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ABSTRACT

Using quite general results of the theory of poroelasticity we attempt to analyze the influence
of the confining pressure and of the pore pressure on seismic velocities in rocks. In the first
approximation the seismic velocities as well as the porosity depend on the differential stress,
i.e., the difference between the confining pressure and the pore pressure only. The stress de-
pendence of the porosity controls the elastic moduli and velocity changes with stress. Here,
the most important role plays the compliant porosity which can be just a very small part
of the total porosity. The stress dependence of the compliant porosity can be derived from
the theory of poroelasticity under several, quite natural assumptions. This result provides
the seismic velocities as functions of the differential stress. Corresponding equations coin-
cide with experimentally observed exponentially saturating seismic velocities for increasing
differential stresses.

INTRODUCTION

The pore pressure dependence of seismic velocities has an importance for interpretation of very
different seismic data, ranging from AVO and velocity analysis to overpressure prediction and
4D seismic monitoring of reservoirs. Usually, this dependence along with the velocity depen-
dence on confining stress is phenomenologically modeled by the following simple relationship
(Zimmerman et al, 1986, Prasad and Manghnani, 1997, Khaksar et al, 1999, and Carcione and
Tinivella, 2001):

V (P ) = A + KP − B exp (−PD), (1)

where P is the differential pressure and coefficients A, K and D are fitting parameters for a
given set of measurements. Equation (1) describes well the reality. However, some times
more complex models related to attempts to define a type of the geometry of the porous space
are used. E.g., spherical contacts Mindlin’s theory based models (Duffy and Mindlin, 1957 and
Merkel et al, 2001) or crack contacts Gangi’s theory based models (Gangi and Carlson, 1996
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and Carcione and Tinivella, 2001) have been used in different publications. In this paper we
will show how equation of the form of (1) can be derived from a rather general consideration as
well as clarify the physical meaning of its coefficients.

DIFFERENTIAL STRESS AS A CONTROLLING FACTOR

For simplicity we consider isotropic porous or fractured rocks with connected porosity and a
homogeneous dry skeleton material (i.e., the grain material). It is very well known that in
the reflection seismic frequency range the Gassmann’s formula (Gassmann 1951, Mavko et al,
1998) describes well the seismic velocities dependences on fluids saturating porous rocks. The
Gassmann’s formula provides us with an explicit rule how to compute the bulk elastic modulus
of rocks Kr using the porosity φ, the fluid bulk modulus Kf , the bulk modulus of the dry rock
skeleton Kdr (also called the drained bulk modulus) and the bulk modulus of the grain material
Kgr:

Kr = Kdr + α2

[
φ

Kf
+

α − φ

Kgr

]−1

, (2)

where the quantity α is

α = 1 − Kdr

Kgr

. (3)

All the input parameters of the Gassman’s formula to some extend depend on the confining or
fluid pressure. However, the stress dependence of the Kgr is weak in the range of stresses less
than several hundreds of MPa. A pressure dependence of the Kf can be relatively easy computed
using state equations or empiric relationships (Batzle and Wang, 1992) and thus, taken into ac-
count. Further, in the case of a pure water or brine saturation this dependence is weak. Moreover,
the influence of the stress dependence of Kf is strongly reduced in the case of small porosities.
However, in all these situations the stress dependence of K remains significant. Therefore, the
most important factors controlling the bulk modulus stress dependence are the modulus Kdr and
the porosity of rocks.

A general result of the poroelasticity theory is that if the rock strain is a single valued (i.e.,
non-hysteresis) function of the confining pressure Pc and of the pore pressure Pp then the bulk
compressibility Cdr = 1/Kdr of the dry rock skeleton must be a function of the differential stress
P = Pc − Pp only (see Zimmerman, et al., 1986; Detournay and Chang, 1993; Gurevich 2001).
Therefore, at least in the first approximation of the non-hysteresis character of rock deformations
the differential pressure controls the stress dependence of the drained bulk modulus.

The stress dependence of the porosity can be characterized using another very general result
of the poroelastic theory, which follows from definitions of porous rock compressibilities and the
Betti reciprocal theorem. This is a differential equation directly relating porosity changes with
the changes of the differential stress (Zimmerman, et al., 1986; Detournay and Chang, 1993):

dφ

dP
=

1

Kgr
− (1 − φ)Cdr. (4)

Again we note that the stress dependence is reduced to the dependence on the differential stress
only. We have already intimated that the bulk modulus Kgr is practically independent of P .
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Thus, in the equation above two quantities are stress dependent only: φ and Cdr. Therefore, in
order to obtain a stress dependence of these two quantities one more equation relating them to
the stress or just one mutually relating them is required.

COMPRESSIBILITY VERSUS STIFF AND COMPLIANT POROSITIES

Let us separate the porosity φ in two parts

φ = φc + [φs0 + φs] , (5)

where the first part, φc, is a compliant porosity supported by thin cracks, channels and grain
contacts vicinities. The second part, φs0 + φs is a stiff porosity supported by isomorphic pores.
This porosity is in turn separated into a part φs0, which is equal to the stiff porosity in the case of
a zero differential stress, and to a part φs expressing changes of the stiff porosity due to changes
in the differential stress. We assume that the relative changes of the stiff porosity, φs/φs0, are
small. In contrast, the relative changes of the compliant porosity (φc − φc0)/φc0 can be very
large, i.e., of the order of 1 (here we denoted by φc0 the compliant porosity in the case of P = 0).
Note, however, that φc and φc0 are usually very small quantities. As a rule, (e.g., in porous
sandstones) they are much smaller than the φs0 and even than the absolute value of φs. Under
such assumptions it is logic to assume the first, linear approximations of the compressibility Cdr

as a function of the porosities:

