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ABSTRACT

Seismic images obtained by Kirchhoff time or depth migration are always accompanied by
some artifacts known as “migration noise”, “migration boundary effects”, or “diffraction
smiles”, which may severely affect the quality of the migration result. Most of these unde-
sirable effects are caused by a limited aperture if the algorithms make no special disposition
to avoid them. Likewise, strong amplitude variation along reflection events may also cause
similar artifacts. All these effects can be explained mathematically by means of the Method
of Stationary Phase. However, such a purely theoretical explication is not always easy to
understand for applied geophysicists. By relating the terms of the stationary-phase approx-
imation to simple geometrical situations, a more physical interpretation of the migration
artifacts can be obtained. A simple numerical experiment for poststack (zero-offset) data
indicates the problem and helps to develop an intuitive understanding of the effects and the
methods to avoid them.

INTRODUCTION

Since the early work of Hagedoorn (1954), migration concepts have strongly improved and are
now an important tool in the world of seismic imaging, either as prestack or poststack time
and depth migration. A frequently used method is Kirchhoff migration (Schneider, 1978) that
treats each depth point M on a sufficiently dense grid like a diffraction point. In an a-priori
given macrovelocity model, the relevant part of the Green’s function of a point source at any
single diffraction point M in the depth domain is calculated. The kinematic part of this Green’s
function is the configuration-specific diffraction-traveltime surface, also called “Huygens sur-
face”. The amplitudes of the input seismograms (or, to be more specific, of their derivatives)
are stacked along the Huygens surface and assigned to the depth point M . This explains why
the Kirchhoff migration scheme is also called a “diffraction stack”. If so desired, the effect of
geometrical spreading can be removed from the output amplitudes by multiplying the data dur-
ing the stack with a true-amplitude weight factor that is calculated from the dynamic part of the
Green’s function.
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Ideally, the extent of the Huygens surfaces, that is, the migration aperture, should be limitless
so that no contributions due to the abrupt truncation of the sum occur. In practice, of course, the
aperture is always limited by the region over which seismic data have been acquired. In other
words, because of the finiteness of the survey area, Kirchhoff migration will always be a “limited
aperture migration” (LAM) (Sun, 1998). This is, however, not the only reason why we have
to deal with the effects of a finite migration aperture. In practical migration implementations,
even ranges of source and receiver positions might be excluded where data actually have been
acquired. Such a procedure can be advantageous because

• less traces to sum leads to a speedup of the whole migration process,

• a smaller operator excludes steeper dips, which helps to avoid operator aliasing (see, e.g.,
Abma et al., 1999),

• less summation of data away from the signal reduces the stacking of unwanted noise.

For the best possible reduction of aliasing and noise as well as the best computational efficiency,
one would like to use a model-based aperture restriction, i.e., one would like to make use of the
(projected) Fresnel zone (see, e.g., Schleicher et al., 1997; Sun and Bancroft, 2001). Unfortu-
nately, it is difficult to determine the exact center and size of the Fresnel zone for each depth
point prior to or during migration. A reasonable compromise between accuracy and practicabil-
ity is to specify a common maximum migration aperture radius or a maximum stacking operator
dip. These aperture reductions lead to dip-restricted migration operators as, for example, a 45◦

migration. With these kinds of operators, higher dips cannot be imaged. In regions where dips
are known to be restricted, this is a very convenient way of reducing aliasing and improving
computational efficiency at the same time. It should, however, be kept in mind that close to the
maximum dip, these dip-restricted migration operators will achieve only kinematically correct
images (see, e.g., Schleicher et al., 1997; Sun, 1998). For true-amplitude migration, the maxi-
mum operator dip must always be chosen somewhat larger than the maximum reflector dip to be
imaged.

The fact that the migration aperture is limited causes artifacts known as migration noise,
boundary or aperture effects, or migration smiles. In this paper, we relate the mathematical
explanation of the migration artifacts by means of the Method of Stationary Phase (see, e.g.,
Bleistein, 1984; Sun, 1998; Bleistein et al., 2001) to simple geometrical situations. This more
physical interpretation leads to a more intuitive insight into these effects. Of course, since the
stacking operations are the same in Kirchhoff time and depth migration, the corresponding ar-
tifacts are conceptually identical in both processes. Thus, we restrict our present discussion to
Kirchhoff depth migration. It should, however, be kept in mind that everything said and shown
in this paper with respect to an image in depth holds in the same way for an image in time.

