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ABSTRACT

This paper is concerned with numerical tests of rock physical relationships. The focus is
on effective velocities in fractured media. We apply the so-called rotated staggered finite
difference grid (RSG) technique. Using this modified grid it is possible to simulate the
propagation of elastic waves in a 2D or 3D medium containing cracks, pores or free sur-
faces without hard-coded boundary conditions. It is shown that the RSG can be applied in
displacement-stress and in velocity-stress finite-difference schemes whereby the latter is ad-
vantageous to model viscoelastic wave propagation. A comparison of the analytical solution
for the wavefield at a single crack with the numerical result using the RSG shows an excellent
agreement. Therefore the RSG allows an efficient and precise numerical study of effective
velocities in fractured structures. We model the propagation of plane waves through a set
of randomly cracked 3D media. In these numerical experiments we vary the crack density.
The synthetic results are compared with several theories that predict the effective P- wave
velocities in such materials. For randomly distributed and randomly oriented penny-shaped
dry cracks the numerical simulations of P-wave velocities are in good agreement with the
predictions of the self-consistent approximation.

INTRODUCTION

The problem of effective elastic properties of fractured solids is of considerable interest for geo-
physics, material science, and solid mechanics. Strong scattering caused by many dry cracks
can be treated only by numerical techniques because an analytical solution of the wave equation
is not available. In this paper we consider the problem of a fractured medium in two and three
dimensions.
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Finite difference (FD) methods discretize the wave equation on a grid. They replace spatial
derivatives by FD operators using neighboring points. The wave field is also discretized in time,
and the wave field for the next time step is generally calculated by using a Taylor expansion.
Elastic FD methods can be separated in displacement-stress FD methods (Dablain, 1986), using
the 2nd order wave equation, and velocity stress methods, solving two coupled first order equa-
tions (Virieux, 1986). Since the FD approach is based on the wave equation without physical
approximations, the method accounts not only for direct waves, primary reflected waves, and
multiply reflected waves, but also for surface waves, head waves, converted reflected waves, and
waves observed in ray-theoretical shadow zones (Kelly et al., 1976).

Velocity stress FD schemes are normally used for viscoelastic wave propagation. This fact
results in the basic numerical procedure which is described in section “The velocity-stress FD
scheme”. The RSG can also be implemented in this FD scheme to simulate the propagation
of viscoelastic waves in a 2D or 3D medium containing cracks, pores or free surfaces without
hard-coded boundary conditions.

A keypoint in numerical modeling is accuracy. There are only a limited number of analyt-
ical solutions of wave propagation in fractured media available. In section “The diffraction of
SH waves by a finite crack” we compare an analytical solution given by Sánchez-Sesma and
Iturrarán-Viveros (2001) with the numerical solution using the RSG.

We conclude this paper with a numerical study of effective velocities of fractured 3D-media
(numerical results of 2D-media with intersecting and non-intersecting rectilinear thin dry cracks
can be found in Saenger and Shapiro (2001)). Here we model the propagation of plane waves
through a well defined fractured region with dry penny-shaped cracks. Theories of effective
velocities, the numerical setup and our results are described and discussed in section “Effective
velocities in 3D fractured media”.

THE VELOCITY-STRESS FD SCHEME

3D viscoelastic wave equations

In this section we describe the velocity-stress formulation of the system of differential equations
which were the basis for the FD implementation. As shown below viscoelasticity can be im-
plemented in a very efficient way. A derivation of these equations can be found for example in
Robertsson et al. (1994).

The stress-strain relation for a generalized standard linear solid reads:

σ̇ij =
∂vk

∂xk

{
π

[
1 +

L∑

l=1

(
τ p
εl

τσl

− 1

)]
− 2µ

[
1 +

L∑

l=1

(
τ s
εl

τσl

− 1

)]}

+2
∂vi

∂xj
µ

[
1 +

L∑

l=1

(
τ s
εl

τσl
− 1

)]
+

L∑

l=1

rijl if i = j, (1)

σ̇ij =

(
∂vi

∂xj
+

∂vj

∂xi

)
µ

[
1 +

L∑

l=1

(
τ s
εl

τσl
− 1)

]
+

L∑

l=1

rijl if i 6= j (2)



