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ABSTRACT

In seismic reflection experiments, the reflected wave is strongly influenced by hetero-
geneities in the reflector overburden. Thus, the amplitude of the reflected wave decreases
due to scattering attenuation. This effect must be taken into account when generating seis-
mic images of the reflector as well as for calculating the reflection coefficients. Using the
generalized O’Doherty Anstey formalism for 2-D and 3-D random media it is possible to
correct this transmission losses due to scattering. We apply this correction method to syn-
thetic data for 2-D randomly heterogeneous media. AVO/AVA analysis of the corrected data
yields more reliable estimations of reflection coefficient.

INTRODUCTION

Accurate estimations of reflection coefficients are of great importance for reservoir character-
ization as well as for seismological studies of crystalline-crustal structures. In deep seismic
soundings, assessments of reflection coefficients are generally obtained by calculating the ratio
of reflected to incident amplitudes. In traditional AVO/AVA-processing schemes the amplitudes
of the raw data are used, while in modern AVO/AVA analysis the use of the amplitudes of mi-
grated sections is common practice. So far, in conventional procedures geometrical spreading
was taken into account, but the transmission losses due to scattering at isomorphic small scale
heterogeneities within the overburden have been ignored.

It is well known that scattering attenuation and dispersion influence strongly the amplitudes
of waves propagating through an heterogeneous medium. These transmission losses due to scat-
tering cause an underestimation of the reflection coefficients. Widmaier et al. (1996) have shown
how to compensate for these effects in layered media. They included this compensation into an
amplitude-preserving Kirchhoff migration scheme, but they pointed out, that it can also be used
in traditional AVO/AVA- processing schemes shown e.g. by Castagna (1993). Another correction
strategy was proposed e.g. by Wapenaar and Herrman (1996). In respect of the work of Wid-
maier et al., we use the traditionally way here. This study proposes a method that compensates
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the scattering attenuation effects due to random isomorphic heterogeneities, so that it is possible
to obtain a more reliable estimation of reflection coefficients.

First, we outline the scattering attenuation description as proposed in a work of Müller and
Shapiro (2001) about pulse propagation in heterogeneous media. Thereafter, using synthetic
seismograms of a shot gather, we illustrate how to improve amplitude processing in order to
compensate for the effect of scattering attenuation. This is done by means of two numerical
examples. The first refers to the scaling typical for reflection seismology of a subducting plate
involving crystalline rocks. The second example refers to a the scaling typical for exploration
seismology, where the overburden of a target reflector is heterogeneous. Original and corrected
synthetic AVA-curves for both examples are then compared to results for the corresponding ho-
mogeneous reference models. Finally, in order to suppress random fluctuations of AVA curves,
we perform the same AVA-processing scheme using more than one shot and discuss the results
in comparison with those for a single shot.

THEORY OF SCATTERING ATTENUATION

Theoretical methods to describe the pulse propagation and to quantify scattering attenuation in-
clude the meanfield theory using the Born approximation or the traveltime-corrected meanfield
formalism developed by Sato (1982) and Wu (1982). The meanfield theory overestimates scatter-
ing attenuation, while the traveltime-corrected meanfield formalism excludes large wavenumbers
so that scattering at large-scale heterogeneities is not taken into account. Additionally, it requires
a heuristically chosen cut-off wavenumber which can be only determined by numerical tests.

Primary wavefields can be described by the generalized O’Doherty-Anstey formalism in sin-
gle realizations of 1-D random media Shapiro and Hubral (1999). Based on the Rytov and
Bourret approximations Müller and Shapiro (2001) described the seismic primary propagation
in single realizations of 2-D and 3-D random media. Using the causality principle, Müller et al.
(2001) extended this formalism to a broad frequency range. Due to sound analogies it can be
understood as an extension of the O’Doherty-Anstey theory to 2-D and 3-D random media. In
the case of a point source excitation in 2-D we find the following approximation for the Green’s
function from this theory:
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1
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is the scattering attenuation coefficient and

