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ABSTRACT

AVO is now an established technology and has been widely deployed as a lithology indica-
tor and also as a direct hydrocarbon indicator. In recent years this technology has become
a routine processing and its application to large 3D volumes has relied on the use of near-
and far-offset stack volumes. These volumes greatly reduce the amount of pre-stack infor-
mation that needs to be stored for standard AVO processing. Additionally, these volumes
are easily converted into usual AVO attributes, like intercept and gradient, which can then be
interpreted in terms of anomalies and calibrated with well logs. Reservoir characterization
studies make use not only of these traditional AVO attributes but also impedance volumes.
The near-offset, or the intercept, stack volume offers a natural way of obtaining acoustic
impedance volume through the use of post-stack inversion algorithms. However, to invert
far-stack volume one needs an approach capable of estimating impedances for a variable in-
cidence angle. This approach has been described in the elastic impedance function presented
by Connolly (1999). In this work we propose an approach called reflection impedance, which
is based on constant ray parameter and a power relationship between density and S-wave ve-
locity. This new method proved to be of better accuracy for angular impedance estimation
and reflection coefficient recovery when compared with the elastic impedance approach.

INTRODUCTION

In recent years there has been an enormous increase in the amount of 3D seismic data processed
with AVO purpose. The most economical form of processing large volumes of seismic data to
obtain AVO attributes involves obtaining near- and far-offset stacks. These stacks have been
intensively used not only to obtain traditional AVO attributes (e.g., intercept and gradient) but
also as input of post-stack inversion algorithms to yield acoustic impedance (AI) volumes that
help in reservoir characterization. The near-offset stack can be tied to synthetics obtained from
acoustic impedance changes derived from well logs. After calibration, the near-offset stacks can
then be inverted back to acoustic impedances using off-the- shelf post-stack inversion algorithms,
which use the well log impedances as constraints. The missing part of this process was how to
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invert the far-offset stacks? The answer to the question came from the elastic impedance (EI)
approach presented by Connolly (1999), which generalizes the acoustic impedance concept for
variable incidence angle. In other words, the EI provides a way to calibrate and invert nonzero-
offset seismic data just as AI does for zero-offset data. One advantage of the EI method is
that it correlates directly to rock properties, like α/β ratio (P- to S-wave velocity ratio), instead
of being an attribute that relates to contrasts of elastic properties of neighboring rocks (like
most AVO attributes). In this work we demonstrate a new approach to obtain nonzero-offset
impedance estimates to be used as calibration for nonzero-offset seismic data. We called this
approach reflection impedance (RI). Basically, RI is based on constant ray parameter, opposed
to constant incidence angles as proposed by Connolly (1999). Also, the new approach assumes a
power relation between density and S-wave velocity while the EI approach assumes a constant
K = β2/α2 . As a result, the new approach greatly improves the accuracy of the impedance
estimates, which can be critical in case of subtle amplitude anomalies.

NORMAL INCIDENCE: ACOUSTIC AND ELASTIC

For a given normal reflected ray, parameterized by the traveltime τ , the normal P-P reflection
coefficient is given by

R0(τ, ∆τ) =
AI(τ + ∆τ) − AI(τ)

AI(τ + ∆τ) + AI(τ)
, (1)

where
AI(τ) = ρ(τ)α(τ) (2)

is the acoustic impedance function, ρ(τ) is the density function, α(τ) is the P-velocity function,
and ∆τ is the traveltime increment, chosen to be sufficiently small. Observe that we also consider
that the elastic parameters are being parameterized by the traveltime.

We will also consider the P-P Reflectivity function,

R0(τ) = lim
∆τ→0

R(τ, ∆τ)

∆τ
=

1

2

AI ′(τ)

AI(τ)
, (3)

where the prime denotes derivative with respect to to τ .