KIRCHHOFF MIGRATION

Mathematically, the Kirchhoff migration process is expressed as an integration over the recorded
wavefield and reads in 3D (Tygel et al., 1996)

V (M) = − 1

2π

∫∫

A

dξ1 dξ2 WDS(~ξ, M)
∂U(~ξ, t)

∂t

∣∣∣∣∣
t=τD(~ξ,M)

, (1)
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where V (M) is the value assigned to one diffraction point M in the depth domain after migration
and U(~ξ, t) denotes the data in the time domain (seismograms). These data are assumed to con-
sist of analytic traces which allows the handling of complex reflection coefficients (supercritical
reflections) and possible caustics along the ray paths. An analytic trace is formed by the actual
trace recorded in the field as the real part and its Hilbert transform as the imaginary part. The
vector ~ξ = (ξ1, ξ2) is the so-called configuration parameter vector and represents the trace posi-
tion. Sources and receivers are grouped into pairs, whose locations are described as a function
of ~ξ. The actual form of this function depends on the measurement configuration. The migration
aperture A is the area over which ~ξ varies to cover all source-receiver pairs used in the stack.

The factor WDS(~ξ, M) is a true-amplitude weight function which may (true-amplitude migra-
tion) or may not (purely kinematic migration) be included in the migration scheme. The stacking
surface τD(~ξ, M) is the above-mentioned Huygens surface. The time derivative is needed in
order to correctly recover the source pulse (Newman, 1975).

We assume that at least one reflection event is present in the seismic data U(~ξ, t). Then, these
data can be described by zero-order ray theory (see, e.g., Červený, 2001) as

U(~ξ, t) = Rc
B
L · F (t − τR) , (2)

where Rc denotes the angle-dependent reflectivity, L symbolizes the point-source geometrical
spreading factor, and B describes all other effects on the amplitude, such as source strength,
source and receiver coupling, transmission loss and attenuation in the reflector overburden, to
name a few. Moreover, F (t) is the analytic source wavelet which is shifted to the arrival time
τR (reflection traveltime). A seismic trace with several (primary) events may be described by
superposition of individual seismic events of the type of equation (2).

To enable a Fourier transform, we introduce the time t as an additional parameter in equation
(1). This is nothing but a mathematical trick that can be undone by setting t = 0. Then, we can
rewrite equation (1) in the frequency domain as

V̂ (M, ω) = − iω

2π
F̂ (ω)

∫∫

A

dξ1 dξ2 WDS(~ξ, M) Rc
B
L eiωτdif , (3)

where F̂ (ω) and V̂ (M, ω) denote the Fourier transforms of F (t) and V (M, t), respectively.
Moreover, τdif (~ξ, M) is the difference between the diffraction and reflection traveltimes, i.e.,
τdif = τD − τR.

In 2.5D, i.e., when the medium does not vary with respect to the coordinate perpendicular
to the seismic line (crossline direction), the out-of-plane ξ2-integration in equation (3) can be
evaluated analytically. Since all data acquired on lines parallel to the actual seismic line would
be identical, the migration aperture A can be assumed to be infinite in the ξ2-direction. Kirchhoff
migration then reduces to an in-plane stack over the aperture interval (a, b) in the ξ1-direction
covered by the seismic line. Since ξ1 is now the only integration variable, we can drop the index
1 to write the 2.5D Kirchhoff migration integral as

V̂ (M, ω) =

√
−iω

2π
F̂ (ω)

b∫

a

dξ W
(2.5)
DS (ξ, M) Rc

B
L eiωτdif , (4)
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where W
(2.5)
DS is the 2.5D weight factor that guarantees true amplitudes in this 1D stack. It is

composed of the 3D weight factor and the result of the analytic solution of the out-of-plane
integral.

THE METHOD OF STATIONARY PHASE

In general, the integrals in equation (3) and the remaining integral in equation (4) cannot be
solved analytically. The Method of Stationary Phase provides a way of analyzing their main
contributions. Although in principle a high-frequency approximation, the Method of Stationary
Phase yields highly accurate predictions of the migration results in the seismic frequency range.
Mathematically, the prerequisites for applying the Method of Stationary Phase are implicitly
fulfilled, since we perform all calculations within the framework of zero-order ray theory which
is strictly valid only for high frequencies.

