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ABSTRACT

A combination of finite-difference (FD) traveltime algorithm and first-order perturbation
theory is used for fast 3-D computation of traveltimes of P-waves in arbitrary anisotropic
medium. An isotropic medium as a reference medium works well for weak anisotropy. Us-
ing media of ellipsoidal anisotropy as a background medium in the perturbation approach
allows to consider stronger anisotropy without loosing the computational speed because
the traveltime computation in such a medium using FD eikonal solver is fast and accurate.
Traveltimes in the unperturbed reference medium are computed with an FD eikonal solver,
while perturbed traveltimes are obtained by adding a traveltime correction to the traveltimes
of the reference medium. To compute the traveltime correction, the raypaths between source
and receivers in the reference medium must be known. The FD eikonal solver computes
traveltimes on a discrete grid assuming local plane wavefronts inside the grid cells. Cor-
rected rays are not determined in this method. Therefore, we suggest to approximate rays by
ray segments corresponding to the plane wavefronts in each cell. We compute the traveltime
correction along these segments. Numerical examples show that the reference model with
ellipsoidal anisotropy allows to consider perturbed model of strong anisotropy with a higher
accuracy of the FD perturbation method.

INTRODUCTION

Robust and efficient methods for the traveltime computation are important in many seismic and
inversion applications. There are two major approaches which can be used for computing travel-
times: ray tracing methods and methods which are based on a direct numerical solution of the
eikonal equation using finite-differences (e.g. Vidale (1988), Vidale (1990), Qin et al. (1992)).
The ray tracing methods are complicated and time consuming when applied in anisotropic media
because for each propagation step an eigenvalue problem must be solved. Similar to the isotropic
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case the ray methods in anisotropic media fail in shadow zones or in the vicinity of a caustic.
In the isotropic case this problem disappears when using FD methods. FD eikonal solvers were
extended to anisotropic media by Dellinger (1991), Eaton (1993), Lecomte (1993). Dellinger
(1991) uses the upwind scheme of Van Trier and Symes (1991) for transversely isotropic media.
Eaton (1993) applies an expanding-wavefront scheme on a hexagonal grid in 2-D anisotropic
models. He approximates one component of the slowness vector using FD and finds the root
of the sixth-order polynomial for the other component numerically. Lecomte (1993) applied the
finite difference calculation of traveltimes for P-wave using the method of Podvin and Lecomte
(1991) for a 2-D model with elliptical and orthorhombic symmetry.

The aim of our work is to compute traveltimes of P-wave in arbitrary anisotropic media with-
out solving higher order polynomials numerically. Perturbation techniques are suitable tools
to describe wave propagation in complicated media. We suggest to combine the perturbation
method and the FD eikonal solver for the traveltime computation. Traveltime computation by
perturbation with FD eikonal solvers in isotropic and weakly anisotropic media in 2-D was con-
sidered by Ettrich (1998). Here we examine the FD perturbation method in the 3-D case for
media of strong anisotropy.

An isotropic medium as a reference medium works well for weak anisotropy. Using media of
ellipsoidal anisotropy as a background medium in the perturbation approach allows to consider
stronger anisotropy without loosing the computational speed because the traveltime computation
in such media is fast and accurate using the FD eikonal solver . A basic routine for the FD eikonal
solver for an elliptically anisotropic medium in the 3-D case was offered by Ettrich (1998). He
tested his routine in an ellipsoidal medium with identical velocities along two direction (ellipsoid
with the rotation symmetry). Our algorithm works in the ellipsoidal reference medium with three
different velocities along axes. Therefore it is possible to use a broader class of ellipsoidal media
as a reference medium.

To minimize errors in the perturbation approach, the reference medium should be chosen
closely to the given anisotropic medium. For construction of a reference medium we use formulas
for a best-fitting ellipsoidal reference medium which were derived by Ettrich et al. (2001). They
obtained linear relations for the coefficients of the ellipsoidal medium that depend on the elastic
coefficients of the anisotropic medium. In this study it is assumed that the polarization vector
coincides with the phase normal vector. Therefore, only P-wave anisotropy is approximated.