Cdr(φs0 + φs, φc) = Cdrs [1 + θsφs + θcφc] , (6)

where Cdrs is the drained compressibility of a rock in the case of a closed compliant porosity
(i.e., φc = 0) and the stiff porosity equal to φs0. The coefficients

θs =
1

Cdr

∂Cdr

∂φs

, θc =
1

Cdr

∂Cdr

∂φc

(7)

are assumed to be independent physical properties of rocks.
Approximation (6) implies that the both quantities θsφs and θcφc are smaller than 1. Further,

numerous laboratory experiments and the practical experience show that the drained compress-
ibility depends strongly on changes in the compliant porosity, and it depends much weaker on
changes in the stiff porosity. We will express this empirical observation by the restriction

θsφs � θcφc. (8)

If so, the approximation (6) is further simplified as follows:

Cdr(φs0 + φs, φc) = Cdrs [1 + θcφc] . (9)

Using this approximation, neglecting φ in comparison with 1 and neglecting 1/Kgr in compari-
son with 1/Kdrs we obtain the following relationship instead of equation (4):

dφs

dP
+

dφc

dP
= −Cdrs − θcφcCdrs. (10)
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STRESS DEPENDENCES OF THE STIFF AND COMPLIANT POROSITIES

We assume that stiff porosity changes with stress are independent on the changes of the compliant
porosity. This means also, that changes of the stiff porosity are independent on the fact if the
compliant porosity is closed or not. If the compliant porosity is closed then φc = 0 and we
obtain from (10)

dφs

dP
= −Cdrs. (11)

However, if the assumption above is valid than this relationship will be valid also for an arbitrary
(however, because of other assumptions, small) φc. Therefore,

dφc

dP
= −θcφcCdrs. (12)

These two equations immediately provide us with the following approximations of the stress
dependences of the stiff and compliant porosities:

φs = −PCdrs. (13)

φc = φc0 exp (−θcPCdrs). (14)

Note that equation (13) is not valid for very large P . This is explained by the fact that in previous
steps we neglected the stiff-porosity dependence of the drained compressibility. The validity of
this assumption as well as the validity of equation (13) are restricted by the condition (8). For
very high P stresses also the stiff porosity will obey an exponentially saturating behavior.

STRESS DEPENDENCES OF ELASTIC PROPERTIES

Substituting equations (13) and (14) into equation (6) we obtain:

Cdr(P ) = Cdrs [1 + θsφs0 − θsCdrsP + θcφc0 exp (−θcPCdrs)] . (15)

For the bulk modulus this gives:

Kdr(P ) = Kdrs [1 − θsφs0 + θsCdrsP − θcφc0 exp (−θcPCdrs)] . (16)

Using for the skeleton shear modulus µdr an expansion similar to the expansion (6) we obtain

µdr(P ) = µdrs [1 − θsµφs0 + θsµCdrsP − θcµφc0 exp (−θcPCdrs)] , (17)

where

θsµ =
1

µdr

∂µdr

∂φs
, θcµ =

1

µdr

∂µdr

∂φc
(18)

General form of stress functions (16) and (17) coincides with equation (1). It is clear also, that
if the differential stress is smaller or of the order of 102 MPa we can neglect the terms θsµCdrsP
and θsCdrsP because Cdrs is of the order of 10−4 MPa−1. Finally, neglecting the φs- and φc-
dependences of the density we obtain for the drained velocities

VSdr ≈ VSdrs0 −
1

2
VSdrs0θcµφc0 exp (−θcPCdrs), (19)
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VPdr ≈ VPdrs0 −
1

2
VPdrs0Hθcµφc0 exp (−θcPCdrs), (20)

where

H =
Kdrsθc/θcµ + 4µdrs/3

Kdrs + 4µdrs/3
. (21)

CONCLUSIONS

Let us draw preliminary conclusions of this consideration. In the first approximation the seismic
velocities as well as the porosity depend on the differential stress, i.e., the difference between
the confining pressure and the pore pressure only. The stress dependence of the porosity controls
the elastic moduli and velocity changes with stress. Here, the most important role plays the
compliant porosity which can be just a very small part of the total porosity. Closing compliant
porosity with increasing differential stress explains the experimentally observed exponentially
saturating increase of seismic velocities. Coefficients of this relationship are defined by the
compliant porosity dependence of the drained bulk modulus.

In the first approximation, the coefficient K in the empiric equation (1) can be neglected. The
modified such equations have similar forms for the both, P- and S- wave velocities:

VPdr(P ) = AP − BP exp (−PDP ), (22)

VSdr(P ) = AS − BS exp (−PDS). (23)

They exactly coincide with the empiric equation (3) of Khaksar et al, (1999). Moreover, we
should expect that

DP ≈ DS. (24)

This is also in a good agreement with the data of table 2 of Khaksar et al, (1999).
The dimensionless quantity θc can be then estimated as

θc = D/Cdrs = ρ(A2
P − 4A2

S/3)D, (25)

where ρ is the density of the dry rock. This coefficient defines the sensitivity of the elastic
moduli to the differential stress. We propose to call it the piezosensitivity. The piezosensitivity
is an important property of rocks. From the derivation above it is clear that it is defined by the
compliant porosity of rocks. It can be related to the poroelastic coefficient α. Moreover, it can
be also related to non-linear elastic moduli of rocks.
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