For simplicity, we restrict the following analysis to the 2.5D case. Conceptually, there is
no difference in the application of the Method of Stationary Phase to the double integral for
3D migration. The qualitative discussion involves the same arguments and leads to the same
conclusions. The quantitative analysis is similar but slightly more complicated, mainly resulting
in a different amplitude behavior of the artifacts.

Reducing it to its basic structure, the integral in equation (4) can be written in the form

I(ω) =

b∫

a

f(ξ)eiωq(ξ)dξ . (5)

The Method of Stationary Phase is based on the observation that for high frequencies, i.e., for
large values of ω, the factor eiωq(ξ) oscillates very rapidly, thus covering full periods in very
small intervals of ξ. If f(ξ) is not itself an oscillating function, its values do not strongly vary
in any such interval. Thus, the integration over a full period of eiωq(ξ) yields approximately
zero and does not contribute to the overall value of the integral. The only regions where eiωq(ξ)

does not oscillate are those where the phase function q(ξ) remains approximately constant or
stationary. Mathematically, points of stationary phase are those where the phase function q(ξ)
has a horizontal tangent, i.e., a vanishing derivative. Non-negligible contributions to integral
(5) are, therefore, to be expected from the vicinity of these points. Further contributions to
integral (5) are to be expected from the boundaries of the integration interval because there, the
integration generally does not cover a full period of eiωq(ξ).

To illustrate the above observations, we consider the migration of zero-offset data from a
simple earth model with a horizontal reflector at a depth of 1 km. For a point M at x = 3 km
on the reflector and a frequency of 30 Hz, Figure 1(a) and (b) show the phase and amplitude
(dashed line) of the integrand in equation (4), respectively, as a function of ξ. Part (b) also
shows the real part of the full integrand function. Note that this function strongly oscillates
everywhere except in the vicinity of the point where the phase is stationary. It is evident that
the amplitude modulation does not alter the oscillatory character of the integrand function (if the
above mentioned assumptions for f(ξ) are fulfilled).

Let us now discuss integral (5) in a more quantitative way. In our case, the phase function q
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Figure 1: Illustration of the integrand in equation (4). (a) Phase function q(ξ). (b) Amplitude
function f(ξ) (dashed line) and real part of the complete integrand function f(ξ)·exp(iωq) (solid
line).

is the difference between the diffraction and reflection traveltime curves, τdif . Thus, the real part
of the integrand function (Figure 1(b)) has zeroes at

|τdif | = |τD − τR| = n
π

ω
= n

T

2
, (6)

where T = 2π/ω is the period of the monofrequency wave under consideration. Equation (6)
is equivalent to the definition of the boundary of the nth Fresnel zone (see, e.g., Červený and
Soares, 1992). Therefore, the alternating zones of negative and positive amplitude of the inte-
grand function are physically equivalent to the Fresnel zones1.

Now, consider an integration of the function f · exp(iωq) from the center (where τD = τR)
to the sides. At first, this sums up positive contributions from the first Fresnel zone, ending
at the first zero in either direction. Subsequent Fresnel zones, each ending at the next zero,
will add purely negative or positive contributions to integral (5). In other words, Fresnel zones
with odd numbers contribute positively to the integral while Fresnel zones with even numbers
contribute negatively. Because of the above observation that an integration over a full period,
i.e., over two consecutive Fresnel zones, yields approximately zero, it becomes clear why the
principal contribution to integral (5) will stem from the vicinity of the stationary point. Hence,
an integration over only the first Fresnel zone already provides a very good approximation of the
total integral. On the other hand, its full value cannot be recovered, if the integration interval
does not cover the first Fresnel zone completely.

1To be exact, what is involved in Kirchhoff migration is the projected Fresnel zone in the data space (Hubral
et al., 1993). The true Fresnel zone in depth can be observed in the Kirchhoff modeling integral. Conceptually,
however, there is no difference.
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It has to be noted, however, that the above discussion holds strictly only for a monofrequency
signal. For a transient, band-limited signal, one has to replace the half-period T/2 in equation (6)
by some estimate of the the wavelet length τW .