FINITE-DIFFERENCE PERTURBATION METHOD

The conception of the 2-D FD perturbation method was suggested in a paper of Ettrich and
Gajewski (1998). Our goal is the 3-D extension of this method and its implementation in the
case of arbitrary anisotropic media (for P-waves). We consider a reference model (isotropic or
elliptically anisotropic) and a perturbed arbitrary anisotropic model. For both models velocities
or elastic parameters are calculated on the same regular grid. The reference medium is given by
the P-wave velocity v;ef for the isotropic case or by 3x3 symmetric matrix R;; for the elliptically
anisotropic case. These parameters of the reference medium are determined from parameters of
the considered perturbed medium. In this paper the perturbed medium is given by the density
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normalized elastic parameters c;;;. Traveltimes for the reference model are computed directly
using the FD eikonal solver along expanding wavefront (Qin et al., 1992). For the perturbed
model we perform the traveltime computation using perturbation techniques. The traveltime
correction is calculated for every step of the FD scheme in every grid cell along the ray segment
corresponding to the plane wave in this grid cell.

Reference medium

To minimize errors in the perturbation approach the reference medium should be chosen as close
as possible to the given anisotropic medium. For the ellipsoidal reference medium construction
we used formulas for a best-fitting ellipsoidal reference medium which were derived by Ettrich
at al. (2001). They obtained linear relations for the coefficients of the ellipsoidal medium which
depend on the elastic coefficients of the anisotropic medium. In this study it is assumed that the
polarization vector of the wave coincides with the phase normal vector. Therefore, only P-wave
anisotropy can be considered. To construct the isotropic reference model we use formulas for the
best fitting isotropic medium derived by Fedorov (1968) by minimizing the norm of differences
between elastic coefficients of the anisotropic and the isotropic medium.

FD scheme

This section will briefly outline finite-difference scheme. In WIT report 2000 (p. 239-248) we
presented the algorithm of the FD eikonal solver for an 3-D elliptically anisotropic media in
detail.

We developed a FD eikonal solver for the traveltime computations in the reference medium
of ellipsoidal anisotropy Ellipsoidal anisotropy means three different velocities along the main
axes. The eikonal equation for this type of medium reads:

(p,Rp) =1, 1)

where p is a slowness vector, R is a 3x3 symmetric matrix of parameters of the ellipsoidal
reference medium, (') denotes scalar product. The eikonal equation allows for the computation
of one slowness vector component if the other two and the medium parameters are known. In
our algorithm the approximating formulas of the eikonal equation for an elliptically anisotropic
medium are used. This formulas were suggested by Ettrich (1998). They are analogous to
Vidale’s approximating formulas of the eikonal equation for 3-D isotropic media (Vidale, 1990).

To retain causality and to guarantee stability we expand wavefronts (Qin et al. 1992). In
anisotropic media two kinds of velocities need to be considered: the ray velocity and the phase
velocity. The propagation of energy and, therefore, the causal continuation of computation is
governed by the ray velocity vectors. In isotropic models where the group and the phase velocity
vectors coincide, the causality is achieved by sorting the outer points of the irregular volume of
timed points with respect to traveltime from minimum to maximum. In anisotropic media the
group velocity vector and the phase velocity vector do not coincide. Therefore it is not sufficient
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to carry out the computation from the point with minimum traveltime to the point with maximum
traveltime. For every step of the FD scheme we must compare the direction of the scheme of
expansion with the direction of the group velocity. The traveltime in a given grid point has been
successfully computed if the directions coincide, otherwise the point with minimum traveltime
is not a point for a casual expansion and we have to consider the next timed point.

The phase velocity is determined from the eikonal equation, but the ray velocity in elliptically
anisotropic media must be calculated from v, = R p.