204 Annual WIT report 2001

with the so-called memory equations:
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The equation of momentum conservation:

ρg
∂vi

∂t
=

σij

∂xj

+ fi (5)

completes the system of first order coupled partial differential equations which describe seismic
wave propagation in a 3-D viscoelastic medium. Following Bohlen (1998) we use the variables
τ p = (τ p

εl/τσl −1) and τ s = (τ s
εl/τσl −1) in the numerical implementation. The dot over symbols

indicates partial differentiation with respect to time. The meaning of the symbols is as follows:
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ω0 center frequency of the source,

vp P wave phase velocity (at center frequency),

vs S wave phase velocity (at center frequency),

σij denotes the ijth component of the stress tensor,

vi denote the components of the particle velocities

xi indicate the three spatial directions (x,y,z)

rijl are the L memory variables (l=1,...,L),

fi denotes the components of external body force

τσl are the L stress relaxation times for both P- and S-waves

τ p, τ s define the level of attenuation for P- and S-waves, respectively

ρg is the gravitational density

The parameters τσl, τ p and τ s can be optimized for the desired Q-spectra (Bohlen, 1998).

Discretization

The coupled system of continuous differential equations presented above were recast into dis-
cretized equivalents using staggered-grid approaches. For the sake of simplicity, we consider
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here isotropic elastic medium in two dimensions with equal grid spacing in z- and x-direction.
However, the results shown in Fig. 1 are also transferable to rectangular cells in three dimensions
and all kinds of anisotropic elastic media. For the viscoelastic case in Fig. 1(b) the parameters
τσl, τ p and τ s have the same position as σij .
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Figure 1: Elementary cells of different staggered grids. Locations where strains, displace-
ments, velocities and elastic parameters are defined. (a) velocity-stress FD technique using a
standard staggered grid. (b) velocity-stress FD technique using the rotated staggered grid. (c)
displacement-stress FD technique using a standard staggered grid. (d) displacement-stress FD
technique using the rotated staggered grid. Please note that for the RSG all components of one
physical property are placed only at one location ((b) and (d))

Numerical stability and dispersion

In Saenger et al. (2000) numerical stability and grid dispersion of the RSG is investigated.
Though only the displacement-stress scheme is explicitly treated in this paper, all results also
apply to the velocity-stress scheme (compare with Moczo et al. (2000)).

Therefore the stability criterion for velocity-stress RSG schemes (2nd order time) can be
found in Saenger et al. (2000):

∆tvp

∆h
≤ 1/(

n∑

k=1

|ck|). (8)

In this equation ck denotes the difference coefficients (e.g. Central Limit coefficients (Karren-
bach, 1995)), vp the compressional wave velocity, ∆t the time increment, and ∆h the grid spac-
ing.
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For 2nd order schemes in time and space we obtain the following dispersion relation for
rotated staggered grid schemes (Saenger et al. (2000)):
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This equation is the initial point of an extensive dispersion analysis which can be found in
Saenger et al. (2000).

Modeling example

In this example we created a relatively simple 2D model. We want to demonstrate that the rotated
grid can be applied for viscoelastic velocity-stress FD modeling (see Fig. 3) and can handle
the high contrasts at four (’free’) surfaces in the model. The model (gridspacing ∆h = 5m)
consists of a 2500m × 2500m area in which the compressional and shear wave phase velocity
is set to vp = 6300 m/s and vs = 3637 m/s; the density is ρg = 2100 kg/m3. At
the four boundaries around this area we set the velocities vp and vs to zero and the density to
ρg = 0.0001 kg/m3. An explosion source (ffund = 33 Hz, ∆t = 0.0002s) is placed
at the point (520m,1520m). The modeling is done using 2nd order time update and 2nd order
spatial differentiation operators. The corresponding Q-spectra using the viscoelastic parameters
τ = τ p = τ s = 0.0353 s, f1 = 2π/τσ1 = 8.2688 1/s and f2 = 2π/τσ2 = 84.6761 1/s (L=2) is
shown in Fig. 2.
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Figure 2: Desired Q-spectra for the modeling example.
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Figure 3: Modeling result using the viscoelastic velocity-stress rotated staggered FD grid. A
snapshot (y-velocities) at t = 0.28 s is displayed.