An analysis of the migration integral (5) by means of the Method of Stationary Phase under
the assumption of a single, simple and isolated point of stationary phase yields, up to second
order in 1/

√
ω,

I(ω) ' f(ξ∗)eiωq(ξ∗)

√
2π

−iωq′′(ξ∗)
+

1

iω




f(b)

dq

dξ
b

eiωq(b) − f(a)

dq

dξ
a

eiωq(a)


 . (7)

For high frequencies, these expressions describe the major contributions to the final migrated
image. The first term stems from the stationary point ξ∗ of the phase q = τD − τR, that is,
the tangency point between the Huygens and reflection traveltime curves, and forms the actual
migrated image of the reflector(s). In general, this contribution will be the dominant part of the
total migrated section. The second term comes from the endpoints of the integration/stacking
operator. It is this second contribution that describes the main migration artifacts. Because of the
higher order in 1/

√
ω, its amplitudes generally will be lower than those of the reflector image.

Note, however, that under certain circumstances these effects can be as strong as (or even stronger
than) a reflector image.

It is to be remarked that migration artifacts due to a limited aperture, illumination problems, or
missing traces are inherent to seismic migration, independently of the actual migration scheme
employed. Artifacts due to strong amplitude variations and focusing effects are, however, a
consequence of Kirchhoff migration and can be largely reduced with other migration schemes
such as, e.g., finite-difference wave-equation migration.

In contrast to the data boundaries, actually ending reflectors in the earth do not provoke
migration smiles. In this case, edge diffractions are present in the seismic data that are collapsed
by migration into the endpoint of the reflector. Because of the diffractions, the reflection event in
the data has no actual endpoint but dies off over a larger number of traces. In this way, endpoint
contributions are suppressed. The latter observation already points towards a well-known way of
suppressing migration artifacts: tapering. We will discuss this in a later section.

GEOMETRICAL EXPLANATION OF THE APERTURE EFFECTS

The migration aperture effects are most easily explained by means of a simple numerical ex-
periment for poststack data. The model consists of two half-spaces separated by a horizontal
interface. The velocities in the upper and lower half-spaces are v

(1)
p = 2 km/s and v

(2)
p = 3 km/s,

respectively, and the shear wave velocities are given by vs = vp/
√

3. The density is constant
in the whole model. The zero-offset seismogram was generated by dynamic ray tracing using
a zero-phase Ricker wavelet with 20 Hz, a time sampling of dt = 1 ms and a trace distance of
∆ξ = 5 m. It was migrated with a 2.5D Kirchhoff true-amplitude depth migration scheme on a
dense grid (dx = 10 m, dz = 2 m) using the true velocity.
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Figure 2: ZO seismogram and corresponding depth image after poststack migration. Several
characteristic depth points Mj and their pertinent stacking operators are shown. These are used
to give a simple geometrical explanation of the limited aperture migration effects.

For this simple model, the stacking operator is given by a hyperbola. We limited its spatial
extent to 800 m with respect to the horizontal coordinate of the apex. In this way, the number
of traces contributing to the stack for each depth point was 320. The migration target zone was
placed at the end of the survey line so as to show the boundary effects. The resulting migrated
image is depicted in Figure 2. Note that no effort was made to enhance or reduce the migration
artifacts.

By means of Figure 2, we are now going to discuss the boundary effects from a geometrical
point of view, which allows us to gain a more intuitive insight. We then relate them to the above
discussion of the interference in integral (5) and to the result of its stationary-phase evaluation as
given by equation (7). For this purpose, we discuss the position of the Huygens curves pertaining
to a series of characteristic depth points M1 to M8.

Points on the reflector: M1

The actual reflector (which is unknown prior to migration) is built up by depth points like M1.
The pertinent Huygens curve is tangent to the reflection traveltime curve. Thus, amplitudes gath-
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ered along such a curve sum up coherently and provide high stacking results that are assigned
to the corresponding depth point. Note that in general, for laterally inhomogeneous media, the
tangency point does not coincide with the apex of the stacking curve. To relate this physical
explanation to our earlier considerations of the Method of Stationary Phase, we identify these
tangency points with the “points of stationary phase”. The value assigned to M1 is mathemat-
ically described by the first term in equation (7). No boundary effects are present because the
input data at the endpoints of the stacking operator, which correspond to the limits of integration
a and b in equation (4), are zero. Of course, in practice there will always be some endpoint
contributions because of the noise inherent in the seismograms.

