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ABSTRACT

In this paper I present a generalized Smirnov’s lemma and its application to ray theory. This
lemma can be used to establish the link between the kinematic and dynamic aspects of wave
propagation in the high-frequency hypothesis. This is accomplished by a formula which
connects traveltime and amplitude along the ray, converting the transport equation into a
ordinary differential equation. This formula is obtained by applying the Smirnov lemma to
the kinematic ray equations. Moreover, I provide an alternative proof of the lemma.

INTRODUCTION

When wave phenomena is investigated, we can observe that events or disturbances in the medium
are independently propagated. Beyond that, if the event has a short period, almost like a delta
pulse, this behavior remains throughout the propagation. These observations give a good clue
on how the solution should look like, at least under the high-frequency hypothesis. If we look
closely to only one event, the solution must take into account two basic aspects: the kinematic
and the dynamic. In rough words, for a fixed point inside the medium, the kinematic aspect
shows when the pulse reaches the point and the dynamic one shows how the pulse goes through
the point.

These two aspects can be assembled into a function representing an approximated solution.
These procedure works like the separation of variables method, where the guessed solution is
plugged into the equation, generating new equations, hopefully simpler ones, to be solved. In the
case of ray theory, the function responsible for the kinematic aspect is called traveltime function
and the function which rules the dynamics is called amplitude function. Once the assembled
function is plugged into the Helmholtz equation, after some manipulation and additional hypoth-
esis, two new partial differential equations (PDE) are generate. The first one is termed eikonal
equation and have only the traveltime function as unknown. The second one is called transport
equation and has both traveltime and amplitude functions as the unknowns.
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Using the eikonal equation as a starting point, we can derive a system of ordinary differential
equations (ODE), called kinematic ray equations. As the name says, this system provides the
traveltime solution. However this is only the first half of the game, where the amplitude solution
is still missing. Using the traveltime solution already available, we can try to convert the transport
equation, which is a PDE, into an ODE which is a version for transport equation valid for the ray.

At some point, this conversion procedure needs to transform a spatial operator acting on the
traveltime function into some derivative with respect to the independent variable of the ordinary
differential equation (ODE). The well-known method for doing this is to consider a very small
ray tube, perform the integration on it, and using of divergence theorem and some geometric
arguments to reach the desired result. Another way is to apply the Smirnov’s lemma to the
equation, reaching the very same result.

REVIEW OF RAY THEORY

When wave phenomena is studied under the high-frequency hypothesis, it is quite natural to
transform the acoustic wave equation into the frequency domain by the use of the Fourier trans-
form. This equation is called Helmholtz equation and it is given by

∆û(x, ω) +
ω2

c(x)2
û(x, ω) = −f̂ (ω)δ(x − xs), (1)

where x = (x1 , x2 , x3 ), c(x) is the velocity field, ω is the frequency and ∆ =
∂2
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is the laplacian operator. The functions f̂(ω) and û(x, ω) are the Fourier transforms of the

source wavelet and the wave equation solution, respectively.

An approximation for the solution of Helmholtz equation can be assumed to be the ansatz

û(x, ω) ≈ A(x)eiωτ(x), (2)

where A(x) is the amplitude and τ(x) is the traveltime. This solution is also known as the zero-
order high-frequency asymptotic solution and we can insert it in the Helmholtz equation to obtain
two partial differential equations: the eikonal equation
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and the transport equation

2∇A(x) · ∇τ(x) + A(x)∆τ(x) = 0 , (4)

where ∇is the gradient operator and · denotes the inner product.

The standard procedure is to solve the eikonal equation and then plug the solution τ(x) inside
(4) to seek the solution A(x). Considering equation (3) as a Hamiltonian to be solved, we can
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use the method of characteristics, which transforms the first order non-linear PDE into a system
of ordinary differential equations:

dx

dσ
= λp, (5)

dp

dσ
=

−λ

c3
∇c, (6)

dτ

dσ
=

λ

c2
, (7)

where p = ∇τ is the slowness vector, σ is a generic increasing parameter and λ is a function
which has the role to define explicitly any parameterization. In general, λ can achieve three
values, each one giving a special meaning for σ. For λ = 1, σ is the out-of-plane geometrical
spreading along the ray; for λ = c, σ is the ray arclength and for λ = c2, σ is the traveltime along
the ray.

If the transport equation (4) is expected to be valid for some domain in space, then it is also
valid for any chosen path inside it. In particular, choosing the path as a ray trajectory governed
by equations (5)–(7), we can use them to simplify (4), transforming it in another ODE which
represents the rule of propagation for amplitudes along a chosen ray.