ϕ(ω, L, a, σ2) ≈ k + 2πk2
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denotes the phase increment. In equations (1)-(3) k = ω
c0

denotes the wavenumber, where c0 is
the constant background velocity, resulting from the averaged squared slowness, and L represents
the travel distance. Φ2D(κ) is the fluctuation spectrum which contains the second-order statistics
of the medium’s fluctuations, i.e. the variance σ2 of the P-wave (S-wave) velocity in rocks and the
correlation length a. H denotes the Heaviside step function. The functions FC and FS denote
the Fresnel cosine and sine integrals, respectively. The validity range of the Green’s function (1)
in terms of the wave parameter D = 2L/(ka2) is
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}
, (4)

where λ denotes the wavelength. Note that equation (1) is also restricted to the weak wavefield
fluctuation regime. The formula for the scattering attenuation coefficient in the 3-D case could be
calculated by multiplying the integral in equation (2) with another π and the bracket term with κ.
We emphasize that the Green’s function (1) is suitable to estimate single realizations of seismo-
grams. More precisely, equation (1) describes maximum probable primaries. No averaging must
be applied to the wavefield. In principle, equations 1- 3 can be used to correct the wavefield for
amplitude as well as for velocity dispersions and traveltime shift effects of the elastic scattering
in the overburden. In this paper we restrict ourself to the correction of the impact of attenuation
effect, as the most significant scattering effect in disturbance of amplitudes.

The transmission losses are characterized by the scattering attenuation coefficient (2). Ac-
cording to equation (1), the transmissivity is approximately given by

T (L, ω0) ≈ e−α(L,ω0)L, (5)

where ω0 is the dominant frequency of the transmitted wavelet. Regarding equation (2) it is
clear that informations about the statistical properties of the medium have to be known. If near-
surface studies are performed, the statistical medium attributes can be obtained by using well-
log data. For deeper investigations, or in the case of deep reflection profiling of the lithosphere,
these properties have to be determined from statistical analysis of teleseismic or local seismicity
wavefield fluctuations (see e.g. Wu and Flatté, 1990).
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EXAMPLE FROM REFLECTION SEISMOLOGY: A SUBDUCTING PLATE

In our first example we used a model, which scaling is based on a section of the ANCORP96
profile in the Central Andes, South America. It illustrates a dipping reflector at a depth of about
60-70 km (“the subducting plate”) overlaid by a layer with randomly distributed velocity and
density fluctuations (see Figure 1 for details). We modeled wave propagation by using a 2-
D finite-difference staggered grid scheme for the elastodynamic wave equation (Saenger et al.,
2000). The heterogeneous overburden consists of statistically isotropic velocity fluctuations char-
acterized by an exponential autocorrelation function like B(r) = σ2e−

|r|
a . Thereby a standard

deviation of σ = 1.5% and a correlation length of a = 1 km are chosen, r represents the spatial
distance. Furthermore, the constant P-wave velocity in the part of the model below the reflector
is 8km/s and in the heterogeneous part the constant background velocity is 6km/s. S-wave
velocity is given by vs = vp√

3
, the density by an approximation of the Nafe-Drake (see e.g. Lud-

wig et al., 1970) relation ρ = (1.755 + 0.155 vp

1000
) · 1000[kg/m3]. Starting from a point source

at 80km (see Figure 1), the waveforms are recorded with 200 receivers over an offset range of
about 20km. Thus, the resulting travel distances are between 120km and 140km.

The right hand side of Figure 1 shows an example of some of the computed synthetic seis-
mograms. The magnification of the reflected P-waves in Figure 1 indicates that the amplitude
decreases with increasing travel distance. This amplitude decrease is mainly caused by geomet-

Figure 1: left: Model of a dipping reflector. The heterogeneous overburden is determined by
a constant background P- velocity of 6km/s. The S-velocity is about 3.5km/s and the mean
density is 2700kg/m3. Below the reflector the constant P-velocity is 8km/s, the S-velocity is
about 4.6km/s and the density is 3000kg/m3. The point source is located at x = 80km and 200
receivers are placed between 80km and 100km. Right: Shot gather (z-component). The zooms
shows some reflected p-wave amplitudes at short offsets (left) and large offsets (right).
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rical spreading, but its significant amount is also due to scattering. Later, synthetic sections will
show that the effect of scattering attenuation is smaller than the effect of geometrical spreading
but it also has to be taken into account to prevent an underestimation of the reflection coefficient.