NON-NORMAL INCIDENCE: ACOUSTIC

For a general reflection, not necessarily normal, the acoustic reflection coefficient can be written
as

RA(τ, ∆τ) =
I(τ + ∆τ) − I(τ)

I(τ + ∆τ) + I(τ)
, (4)

with
I(τ) = ρ(τ) α(τ) sec θ(τ) , (5)

where α(τ) now denotes the acoustic velocity, θ(τ) is the incidence angle and, as before, ρ(τ) is
the density. The quantity I(τ) will be called acoustic reflection impedance.



102 Annual WIT report 2001

Analogously to the case of normal incidence, we can use the above-defined acoustic reflec-
tion impedance, I(τ), to express the acoustic reflectivity function, RA(τ). Using the previous
equation (3), we find,

RA(τ) = lim
∆τ→0

RA(τ, ∆τ)

∆τ
=

1

2

I ′(τ)

I(τ)
. (6)

Once we have computed the acoustic reflectivity function, a first-order approximation for the
acoustic reflection coefficient can be readily expressed by

RA(τ, ∆τ) ≈ RA(τ) ∆τ . (7)

NON-NORMAL INCIDENCE: P-P ELASTIC

For elastic P-P reflection under general incidence angles, the reflection coefficient, R(τ, ∆τ), has
a much more complicated form than its acoustic counterpart, RA(τ, ∆τ) in equation (4). Note
that the classical expression for the P-P elastic reflection coefficient (see, e.g., Aki and Richards
(1980)) replace the parameters τ and τ + ∆τ by indices 1 and 2, respectively. For example, ρ1

replaces ρ(τ); α2 replaces α(τ + ∆τ), etc.
As recently proposed by Connolly (1999), it makes sense to look for a quantity E(τ) for

which the complicated P-P elastic reflection coefficient assumes the simple form of equation (4),
namely

R(τ, ∆τ) =
E(τ + ∆τ) − E(τ)

E(τ + ∆τ) + E(τ)
. (8)

As shown below, there exists no function E(τ) for which equation (8) exactly holds, for any
choice of velocities and densities. Connolly (1999) proposed one approximation called elastic
impedance. We find the term a little misleading because it has already a different meaning in the
literature, namely the product between the density and the shear wave (recall that the definition
of the acoustic impedance as the product between the density and the pressure velocity).

In this paper, we propose a new quantity, different from the one in Connolly (1999), that, at
least in a number of relevant cases, provides a better representation of the P-P reflection coeffi-
cient under the approximation (8). We call the new function P-P elastic reflection impedance.

To construct E(τ), we start by introducing the P-P elastic reflectivity function R(τ). Cor-
respondingly to the acoustic case, the P-P elastic reflectivity is determined from the P-P elastic
reflection coefficient, R(τ, ∆τ), by means of the limit

R(τ) = lim
∆τ→0

R(τ, ∆τ)

∆τ
. (9)

After some algebraic manipulations in the exact expression of R(τ, ∆τ), the reflectivity R(τ)
is exactly given by

R(τ) =
1

2

[
1 − 4β2p2

]ρ′

ρ
+

1

2

[ 1

1 − α2p2

]α′

α
−
[
4β2p2

]β ′

β
, (10)

where β is the S-velocity function, and p is the ray parameter, given by Snell’s law

p =
sin θ

α
=

sin φ

β
, (11)
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which is constant along the ray, and θ and φ are the P-P and P-S reflection angles, respectively.
In analogy with the acoustic case, the first-order approximation for R(τ) can be written as

(see equation (7))

R(τ, ∆τ) ≈ R(τ) ∆τ . (12)

Approximating the derivatives by their corresponding discrete differences, i.e., f ′ ≈ ∆f/∆τ ,
and using the incidence angle θ instead of the ray parameter p, we have the following first-order
approximation for R

R ≈ 1

2

[
1 − 4

β2

α2
sin2 θ

]∆ρ

ρ
+

1

2

[
sec2 θ

]∆α

α
−
[
4
β2

α2
sin2 θ

]∆β

β
, (13)

which is the well-known approximation of Aki and Richards (1980) and Shuey (1985).