THE DIFFRACTION OF SH WAVES BY A FINITE CRACK

Introduction

Checking the accuracy of the rotated staggered grid FD code described in (Saenger et al., 2000)
we used an analytical solution for scattering and diffraction of SH waves by a finite crack given
by Sánchez-Sesma and Iturrarán-Viveros (2001). They present a set of equations that allow
the calculation of the frequency intensity distribution along the illuminated (Eq. 10) and shaded
(Eq. 11) side of a finite crack with appropriate accuracy:
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and:

Z = s(2a)F (
√
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√

π)eikr−π/4, (16)

F (z) = exp (−iz2)
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exp (−iτ)dτ, (17)

Θ1 = π/2 − γ, (18)
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v0 initial intensity,

k wavenumber,

r1,2 position seen from the left or right end of the crack,

a half crack length,

γ incident angle of the wave field.

Our goal was to numerical implement a scenario of a plane SH wave interacting with a finite
crack at an angle of 0o (see Fig. 4) and to compare the numerical and analytical results. The
model parameters were chosen as follows:

model
dimensions 6200 × 5701 gridpoints (62cm x 57cm)

spacing 0.0001m in both directions
vs 2944 m/s
ρg 2500 kg/m3

wave
type ricker1 (first derivative of a Gaussian)
fdom 100 kHz

crack
length 2a 801 gridpoints (8cm)

vs 0 m/s
ρ 0.000001 kg/m3

Procedure

We chose one of several possible ways to compare the analytical and numerical results. We
intended to convert the numerical values to normalized values as they are used in the analytical
solution. Therefore the seismograms spectra had to be calculated. The source signal had to
be segregated from the seismograms. This was done by dividing the seismogram spectra by
the source signal spectrum. Finally two projections were made. The place of a geophone was
projected on to the interval [-1 ; 1] (normalized crack; see Eq. 20) and the frequencies of the
seismograms spectra had to be associated to the normalized frequencies (see Eq. 21).

x̃ = (x − a)/a, (20)

f̃ = 2fa/vs (21)
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Figure 4: The diffraction of the at the bottom generated plane wave can be observed at the
illuminated and the shaded side of the rectilinear crack.

with:

x̃ normalized position in [-1;1]

x geophone position in [-a;a]

a half crack length

f̃ normalized frequency

f frequency of the seismogram spectrum

vs S-wave velocity

Discussion

The comparison of analytical and numerical derived power spectra shows an astonishing confor-
mity for a vast range of frequencies, especially for the dominant frequency at f̃dom ≈ 2.72 (see
Fig 5). It was expected that higher frequencies are not as well resolved as lower frequencies in
the numerical solution and a slight difference to the analytical solution is seen (see Fig 6).
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Figure 5: Power spectra at the illuminated and the shadow side of the crack (f̃dom ≈ 2.72; for
details see text). Please note the low difference between numerical calculation and analytical
prediction.
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Figure 6: Five typical power spectra of different seismograms recorded at the illuminated side
of the crack (f̃dom ≈ 2.72) . A comparison with analytical predictions indicate the high accuracy
of the rotated staggered grid.

EFFECTIVE VELOCITIES IN 3D FRACTURED MEDIA

Theories of effective moduli

To describe wave propagation in fractured media we consider three different theories for dry
penny shaped cracks in 3D-media, namely, the “Kuster-Tuksöz formulation”, the “Self-Consistent
approximation” and the “Differential Effective Medium (DEM) theory”. They can be used to
predict effective wave velocities in the long wavelength limit in dependency on porosity φ. A
detailed review of these rock physical relationships can be found in Mavko et al. (1998). Our
goal is to test which theory can be applied for a high crack density. Therefore, in order to com-
pare our numerical results with these three theories we give here their respective effective bulk
modulus < K > and effective shear modulus < µ >.