Points on the reflector boundary: M2

The point M2 represents the boundary of the migrated reflector image. The Huygens curve of this
point is, in principle, equivalent to the one of point M1. However, since the stationary point is
located directly at the margin of the ZO gather, only half the operator is within the data volume.
Thus, summing up along the stacking curve results in an amplitude value which is half of the
value assigned to M1. This coincides with the stationary-phase analysis for the case when the
stationary point falls on the boundary of the integration interval.

Points off the reflector: M3

Points like M3 represent the majority of diffraction points within the target zone. They have
Huygens curves which completely cross the reflection signal. Summing up amplitudes along
such operators leads to low values due to destructive interference. From a mathematical point of
view, the point of stationary phase (i.e., where the traveltime and Huygens curves have the same
time dip) as well as the endpoints of the operator are outside the signal. Therefore, both terms in
equation (7) are zero.

Migration artifacts caused by the finite stacking operator: M4, M5, and M6

For points like M4, the endpoints of the stacking operator lie within the reflection signal. Because
of the limited aperture, the stack does not sum up all the data necessary for complete destructive
interference in the same way as it does for point M3. Thus, the migration output at M4 is not as
low as that for point M3. In consequence, a migration artifact appears in parallel to the actual
reflector. With increasing size of aperture, the effect at M4 moves away from the actual reflector
and might be located outside of the target zone. Sun (1998) showed that this aperture effect
completely separates from the reflector image if the aperture is larger than one Fresnel zone (see
also Section “How to avoid aperture effects”).

The relationship of the above observations to the Method of Stationary Phase is straight-
forward. Like for point M3, the point of stationary phase is outside the signal. However, the
endpoints of the operator lie inside the signal. Therefore, the first term of equation (7) yields no
contribution, but its second term predicts a non-zero migration output at M4.



94 Annual WIT report 2001

The situation at point M5 is in principle equivalent to that at point M4. However, as only one
endpoint lies within the reflection signal (the other endpoint lies outside the data), the amplitude
at M5 is just half of that at M4.

Point M6 marks the transition between the two situations of points M4 and M5. The endpoint
of its pertinent Huygens curve coincides with the boundary point P in the data, where the survey
ends. It is for this reason that at M6 the migration artifact splits into two effects. Additionally to
the limited-operator effect described above, a limited-data effect appears in the migrated traces.

Migration artifacts caused by the finite survey area: M7 and M8

The most prominent migration artifact is the “migration smile” represented by points M7 and
M8. The pertinent Huygens curves cross the reflection signal exactly at the end of the survey
line. In this way, the destructive interference is incomplete at one of the endpoints, thus leading
to a non-negligible contribution.

It is worthwhile to observe that the position of the migration smile is given by the geometrical
location of all points of the type of M7 and M8 whose Huygens curves cut the border point P
of the reflection signal. Note that, because of the duality between the Huygens curve and the
isochron (see, e.g., Tygel et al., 1995), this is the isochron of P . The resulting migration artifact
follows this isochron, which is a half-circle for our constant-velocity zero-offset experiment as
shown on the left side of Figure 3.

Observe the inverted polarity of the artifact between points M7 and M8. This can be explained
with the help of the symmetry of the operator. The dashed part of the Huygens curve of M7 that
is outside the data is identical to the solid part of the Huygens curve of M8 that is inside the data.
Thus, the stack at M8 will contribute with exactly that part of the data that is missing at M7.
The actual values of the migration results at points M7 and M8 depend on the form of the source
wavelet as well as on the (half-)derivative applied in the migration process. However, the fact
that these values are complementary to each other is independent of these conditions. For a better
visualization of this complementarity, we have picked the peak amplitudes along both branches
of the migration smile corresponding to points M7 and M8. When adding the amplitude of two
opposite points from the two branches, we can verify in Figure 3 (right side) that the sum at M7

and M8 indeed yields zero (except, of course, for a numerical error).
Again, we can directly relate the above physical interpretation to the terms of the stationary-

phase evaluation of the Kirchhoff-migration integral. Of course, the migration outputs at points
M7 and M8 are described by the second term in equation (7). The first term yields a zero contri-
bution since the stationary point is outside the reflection signal as in the case of points M3, M4,
M5, and M6. At both points, M7 and M8, the actual contribution stems from the lower integral
limit, a = 2500 m. Since the Huygens curves of both points terminate at the same position, f(a)
is the same for both of them. So where is the inverted polarity? It’s in the sign of the derivative,
i.e., in our simple example the dip of the stacking curve, at the survey end. As we can easily
observe in Figure 2 this sign is positive for M8 but negative for M7.