REFLECTION IMPEDANCE

Let us now analyze the possibility of the existence of a function E(τ) satisfying equation (8) or,
equivalently,

R(τ) =
1

2

E ′(τ)

E(τ)
. (14)

Combining equations (10) and (14), we must search for a solution for the differential equation,

E ′

E
=
[
1 − 4β2p2

]ρ′

ρ
+
[ 1

1 − α2p2

]α′

α
−
[
8β2p2

]β ′

β
, (15)

for all possible choices of α, β and ρ. Clearly, the solution is not unique, since any multiple of a
solution is also a solution.

Particular cases

We consider the solution of equation (15) for some particular choices of p and β.

Normal Incidence: Acoustic and Elastic

For a normal reflection (p = 0) equation (15) reduces to

E ′

E
=

ρ′

ρ
+

α′

α
, (16)

whose solution is

E = C ρ α = C AI , (17)

where C is any real constant. Taking C = 1, we have that E = AI , as expected.
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Non-normal Incidence: Acoustic

In the acoustic case (β = 0) equation (15) reduces to

E ′

E
=

ρ′

ρ
+
[ 1

1 − α2p2

]α′

α
, (18)

whose solution is

E = ρ α
1√

1 − α2p2
= ρ α sec θ = I , (19)

where, again, we have taken the constant unitary.

Non-normal Incidence: P-P Elastic

Unfortunately, there is no general solution for E(τ) for any choice of the parameters. Indeed, it
is possible to show that equation (15) admits a solution only if ρ has a functional dependence on
β, i.e., ρ ≡ ρ(β). Under this assumption, a normalized solution for E(τ) is given by

E ≡ RI =
1√

1 − α2p2
exp

{
−4p2

[
β2 +

∫
β2

ρ
dρ

]}
, (20)

We see that the P-P elastic reflection impedance is a natural extension of the acoustic reflec-
tion impedance after the introduction of a correcting factor. One reasonable dependence between
ρ and β is the following

ρ = b βγ , or equivalently,
ρ′

ρ
= γ

β ′

β
, (21)

where b is some constant of proportionality and γ is a constant. With this assumption, equation
(20) reads

RI =
ρ α√

1 − α2p2
×
{

e−2[2 + γ]β2p2
, β ′ 6= 0

ρ−4β2p2
, β ′ = 0

(22)

We call the above function elastic reflection impedance. Observe that function RI automat-
ically reduces to the acoustic reflection impedance, I , in the case β = 0, or to the acoustic
impedance, AI , when θ = 0.

CONNOLLY’S APPROACH

The elastic impedance EI proposed by Connolly (1999) is derived by taking equation (13) equal
to ∆EI/2EI and applying difference calculus. The main assumption is that θ and the ratio
K = β2/α2 are constant. Such process is equivalent to solve equation (15) using the mentioned
assumption. The differential equation (15) takes the form

EI ′

EI
=
[
1 − 4K sin2 θ

]ρ′

ρ
+
[
sec2 θ

]α′

α
−
[
8K sin2 θ

]β ′

β
, (23)
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The normalized solution for the above equation is given by

EI = ρ1 − 4K sin2 θ αsec2 θ β−8K sin2 θ . (24)

It is important to observe that although function EI reduces to the acoustic impedance AI in
the case θ = 0, the same does not occur for more general non-normal acoustic reflection. Indeed,

lim
β→0

EI = ρ αsec2 θ 6= I = ρ α sec θ . (25)

Moreover, the reflection impedance has the same dimension as the acoustic impedance whereas
the elastic impedance has a dimension depending on the value of the angle θ.