Using a homogeneous model we tested the accuracy of the traveltime computation by the
3-D FD eikonal solver for an elliptically anisotropic medium. Figure 1 shows the numerically
calculated wavefronts for the elliptically anisotropic models which are the best-fitting ellipsoidal
reference medium for triclinic sandstone (a) and orthorhombic olivine (b). The parameters of
the ellipsoidal media used are given in equations (4) and (6). Because it is 3-D model we give
two slices: with zero (on the left-hand side) and non-zero offset (on the right-hand side). The
underlying grayscale images show the relative errors.

We consider a reference and a perturbed model for which elastic parameters are defined on the
same regular grid. Traveltimes must be calculated at all grid points for both models. We consider
the arbitrary anisotropic medium as a perturbed one and the elliptically anisotropic medium as a
reference one. The perturbed medium is given by the density normalized elasticity tensor A,
the parameters of the reference medium which define an ellipsoid are constructed from Ay,
using the coefficients for the approximation of an arbitrary anisotropic medium from Ettrich et al.
(2001). The traveltimes in reference medium are computed directly using the FD eikonal solver
method for an elliptically anisotropic model. For the perturbed medium we perform traveltime
computations using perturbation techniques.

Basic perturbation formulas

To compute traveltimes for an arbitrary anisotropic medium a perturbation scheme is embedded
into the FD eikonal solver: traveltimes at every grid point of the reference model are computed
and the perturbation method is used for the computation of the traveltime corrections to yield
traveltimes in the perturbed (arbitrary anisotropic) model.

To compute the traveltime correction, the raypath between source and receivers in the refer-
ence medium must be known. Rays are not determined in the FD method. In the FD method
traveltimes are computed on a discrete grid assuming local plane wavefronts inside the grid cell,
therefore, we compute the traveltime correction along the ray segments corresponding to the
plane wavefronts in each cell. The ray segment is a straight line between the grid point (see
Figure 2), where the traveltime is to be found (point A7), and the point where the ray crosses the
cell boundary (point N) which is defined using the ray velocity vector. The ray velocity for the
reference ellipsoidal medium is given by the simple formula: v, = R p. Here R is the matrix
of the medium parameters (see equation 1), p is slowness vector computed for this grid cell. The
traveltime at a point on the cell boundary (point N) is obtained by linear interpolation between
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the corner points of the cell. Therefore, the traveltime at point A7 for the perturbed model is:
tpert (AT) = tref (AT) + At (N) + At(N, AT),
where t,.,, is the traveltime in the perturbed model and ¢,.; is the traveltime in the reference

model, At" = t,.,.(N)—t..;(IN) is the difference between the traveltimes at point N in perturbed
and reference models, and At(N, A7) is the traveltime correction derived by Cerveny (1982):

tref (A?)
1
At(N, A7) = ) Acijrpipig;grdt. )
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Figure 1: Wavefronts in a homogeneous elliptically anisotropic model: (a) — in the reference
medium for triclinic from equation (6); (b) — in the reference medium for olivine from equation
(4). For each model there are two slices with offset 0 km (left) and 0.4 km (right) from the source
located at point (0.5, 0.5 and 0.5 km). An underlying grayscale images shows the relative errors
of the traveltime computation. Maximum of relative errors in the whole 3-D model does not
exceeds 0.35% for the case (a) and 0.45% for the case (b).
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where:
AC“ - Cpert _ Cref
ijkl — S5kl ijkl

The parameters cg’;{t) are the density normalized elastic coefficients of the anisotropic medium,
p; are the components of the slowness vector, and g; are the components of the quasi P-wave
polarization vector. The vectors p and g depend on the reference medium. For isotropic reference
medium the P-wave polarization is a unit vector which is normal to the wavefront and the density

. . . . A
normalized elastic coefficients are defined from c;“f,g = —0;;01, + H((Sikéﬂ + 0410;%). In the case

of the ellipsoidal reference medium we substitute the wavefront normal vector n instead of the
unknown polarization vector A (see Ettrich et al., 2001), therefore, the traveltime correction

reads:
tref(A7)

1
At(N, A7) = -3 / (Aijrnjng, — Ry)pipidt, ©)

tref(N)
where R;; is a 3x3 matrix as given in equation (1) of an ellipsoidal reference medium. The
assumption that the vector of polarization coincides with the wavefront normal introduces a
additional error, which is quantified by numerical examples in the following section.