For computing the reflection coefficient, the amplitudes of the direct and the reflected waves
are used. Using the traditional AVA-processing scheme as described by Castagna, we picked the
x- and z-components of both waves and performed a vector-addition of the components. After
this step, we corrected the amplitudes for geometrical spreading. Usually, this correction for ge-
ometrical spreading is the last step of the processing before calculating the reflection coefficient,
but we additionally introduced a travel distance- and frequency-dependent scattering correction
as a new step in the amplitude processing scheme. For this correction, the amplitudes have to be
multiplied with the reciprocal transmissivity T−1(L, ω0) = eα(L,ω0)L (see also equation 5) before
evaluating the reflection coefficient R = Aincident

Areflected
as a function of angle of incidence (or offset).

We calculated the amplitude spectrum of the reflected wave to get the dominant frequency (see
Figure 2). The amplitude spectrum indicates a dominant frequency between 6.4Hz and 8.4Hz.
Figure 3 illustrates the reciprocal transmissivity for several frequencies depending on travel dis-
tance for our model. The black line represents the reciprocal transmissivity for a frequency of
about 7.4Hz. The plot shows that the reciprocal transmissivity is not strongly sensitive to the
frequency in the interval between 6.4Hz and 8.4Hz. We chose the mean value (7.4Hz) as our
dominant frequency.
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Figure 2: Amplitude-spectrum of the reflected wave. The dominant frequency is approximately
fdom ≈ 7.4Hz.

By means of one trace with offset 5600m, Figure 4 shows the influence of the correction
of the transmission losses due to scattering. The black dashed line represents the uncorrected
trace, while the solid grey line shows the trace which has been corrected for the above mentioned
scattering losses. It is obvious, that the discrepancy between the corrected and the uncorrected
amplitude is quite significant. In this example the difference between corrected and uncorrected
amplitude is about 30%.

This difference exists for all reflected amplitudes. So, the comparison between corrected and
uncorrected amplitudes for all offsets results in an underestimation of about 30%, if the correction
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Figure 3: Reciprocal transmissivity versus travel distance for frequencies from 0Hz (bottom)
to 20Hz (top) in steps of 5Hz (blue lines). The black line shows the values for our dominant
frequency 7.4Hz.

is not used. Thus, this error occurs also in the estimation of the reflection coefficient. Our
computed corrected and uncorrected reflection coefficients in combination with the theoretical
value for a homogeneous reference model are shown in Figure 5. To calculate these theoretical
values we used an explicit equation for P-P reflectivity derived from the Zoeppritz equations by
Aki and Richards (see also Castagna, 1993), which is valid for small changes in layer properties.
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Figure 4: Part of the uncorrected (blue line) and the corrected (red line) reflected trace recorded
at 5600m offset.

Working with one shot and fitting the RPP in both cases (uncorrected and corrected) by a
straight line (Figure 5a), a significant improvement can be observed after the correction: The
grey line corresponding to the corrected reflection coefficients agrees reasonably well with the
black curve corresponding to the homogeneous reference model. Thus, the proposed amplitude
processing indeed corrects for scattering attenuation due to small scale heterogeneities (in respect
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to the travel distance) in the reflector overburden. Without the scattering attenuation correction
significantly smaller reflection coefficients are obtained. It can be seen that the proposed cor-
rection also improves the general behavior of the reflection coefficient. However, the relative
fluctuations of RPP remain uncompensated. A strategy to reduce these fluctuations is following.
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Figure 5: Variation of reflection coefficient by stepwise added shot points for a model of a
subducting plate. (a) The dashed blue line and the red solid represent the linear fits for corrected
and uncorrected RPP , respectively. (a-d) Blue points: Mean values of the uncorrected RPP , red
triangles: Mean values of the corrected RPP , black solid: RPP in the homogeneous reference
model.