The Method of Stationary Phase evaluation allows for a more quantitative analysis of the
migration smile. Using equation (7) and recalling the additional factor

√
ω in front of the integral

in equation (4) (which stems from the time half-derivative in the original Kirchhoff migration
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Figure 3: Analysis of the migration smile. Left side: Kinematically, it coincides with the
isochron of the border point P of the data. Right side: The sum of peak amplitudes of two
opposite points on the isochron branches [1] and [2] yields approximately zero.

integral), we see that the main contribution to the migration result will be frequency independent
while the boundary effects will decay proportionally to 1/

√
ω. Figure I shows the amplitude

of the migration output at points M4 (circles) and M7 (crosses) as a function of the dominant
frequency of the source wavelet used in the modeling. The actually observed amplitudes follow
almost exactly the predicted behavior (solid line).
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Figure 4: Frequency behavior of the boundary effects in 2.5D. The amplitude at M4 (circles)
and M7 (crosses) decays with 1/

√
ω as predicted by the Method of Stationary Phase.

HOW TO AVOID APERTURE EFFECTS

Above, we have already indicated that there is a well-known technique to reduce migration arti-
facts resulting from the limited migration aperture. All that has to be done is to avoid an abrupt
end of the operator but let it die off over a couple of traces, i.e., apply a taper. This has to be done
at two different places: Firstly, the input seismograms are tapered at the endpoints of the survey
area. Secondly, the finite operator is not just truncated but also tapered at its endpoints. In terms
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of the stationary-phase solution (7), the values of f(a) and f(b) are artificially set to zero. This
has to be done smoothly in order not to violate the underlying assumption of a slowly varying
function f(ξ). Then, this approach reduces the contributions of the operator endpoints and, thus,
helps to obtain a migrated image with less migration artifacts.

When applying a taper, the fundamental question is over how many traces it should extend.
On the one hand, the taper ought to be large enough not to violate the smoothness assumption so
as to effectively suppress the artifacts. On the other hand, it should not be too large so as not to
loose more information than necessary on the amplitudes at the survey ends or to stack unneces-
sary information at the operator ends. Sun (1998) suggests that in the same way as the stacking
region should cover the first (projected) Fresnel zone, the taper region should extend over the
second (projected) Fresnel zone around the stationary point. Unfortunately, this point cannot be
estimated prior to or during migration. Therefore, we have to use once again a compromise to
avoid the aperture effects.

To get an idea about the size of the taper region, we propose the following simple criterion
for zero-offset (poststack) migration. As is well-known, to kinematically migrate all reflectors
at depth z up to maximum dip angle θm, the stacking operator may be restricted to a radius of
r = z tan θm. If the same reflectors are to be migrated dynamically correctly, the radius must be
increased by the size FZ(1) of the projected first Fresnel zone, given in the frequency domain
by

FZ(n) =

√
vznT

2 cos θm
+
(

nvT
4

)2

cos θm
(8)

with n = 1, where v is the medium velocity and T the period of the considered monofrequency
wave. Like in equation (6), the half-period T/2 has to be replaced by some estimate of the
wavelet length τw, if formula (8) is to be applied in the time domain. According to Sun (1998),
the artifacts are suppressed as well as possible, while affecting the amplitudes as little as possible,
when the operator is increased by FZ(2) instead of FZ(1). The additional operator extension
FZ(2) − FZ(1) is the second projected Fresnel zone, over which the taper is to be applied. Of
course, the formulas given above are strictly valid for constant velocity only. For inhomogeneous
media, they can only be used as a “rule of thumb” to get a rough idea about the aperture size and
the taper region.

Formula (8) can also be used to obtain an estimate for the size of the end-of-survey taper. By
substituting z = vt cos θm/2 and setting n = 1, the size of the taper at two-way time t can be
estimated. If a constant taper size is preferred, t can be replaced by the maximum time value in
the data. Correspondingly, z in equation (8) can also be replaced by the maximum depth in the
desired migrated image.