For the case of penny-shaped dry cracks with aspect-ratio α one can obtain the following
formulae where K and µ are the bulk modulus and the shear modulus, respectively, of the ho-
mogeneous embedding. For the Kuster-Toksöz formulation one obtains:

(< K > −K)
K + 4

3
µ

< K > +4
3
µ

= −φKP, (22)

(< µ > −µ)
µ + ζ

< µ > +ζ
= −φµQ. (23)
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The self-consistent approximation reads:

< K > = K (1 − φP ), (24)

< µ > = µ (1 − φQ). (25)

The differential effective medium (DEM) can be expressed by two coupled linear differential
equations with initial conditions < K(0) >= K and < µ(0) >= µ which can be solved numer-
ically:

(1 − φ)
d

dφ
[< K(φ) >] = − < K(φ) > P (φ), (26)

(1 − φ)
d

dφ
[< µ(φ) >] = − < µ(φ) > Q(φ), (27)

with:
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6

9K + 8µ
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Numerical setup

As described above, the rotated staggered FD scheme is a powerful tool for testing theories about
fractured media. In order to test the three theories mentioned above we design some numerical
elastic models which include a region with a well known number of cracks and porosity. The
cracked region was filled at random with randomly oriented penny-shaped cracks. In Figure 7(a)
we can see a typical model. This model contains 804 × 400 × 400 grid points with an interval
of 0.0002m. In the homogeneous region we set vp = 5100 m/s, vs = 2944 m/s and ρg =
2540 kg/m3. For the dry penny-shaped cracks (α ≈ 1/30) we set vp = 0 m/s, vs = 0 m/s
and ρg = 0.0001 kg/m3 which approximate vacuum. It is important to note that we perform our
modeling experiments with periodic boundary conditions in the two horizontal directions. For
this reason our elastic models are generated also with this periodicity. Hence, it is possible for a
single crack to start at the right side of the model and to end at its left side. To obtain effective
velocities in different models we apply a body force plane source at the top of the model. The
plane wave generated in this way propagates through the fractured medium (see Figure 7(b)).
With two horizontal planes of geophones at the top and at the bottom, it is possible to measure
the time-delay of the mean peak amplitude of the plane wave caused by the inhomogeneous
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region. With the time-delay one can estimate the effective velocity. The source wavelet in my
experiments is always the first derivative of a Gaussian with a dominant frequency of 8 ∗ 105 1/s
and with a time increment of ∆t = 2.1 ∗ 10−9s. From the modeling point of view it is important
to note that all computations are performed with second order spatial FD operators and with a
second order time update. Due to the size of the models we have to use large-scale computers
(e.g. CRAY T3E) with a MPI implementation of our modeling software.

(a) Model; 1 gridpoint ≡ 0.0002m (b) Wavefield at T = 2000 ∆t

Figure 7: The left hand side shows a typical 3D fractured model with non-intersecting penny-
shaped cracks used for the numerical experiments. We introduce a cracked region (400 × 400 ×
400 gridpoints) in a homogeneous material. At the top we place a small strip of vacuum. This is
advantageous for applying a body force plane source with the rotated staggered grid. The right
side is a displacement-snapshot of a plane wave propagating through the model.
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Figure 8: Normalized effective velocity of compressional (P-) waves versus number of penny-
shaped cracks. Dots: Numerical results of this study. The dashed line is predicted by the self con-
sistent approximation. The dashed-dotted line is the prediction by differential effective medium
(DEM) theory and the solid line is due to the Kuster-Toksöz approach.

Numerical results

Our numerical results for penny-shaped dry cracks can be seen in Figure 8. We show the relative
decrease of the effective velocity in dependence of the number of cracks. The results and the
self-consistent approximation (see Mavko et al. (1998)) are in a good agreement.

CONCLUSIONS

We present a numerical tool, the rotated staggered FD grid, to calculate effective velocities in
fractured media. Finite-difference modeling of the elastodynamic wave equation is very fast
and accurate. In contrast to a standard staggered grid, high-contrast inclusions do not cause
instabilities for the rotated staggered grid (RSG). The RSG can be applied for velocity-stress and
for displacement-stress schemes. A comparison of an analytical solution with our numerical tool
for a single crack demonstrates the accuracy of our FD scheme. Thus, our numerical modeling
of elastic properties of dry rock skeletons can be considered as an efficient and well controlled
computer experiment. For 3D fractured models first results are discussed.

PUBLICATIONS

Detailed results regarding the rotated staggered grid and tests of rock physical relationships were
published by Saenger et al. (2000), Saenger et al. (2001) and Saenger and Shapiro (2001).
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