NUMERICAL RESULTS

To illustrate the traveltime computation by the FD perturbation method in 3-D anisotropic media,
we choose two types of symmetry: triclinic and orthorhombic. To make an estimate of accuracy
we consider homogeneous media. For comparison, traveltimes for all models are computed for
isotropic and elliptically anisotropic reference models. In the figures, traveltimes are presented

A6 A7
")

A4 AS

A2 A3

A0 Al

Figure 2: Grid cell with timed points Al through A6. A local plane wavefront is assumed to
propagate through the cell to calculate the traveltime at A7. The raypath in the cell defined from
the direction of the ray velocity V, is the length between the intersection point N and A7. V,,, is
a phase velocity.
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by first-arrival wavefronts. Traveltimes in a perturbed medium are called exact traveltimes (exact
wavefronts) if they are computed directly by anisotropic ray tracing or analytically. They are
considered to be exact with respect to the proved accuracy of the method used.

The traveltime errors in our examples are caused by three sources: the error of the numerical
computation of traveltimes in a reference ellipsoidal (or isotropic) model using an FD method,
the inherent error of the perturbation technique and the error by approximating the polarization
vector by the wavefront normal vector (in the case of an ellipsoidal reference model) in the
traveltime correction formula (equation 3).

A model cube of 100x100x100 is considered. The grid has 100 cells along each direction
and the grid spacing is 10 m. The source is placed at the center of the models, at point (0.5; 0.5;
0.5 km). A cubic region of 11 grid points around the source is initialized using the exact solution.
Since 3-D models are presented we always show two slices: with zero and non-zero offset from
the source.

First, we will consider a test model with orthorhombic anisotropic elastic parameters of
olivine. The density normalized parameters are:

97.77 21.62 20.05 0. 0. 0.
71.0 22.83 0. 0. 0
59.68 0. 0. 0. .99 0 0
1951 0. 0 — 67.35 0 ; V,=85km/s (4)
57.25
23.86 0.
23.77

Coefficients for the best-fitting ellipsoid reference medium (Ettrich et al., 2001) and P-wave ve-
locity for the best-fitting isotropic reference medium (Fedorov, 1968) are listed on the right. To
compute traveltimes in this medium of strong P-wave anisotropy we use three types of reference
media: isotropic, elliptically anisotropic and transversely isotropic with elliptical P-wavefront.
The isotropic reference medium is constructed using formulas for the best fitting isotropic refer-
ence medium which were derived by Fedorov (1968). In this reference medium the polarization
of the P-wave is a unit vector in the direction of the slowness vectors. Figures 3a and 4a display
the exact wavefronts in the olivine model (solid lines) and the circular wavefronts in the best
fitting isotropic reference medium (dashed lines). Referring to Figures 3b and 4b we observe the
largest relative errors between exact (dashed lines) and FD perturbation traveltimes (solid lines)
where the isotropic reference medium does not give the best fit. The maximum of the relative
errors for the whole 3D model is 3.9 %. Such large errors are expected, because the anisotropy
of the perturbed model is too strong to use any isotropic reference medium.