Multiplying equation (4) by λA, using equation (5) and the definition of the slowness vector
we obtain

2 A∇A · dx

dσ
+ λA2∆τ = 0. (8)

Observing that the first term is a chain rule, after some manipulation we get

d

dσ

[
log(A2)

]
= −λ∆τ. (9)

At this point, we want to get rid of the Laplacian ∆, because it is a spatial operator and
we are interested only in quantities and operators depending on the parameter σ. A traditional
way of doing this is to consider a tubular neighborhood of a ray and integrate ∆τ on it. Using
divergence theorem and geometric arguments, it is possible to show the relation between ∆τ
and the Jacobian J along the ray. Bleistein et al. (2001) demonstrated this relation for the three
dimensional case using determinants properties and algebraic arguments

In this paper I show another algebraic proof of the relation between ∆τ and J . I present a
general lemma, named Smirnov’s lemma after Thomson et al.(1985), which can be applied to
any n-dimensional system of ODEs. Its demonstration is provided, using elementary matricial
notation and an auxiliary linear algebra result. To obtain the desired relation, I simply apply the
Smirnov’s lemma to the ray equation (5).

SMIRNOV’S LEMMA

Given a solution of a n-dimensional system of ODEs, the Smirnov’s lemma (Thomson & Chap-
man (1985); Smirnov (1964), p.442) provides a relationship between the jacobian of a trans-
formation of variables and the right-hand side of the system. Applying this lemma to the ray
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equation (5), we can solve the problem of getting rid of the Laplacian ∆ in the process to convert
the transport equation in some ODE depending on σ.

Smirnov’s Lemma: Let x = (x1 , x2 , . . . , xn) ∈ R
n be a solution of the system of ordinary

differential equations:
dx

dσ
= F (x) (10)

where F : R
n → R

n is a smooth function. If the transformation of variables

x = x(γ1 , γ2 , . . . , γn), with γ1 = σ, (11)

is carried out then
d

dσ

[
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]
= ∇ · F, (12)

where J is the Jacobian of transformation of variables, defined by
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∂(γ1, γ2, . . . , γn)
= det

[
∂x

∂γ1
,

∂x

∂γ2
, . . . ,

∂x

∂γn

]
. (13)

Proof : We simply differentiate the Jacobian in equation (13) with respect to σ and use the rule
for differentiation of determinants (Golub & Van Loan (1996); Bleistein et al. (2001)), obtaining
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By the use of equation (10), we have
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where F ′(x) is the Jacobian matrix defined by
[
F ′(x)

]
ij

=
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. (16)

Substituting equation (15) in (14), we obtain
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where I have used the linear algebra result (25) given in Appendix A

Therefore,
dJ
dσ

= (∇ · F )J , (19)

which leads to equation (12).
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APPLICATION

Using the Smirnov’s lemma, for F (x) = λp = λ∇τ ,

d

dσ

[
logJ

]
= ∇ · (λ∇τ), (20)

or, equivalently,
d

dσ

[
logJ /λ

]
= λ∆τ, (21)

where τ is the traveltime solution from the ray equations (5)–(7) and the Jacobian J is given by

J =
∂(x1, x2, x3)

∂(γ1, γ2, γ3)
= det

[
∂x

∂γ1
,

∂x

∂γ2
,

∂x

∂γ3

]
, (22)

with γ1 = σ.

Using equation (21) in equation (9), we are able to complete the conversion of the transport
equation (9) into an ordinary differential equation,

d

dσ

[
log(A2)

]
= − d

dσ

[
log(J /λ)

]
. (23)

The above equation can be directly integrated from σ0 to σ, resulting in

A(σ) = A(σ0)

√
λ(σ)J (σ0)

λ(σ0)J (σ)
, (24)

which is the explicit formula for the amplitude along the ray.
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APPENDIX A

Linear algebra identity: Given two square matrices M and X =
[
x1 ,x2 , . . . ,xn

]
, then

tr(M) det(X) = det
[
Mx1 , x2 , . . . , xn

]
+ det

[
x1 , Mx2 , . . . , xn

]
+ · · ·

· · ·+ det
[
x1 , x2 , . . . , Mxn

]
, (25)

where tr(M) is the trace of M, defined by

tr(M) =
n∑

k=1

Mkk . (26)

Proof : First, we prove the result for a non-singular matrix X. Let Y be a similar matrix to
M, defined by

Y = X−1MX. (27)

Therefore M and Y have the same eigenvalues, which implies

tr(M) =
n∑

k=1

Mkk =
n∑

k=1

Ykk = tr(Y). (28)

We can rewrite equation (27) as the solution of linear systems

Xyk = Mxk , k = 1 , 2 , . . . , n, (29)

where xk and yk are the columns of X and Y, respectively. By the use of Cramer’s rule, we have

yk
j =

det
[
x1 , . . . ,xj−1 ,Mxk ,xj+1 , . . . ,xn

]

det(X)
. (30)

Substituting equation (30) back into (28), we finally have

tr(M) = tr(Y) =
n∑

k=1

yk
k =

1

det(X)

n∑

k=1

det
[
x1 , . . . ,xk−1 ,Mxk ,xk+1 , . . . ,xn

]
, (31)

proving (25). For a singular matrix X, it is possible to construct a sequence of non-singular
matrices {X(k)}∞k=1 which converges to X. After applying all the above results to each member
of the sequence, we evaluate the limit, since all operations are continuous. Therefore, in the
limit, the result (25) is also valid for X singular.