Figure 5a shows that due to interaction with random heterogeneities in the overburden the
reflection coefficient RPP is not only decreased but exhibits strong fluctuations. Thus, the inter-
pretation of the AVO/AVA behavior is still difficult. We propose to reduce these fluctuations by
using more than one shot. To demonstrate this, we consider eight shot points with distances of
one correlation length (1km) from each other, whereas the first shot point is the same as in the
first experiment. Regarding same offsets of the different shots, the reflected rays pass through
different heterogeneities, so on an average the fluctuations should be decreased. After picking
the direct and reflected amplitudes of every trace, we calculated the reflection coefficients for
each shot and corrected them for transmission losses in the same way as described above. Then
we assigned the computed RPP values to their corresponding angles and averaged over the shots.
Moreover, the stepwise reduction of the fluctuations of the reflection coefficient with increasing
number of shot points involved into the averaging is illustrated in Figure 5b-5d. The mean values
of RPP for same angles for 4,6 and 8 shots are shown in this figure. A comparison of the result
with eight shots to that with one (Figure 5a) illustrates the improvement when many shots are
used: The use of the shot averaging reduces the fluctuations of RPP obviously. Now an inter-
pretation of the AVA behavior becomes possible. Because of the chosen geometry the reflection
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coefficients outside the interval [1.2◦, 7◦] are not averaged with as much values as the rest of the
points. This explains, why the fluctuations are still large there.

EXAMPLE FROM EXPLORATION SEISMOLOGY: A PLANE HORIZONTAL
REFLECTOR WITH A HETEROGENEOUS OVERBURDEN

In this example we construct a model with a plane target reflector, which is overlaid by random
heterogeneities. The depth of the reflector is supposed at 1.5km. Here, 700 receivers are dis-
tributed over an offset range of 2.8km, so that the maximum travel distance is about 4km. We
choose a correlation length of a = 40 m and a standard deviation of σ = 3%. For this example,
the heterogeneous overburden is determined with a constant background velocity of 3km/s and
the homogeneous part below the reflector with a constant P-wave velocity of 4km/s. S-wave
velocity and density are calculated as shown in the first example. The dominant frequency is
about 47Hz. The strategy to calculate the reflection coefficient for this example is the same as
described above.
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Figure 6: Reflection coefficient for a model of a plane horizontal reflector with a heterogeneous
overburden. (a-d) Blue points: mean values of the uncorrected RPP , red triangles: mean values
of the corrected RPP , black solid: RPP in the homogeneous reference model.

Figure 6 shows the results of the RPP calculations. As well as in the reflection seismology
example, we noticed an improvement of RPP after using the correction. However, the difference
between corrected and uncorrected reflection coefficient is not as large as in the example above.
For small offsets this difference is more significant than for large offsets. This is caused by the
small discrepancy between large offsets O and travel distances L, so that the exponential terms
in the correction formula RPP = Areα(L,ω0)L

Aieα(O,ω0)O practically cancel out.
The influence of the transmission losses due to scattering can obviously be seen in Figure
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6b-6d. At first glance, regarding Figure 6a, the computed results with one shot gather seem not
deal with the corresponding theoretical RPP curve at all. Reliable estimation and interpretation
of AVA behavior is not possible until more than one shots are used. Figure 6d shows, that the
underestimation for small offsets is about 25% while for large offset it is around 15% when the
correction is not used.

CONCLUSIONS

Normally, AVO-analysis is done by using geometrical spreading corrections only. Here we show
that scattering attenuation due to small scale heterogeneities (in respect to travel distance) in
the reflector overburden significantly influences the amplitudes of reflected P-waves. This study
demonstrates by means of two numerical examples how to compensate for this effect. For both
examples, one referring to a deep seismic sounding experiment, and the other to the scale of
a typical seismic exploration experiment, we obtain an improvement of calculated reflection
coefficients after using the correction for transmission losses due to scattering. Nevertheless, the
fluctuations of the reflection coefficient are quite strong in both cases when only one shot gather is
used. Taking into account the seismograms from more shots, the calculated and corrected angle-
dependent reflection coefficient resembles the situation when there were no velocity fluctuations
in the overburden. Thus, using our method to compensate for the transmission losses makes it
possible to estimate reflection coefficients more reliable and to reveal the actual AVA behavior in
complex structures.
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