An elliptically anisotropic reference medium for the perturbation method allows to consider
stronger anisotropy. However, for this type of reference medium we do not have the polariza-
tion vector to compute the traveltime correction (see equation (2)). The elliptically anisotropic
medium is constructed using formulas for the best fitting elliptically anisotropic (ellipsoidal)
medium (Ettrich et al. (2001)). (This formulas are linear relations for the coefficients of the el-
lipsoidal reference medium which depend on the elastic coefficients of the anisotropic medium,
therefore, are convenient to use). To obtain this formulas the authors assumed that the polar-
ization vectors coincides with the phase normal vector. We make the same assumption and use
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Figure 3: Wavefronts in a homogeneous model of olivine from equation (4); slice with zero off-
set from the source located at point (0.5, 0.5, 0.5 km). On the left-hand pictures solid lines show
exact wavefronts and dashed lines show wavefronts in the reference models: (a) — isotropic
model; (c) — elliptically anisotropic model; (¢) — transversely isotropic model. On the right-
side pictures the FD perturbation method wavefronts (solid) for the corresponding reference
model and exact wavefronts (dashed) with the underlying grayscale images of relative errors.
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Figure 4: Wavefronts in a homogeneous model of olivine from equation (4); slice with offset
0.4 km from the source located at point (0.5, 0.5, 0.5 km). On the left-hand pictures solid lines
show exact wavefronts and dashed lines show wavefronts in reference models: (a) — isotropic
model; (c) — elliptically anisotropic model; (¢) — transversely isotropic model. On the right-
side pictures FD perturbation method wavefronts (solid) for the corresponding reference model
and exact wavefronts (dashed) with the underlying grayscale images of relative errors.
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Figure 5: Wavefronts in a homogeneous model of triclinic sandstone from equation (6); slice
with zero offset from the source located at point (0.5, 0.5, 0.5 km). On the left-hand side ex-
act wavefronts (solid) and reference wavefronts (dashed): (a) — elliptically anisotropic model;
(c) — isotropic model. On the right-hand side FD perturbation method wavefronts (solid) for the
corresponding reference model and exact wavefronts (dashed) with underlying grayscale images
of relative errors: (b) — elliptically anisotropic model; (d) — isotropic reference medium.

equation (3) instead of equation (2) to compute the traveltime corrections in the perturbed model.
Figures 3c and 4c show the exact wavefronts in olivine (solid lines) and the reference wavefronts
in the best fitting elliptically anisotropic (ellipsoidal) medium (dashed lines). This reference
model gives the best fit to the perturbed medium. From Figures 3d and 4d we notice that the
accuracy of the computation is higher than for the isotropic background media. The maximum
of relative errors for the whole 3-D model is 1.89%. This error is mainly due to the approx-
imation of the unknown polarization vector by the phase normal, while the error produced by
the traveltime computation using the FD eikonal solver in the reference model does not exceed
0.45% (see Figure 1).

Following Burridge et al. (1983) there are three possibilities to simplify orthorhombic sym-
metry to ellipsoidal symmetry. One of these three possibilities is useful to construct a transversely
isotropic medium with elliptical P-wavefront. For this case we can compute the correct polariza-
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Figure 6: Wavefronts in a homogeneous model of triclinic sandstone from equation (6); slice
with offset 0.4 km from the source located at point (0.5, 0.5, 0.5 km). On the left-hand side
exact wavefronts (solid) and reference wavefronts (dashed): (a) — elliptically anisotropic model;
(c) — isotropic model. On the right-hand side FD perturbation method wavefronts (solid) for the
corresponding reference model and exact wavefronts (dashed) with underlying grayscale images
of relative errors: ((b) — elliptically anisotropic model; (d) — isotropic reference medium.

tion vector for the elliptically anisotropic reference medium. The transversely isotropic medium
with the axis of symmetry along X -axis direction has ellipsoidal symmetry if the non-zero elastic
parameters satisfy the relations:

C1116(22 - 0122 (5)
Cii+ Con +2C1
Because of the non-linear relations between the elastic parameters in equation (5) we construct

the reference medium in the following simple manner. The transversely isotropic reference
medium for olivine using (5) was constructed in the following way:

1
Cop = Cs3; Cia=Cl3; Cs5 =Chs; Cus = 5(022 - 023); Css =

9

) 1 ) ) 1 ) ) )
Cu=Cfi" Cio=5(CH" + C"); Cn = 5(CH" + CF"); O = O

Figures 3e and 4e display the exact wavefronts in olivine and the wavefronts in the reference
medium with transversely isotropic symmetry using equation (5). Underlying grayscale images
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in Figure 3f and 4f show the relative errors. The maximum of the relative errors in the whole
3-D model does not exceeds 1.2 %. We observe that the largest relative errors are located where
bigger differences of the angle between the wavefront normals in perturbed and reference me-
dia occur (in other words, the raypaths are too different). The perturbation method gives high
accuracy when the raypaths in both media are close to each other.