APPROXIMATIONS FOR THE REFLECTION COEFFICIENT

By the use of formulas (8) and (22) or (24) we can construct approximations for the P-P reflection
coefficient. Given a P-P elastic reflection at a point between two media with local parameters
ρ1, α1, β1 and ρ2, α2, β2, RPP can be approximated by

RPP =
E2 − E1

E2 + E1

, (26)

where, for the reflection impedance approximation

Ej ≡ RIj =
ρj αj√
1 − α2

jp
2
×





e−2[2 + γ]β2
j p

2

, β1 6= β2

ρ
−4β2

j p
2

j , β1 = β2

j = 1, 2 , (27)

with

γ =
ln(ρ2/ρ1)

ln(β2/β1)
≈ ∆ρ/ρ

∆β/β
, if β1 6= β2 , (28)

and, for the elastic impedance approximation

Ej ≡ EIj = ρ1 − 4K sin2 θ
j αsec2 θ

j β−8K sin2 θ
j . (29)

with

K =

(
α1β1 + α2β2

α2
1 + α2

2

)2

. (30)

NUMERICAL EXPERIMENTS

In order to compare the accuracy of EI and RI functions presented above we use the approx-
imation of the P-P elastic reflection at a point between two media as indicated by equations
(26)–(30). Table 1 shows the parameters for the three models used in the computations. They
were chosen from a suite of 25 sets of α, β and ρ measurements in adjacent shales, gas sands and
brine sands given in Castagna and Smith (1994), and represent Class I, II and III. The results are
shown in Figures 1–3.
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Figure 1: P-P reflection coefficient for Class I model given in Table 1: shale over gas sand (top)
and shale over brine sand (bottom).

Class Rock Type α [km/s] β [km/s] ρ [g/cm3]

Brine Sand 4.35 2.34 2.40
I Shale 2.77 1.52 2.30

Gas Sand 4.05 2.38 2.32

Brine Sand 3.05 1.56 2.40
II Shale 2.77 1.27 2.45

Gas Sand 2.69 1.59 2.25

Brine Sand 2.13 0.67 1.90
III Shale 1.83 0.40 2.02

Gas Sand 1.44 0.58 1.53

Table 1: P- and S-wave velocities and densities for shale over brine sand and shale over gas
sand, representing classes I, II and III.

The response computed based on the elastic impedance method deviates from the exact Zoep-
pritz formula for reflection coefficients as the linearized approximation (Shuey (1985)) for Rpp.
The response computed from the reflection impedance method agrees with the exact Zoeppritz
formula for Rpp. Therefore there is a significant gain in accuracy provided by the reflection
impedance method compared to the elastic impedance method.

Figure 4 depicts the well log data of an oil sand reservoir (dashed box) encased in marine
shales. In Figure 5 we show the comparison of the AI curve with EI(30o) and RI(30o) curves.
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Figure 2: P-P reflection coefficient for Class II model given in Table 1: shale over gas sand (top)
and shale over brine sand (bottom).
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Figure 3: P-P reflection coefficient for Class III model given in Table 1: shale over gas sand
(top) and shale over brine sand (bottom).
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Figure 4: Well log data of an oil sand reservoir (dashed box) encased in marine shales.
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Figure 5: Comparison of the AI curve with the 30o EI and RI curves for the well log data given
in Figure 4. The values were normalized so that at the first simple AI = EI = RI = 1.
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The values were normalized so that at the first simple AI = EI = RI = 1. The EI and RI
curves are very similar outside the reservoir zone, but disagree in the reservoir zone, possibly
because the RI method senses more the changes in the β/α ratio. Therefore, the observed dif-
ferences are in part related to the higher degree of accuracy obtained by the RI method compared
to the EI method. The apparent improved discrimination of the reservoir zone in the RI curve
can be a key for the use of this method instead of the EI .

CONCLUSIONS

The RI method proved that it recovers back the exact reflection coefficient curve from a simple
form of approximation. Additionally, when used to produce angle dependent impedances, the
proposed RI method showed greater accuracy and improved degree of discrimination compared
to the EI method.
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