide these good results and at the same time reduce the requirements in computational time and
storage. The storage problem can be overcome by using coarse gridded traveltimes as only input
data. For example, a ratio of coarse grid spacing to fine grid spacing of ten leads to a factor of
10−5 less traveltime data that must be computed and held in storage. This high figure comes
from the possibility of interpolating also sources, not only receivers.

The savings in computational time that result from the reduction of the migration aperture
alone are difficult to estimate because of the various factors involved in the size of the required
aperture. To give an idea about possible savings, we have compared the optimum aperture to the
complete aperture for the case of a single, horizontal reflector. The results are shown for 2-D and
3-D in Figure 7. We have varied three parameters to demonstrate their influence on the aperture:
the velocity in the upper part of the model, the reflector depth, and the signal length. For small
cable lengths, the savings are moderate because the required apertures are not much smaller than
the total cable length. If the cable length is increased, the ratio of required aperture to complete
aperture decreases. The effect of the velocity and signal length are similar since both are closely
related to the wavelength. For varying reflector depth we find a more pronounced change in
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Figure 6: Migrated depth sections of noisy data for the 63◦ inclined reflector. Left: the whole
aperture was used; right: only traces within the optimum aperture were used.

the behavior of the required aperture. The shallower the reflector is, the higher is the incidence
angle of the wave with the normal to the registration surface, leading to an increase in apparent
wavelength. This requires a larger aperture.

CONCLUSIONS

We have presented a new strategy for limited-aperture true-amplitude migration. Use of a lim-
ited aperture in migration can significantly reduce the computational time and at the same time
enhance the image quality. The optimum migration aperture is determined from coarse gridded
traveltime information only. These data are also the only input for the computation of migration
weights, as well as for a fast and accurate traveltime interpolation onto the fine migration grid.
The strategy of employing only coarse gridded traveltime data for the determination of all re-
quired quantities leads to considerable savings in computational time and, particularly, storage.
A simple numerical example illustrates the applicability of the method and confirms the high
potential savings in computational time.

PUBLICATIONS

The method of traveltime-based true-amplitude migration was introduced by Vanelle and Gajew-
ski (2001c). More details on the traveltime interpolation and the determination of the coefficients
can be found in Vanelle and Gajewski (2001c). In Vanelle and Gajewski (2001a) the authors de-
scribe how the optimum migration aperture can be obtained from traveltimes.
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Figure 7: Possible savings in percent of computational time by using the optimum migration
aperture (100% corresponds to the complete aperture). The velocity model considered here has
a horizontal reflector between two layers of constant velocity. The parameters that were varied
in these plots are the velocity in the upper layer (top), the reflector depth (middle) and the length
of the source pulse (bottom), on the left for 2-D and right for 3-D.
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APPENDIX A

In this appendix we will explain how the second-order derivative matrices Nn and Gn are com-
puted, if the surface under consideration is curved and its orientation does not coincide with the
coordinate system in which the traveltime tables are given. In the traveltime system, denoted by
a hat ,̂ the parabolic 3-D traveltime expansion is given by

τ(x̂, r̂) = τ0 + q̂0 ∆r̂ − p̂0 ∆x̂ −∆x̂>
N̂ ∆r̂ +

1

2
∆r̂>Ĝ ∆r̂ − 1

2
∆x̂>

Ŝ ∆x̂ . (12)
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In the coordinate system associated with the surfaces, e.g., the reflector, which we denote by a
tilde ,̃ the traveltime expansion reads

τ(x̃, r̃) = τ0 + q̃0 ∆r̃ − p̃0 ∆x̃ −∆x̃>
Ñ ∆r̃ +

1

2
∆r̃>G̃ ∆r̃ − 1

2
∆x̃>

S̃ ∆x̃ . (13)

The reflector coordinate system has the 1- and 2-axes in the reflector’s tangent plane at r̃0 = r̂0

and the 3-axis perpendicular to it. The vector ∆r̃ = (∆r,∆r3)
> = (∆r1,∆r2,∆r3)

> describes a
point on the reflector. Its 3-component is given by

∆r3 =
1

2
∆r>Fr∆r , (14)

where the 2×2 matrix Fr is the curvature matrix of the reflector. It is zero for a plane reflector,
therefore the 3-component vanishes in this case. The 2-D vector ∆r is computed by

∆r = 12×3 R̂r ∆r̂ , (15)

where the matrix 12×3 = 1
>
3×2 is

12×3 =

(
1 0 0
0 1 0

)
. (16)

The matrix R̂r in Equation (15) describes the rotation into the tangent plane of the reflector. It is
given by

R̂r =




cos θr cos φr − cos θr sin φr sin θr

sin φr cos φr 0
− sin θr cos φr sin θr sin φr cos θr


 . (17)

(see Figure 8). Equations (14) and (17) also apply to the recording surface with the appropriate
subscript x instead of r. The vectors ∆r and ∆x are the same as in Equation (6), the traveltime
expansion into the reflector and recording surface.

Since the traveltime must not depend on the coordinate system, expressions (12) and (13)
must be equal for a point on the reflector. Applying Equations (14) and (15) for both recording
and reflector surface, and retaining only terms up to second order yields

τ(x, r) = τ0 + q0 ∆r − p0 ∆x −∆x>
N ∆r +

1

2
∆r>G ∆r − 1

2
∆x>

S ∆x . (18)

The 2×2 matrices N, G, and S are the same as in Equation (6) and are computed from the matrices
N̂, Ĝ, and Ŝ as follows:

N = 12×3 R̂x
>
N̂ R̂r 13×2 ,

S = 12×3 R̂x
>
Ŝ R̂x 13×2 +

cos αx

vx
Fx ,

G = 12×3 R̂r
>
Ĝ R̂r 13×2 +

cos αinc

vr

Fr . (19)

The angle αinc is the incidence angle on the reflector and αx is the angle between the ray and
the recording surface. The quantity cos αinc/vr is the 3-component of the slowness vector in
the reflector coordinate system (accordingly for cos αx/vx). Similar results were also derived by
Hubral et al. (1992) using a different notation.
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Figure 8: Rotation of 3-D second-order derivative matrices into the reflector tangent plane:
the coordinate system of the reflector (gray) is denoted by a tilde .̃ The Cartesian system that
coincides with the system in which the traveltime tables are given is indicated by a hat .̂ The
angle θr is the angle between the 3-axes in both systems. In this plot the angle φr is zero, as well
as the curvature of the reflector.