Now we will consider a test model of triclinic sandstone. The density normalized parameters
are:

6.77 0.62 1.0 —-048 0. —-0.24

495 043 0.38 0.67 0.52 <6.88 027 027

510 —0.05); V,=2.38km/s (6)
5.08

5.09 —-0.28 0.09 -0.09
2.35 0.09 0.
245 0.0

2.88

Coefficients for the best-fitting ellipsoid reference medium (Ettrich et al., 2001) and P-wave ve-
locity for the best-fitting isotropic reference medium (Fedorov, 1968) are listed on the right. This
medium has strong P-wave anisotropy and irregular velocity surfaces caused by the relatively
small non-orthorhombic coefficients. The left-hand sides of Figure 5 and Figure 6 display exact
wavefronts in the triclinic sandstone (solid lines) and reference wavefronts (dashes lines) in the
ellipsoidal model (Figures 5a and 6a) and in the isotropic model (Figures 5¢ and 6¢). On the
right-hand side, these figures display results of the numerical computation by the FD perturba-
tion method with the ellipsoidal reference medium (Figures 5b and 6b) and with the isotropic
reference medium (Figure 5d and Figure 6d). The underlying grayscale images show relative
errors. The maximum of the relative errors in whole the 3-D model is 2.26% when the ellip-
soidal reference medium is used and 2.40% for calculations with the isotropic reference medium.
(The appropriate accuracy of the traveltime computation in the elliptically anisotropic reference
medium is displayed in Figure 1a). Although the maximum errors in traveltimes with the ellip-
tically anisotropic reference medium is close to the maximum errors in the traveltimes for the
isotropic medium for this particular model, we observe for the other models in Figures 5 and 6
that the accuracy for the ellipsoidal reference medium is considerably better for most grid points.

CONCLUSIONS

We have presented a finite-difference perturbation method for the efficient computation of travel-
times for P-waves in arbitrary anisotropic 3-D media. An arbitrary anisotropic medium is con-
sidered as a perturbed model with respect to a simple reference medium. Traveltimes in the
reference medium are computed using the FD eikonal solver which allows fast and accurate
computation of traveltimes, while traveltimes in the perturbed medium are obtained by adding
traveltime corrections to the traveltimes of the reference medium. Instead of the raypath between
source and grid point we use the ray segments corresponding to plane wavefronts in each grid
cell.

We suggest to use models of ellipsoidal symmetry as a reference model to compute travel-
times for strong anisotropic media. An elliptically anisotropic medium approximates a medium
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of strong anisotropic better than an isotropic one. The corresponding eikonal equation is only
slightly more complex then for the isotropic case. The primary source of errors related to the
elliptically anisotropic medium is the unknown polarization vector which is needed to carry out
the traveltime correction with the perturbation method. We have substituted the unknown polar-
ization vector by the phase normal vector to compute the traveltime correction and the compared
accuracy of the traveltime computations with the accuracy in the case of an isotropic reference
medium. The maximum of the relative errors in the whole 3-D model for the olivine model with
respect to the isotropic reference model is 3.9%, while with respect to the elliptically anisotropic
model it is 1.89%. In the case of the isotropic reference model, the deviation between the per-
turbed and the reference model is too large. On this case the inherent error of the perturbation
scheme is larger than the error caused by the approximation of the unknown polarization vectors
in the case of an elliptically anisotropic reference medium.

PUBLICATIONS

Previous results concerning traveltimes for anisotropic media using the FD perturbation method
were published Soukina et al. (2001). A paper containing these results will be submitted to
Geophysical Prospecting (Soukina et al. (2002).)
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