Figure 5 demonstrates the effect of tapering the input data and the stacking operator for differ-
ent aperture and taper sizes. Figure 5(a) shows the migrated reflector image when stacked with
a dip-limited 0◦ migration operator using the optimal aperture of one projected Fresnel zone,
without applying a taper. Both the migration artifacts due to the limited operator and survey
area are present. As we can see, the optimal aperture guarantees the separation of the end effect
from the reflector image, the amplitudes of which are also correct. Figure 5(b) shows the same
migrated reflector image with the optimal taper applied. Both artifacts are almost completely
eliminated. In Figure 5(c), we see the effect of a too small taper. Although both migration arti-
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Figure 5: Effects of tapering. (a) Migration result without applying a taper function at all. (b)
Migration result with taper function applied according to eq. (8). (c) Migration result with a taper
function that is too small. (d) Amplitude comparison of different migration results with optimal
and smaller/larger aperture/taper region, respectively.

facts are reduced, they remain clearly visible. Finally, Figure 5(d) compares the amplitudes along
the reflector image for different combinations of aperture and taper sizes. When the aperture is
too small, not even the amplitudes far away from the data margins are correctly recovered (dot-
ted line), although the optimal taper is used. When the optimal (or a larger) aperture is applied,
all amplitude problems are restricted to the data margins. For too small a taper, the survey-
end artifact is not completely removed (dashed line). Too large a taper destroys the amplitudes
where they can be retrieved from the data (dash-dotted line). The optimal taper size is the one
that eliminates all artifacts but recovers the amplitudes as close to the margins as possible (solid
line).

The taper function used for the migration examples shown here is a two-sided Hanning win-
dow for both the operator and the end-of-survey taper. For comparison, we also tested a two-
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sided triangular window. The shapes of these functions are depicted in Sun (1998, 2000) for 2D
and 3D. Both types of taper functions yield nearly identical results. The optimal values for the
aperture and taper sizes were calculated by means of equation (8) with z = 1 km, v = 2 km/s,
τw = 50 ms, and θm = 0◦, resulting in FZ(1) = 320 m and FZ(2) = 458 m. To test the effect
of a too small and large aperture or taper size, respectively, the stacking region FZ(1) and the
taper region FZ(2) − FZ(1) were halved or doubled.

CONCLUSION

Artifacts known in Kirchhoff migration as “migration noise”, “migration boundary effects” or
“diffraction smiles” can be mathematically explained by means of the Method of Stationary
Phase. In this paper, we have provided a more physical explanation of these effects by discussing
the constructive and destructive interference of the stack in simple geometrical situations. This
helps to relate the terms of the stationary-phase approximation with the actually observed mi-
gration artifacts. It turned out that, for practical applications, one has to distinguish between
two principal types of artifacts. These are boundary effects due to a limited survey aperture, and
artifacts due to a limited migration operator. Both types of artifacts are mathematically equiva-
lent and can be explained by means of the boundary terms that result from the stationary-phase
analysis of the migration integral. As predicted by the Method of Stationary Phase, the principal
migration artifacts in 2.5D exhibit a 1/

√
ω decay as compared to the reflector image.

Based on our geometrical analysis, we had a closer look at a well-known way to avoid the
aperture effects: tapering. The most important question with respect to tapering is how to deter-
mine the taper region. Too small a region won’t suppress the effects while too large a region will
destroy more information than necessary. We have shown that the ideal taper region is closely
connected to the minimum aperture.

Schleicher et al. (1997) have derived the minimum aperture for a dynamically correct migra-
tion to be the first projected Fresnel zone (Hubral et al., 1993) around the specular point. Sun
(1998) has demonstrated that the same minimum aperture of the size of the first projected Fresnel
zone is sufficient to separate the operator-end effect from the desired image. We have confirmed
both observations numerically. Moreover, to get rid of the operator-end effect, a taper region
of the size of the second projected Fresnel zone should be added to the operator. In principle,
the projected Fresnel zone(s) can be determined during migration, even in inhomogeneous me-
dia, from dynamic ray quantities. However, to speed up the process, it is often useful to fix the
operator size beforehand. Then, the constant-velocity formula should help to get an idea of an
adequate aperture and taper region.

PUBLICATIONS

The mathematical derivations, some further explanations, and a comparison to Sun (2000) will
be published in a forthcoming paper.
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