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ABSTRACT

Analytic moveout formulas for primary near-zero-offset reflections in various types of gath-
ers play a significant role in the seismic reflection method. They are required in stacking
methods, e.g. the common midpoint (CMP) or the Common-Reflection-Surface (CRS) stack.
They also play a very important role in Dix-type traveltime inversions. They are particularly
attractive, if they can be given a “physical” or “quasi-physical” interpretation, involving for
instance the wavefront curvatures of specific waves. The formulas presented here have such
a form. They give particular attention to the influence that a curved measurement surface has
on the computation of the traveltime and the moveout in various gathers as well as on the
normal-moveout (NMO) velocity in the CMP gather. This influence should be accounted for
in the CMP or CRS stack as well as in the Dix-type inversion. In the computation of interval
velocities and the recovery of the depth of reflectors, this new NMO velocity formula is more
suited than the root-mean-square (rms) or NMO velocities for planar measurement surfaces.

INTRODUCTION

Analytic moveout formulas have a long tradition of being applied in the seismic reflection method
(Dürbaum, 1954; Dix, 1955; Shah, 1973; Fomel and Grechka, 1998). Particularly in the light of
“Macro-model-independent reflection imaging” (Hubral, 1999) analytic moveout formulas in
midpoint (m) and half-offset (h) coordinates have gained a new importance in such stacking
processes as the Polystack (de Bazelaire, 1988; de Bazelaire and Viallix, 1994) and Multifocus-
ing (Gelchinsky et al., 1999a,b). Here we generalize the so-called Zero-Offset (ZO) Common-
Reflection-Surface (CRS) stack formula, which is used to simulate zero-offset sections from
prestack data in a data-driven macrovelocity model independent way (Müller et al., 1998; Jäger
et al., 2001). The proposed generalized CRS stack moveout formula is formulated in such a way
that the influence of the curved measurement surface can be clearly recognized.
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THEORY

According to Schleicher et al. (1993), the hyperbolic traveltime approximation for a paraxial ray
from S ′ to R′ and from R′ to G′, both on a curved measurement surface, in the vicinity of a
normal (zero-offset) ray from SG to R and from R to SG (Figure 1a) is given by

t2hyp(m, h) = (t0 − 2 p0 m)2 + 2 t0 [(B−1 A − B−1) m2 + ( B−1 A + B−1) h2] (1)

with
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Formula (1) is valid for a 2D laterally inhomogeneous medium. v1 is the near-surface velocity at
the ZO location SG, t0 is the zero-offset (two-way) traveltime. xS and xG are the coordinates of
the projections of the source S ′ and receiver G′ measured along the x1-axis tangent to the curved
surface and with the origin at SG. m is the midpoint and h is the half-offset on that tangent. βS

∗

is the angle of incidence of the normal ray (emerging on the curved measurement surface at SG)
with the normal to the tangent at SG (see Figures 1b and 2).

A , B , C and D (Chira and Hubral, 2001) are the components of the so-called 2 × 2 surface-
to-surface propagator matrix T (Bortfeld, 1989; Červený, 2001) for the two-way normal ray. KS

is the surface curvature at the point SG. KNIP and KN are the curvatures of the emerging hy-
pothetical “Normal-Incidence-Point (NIP)-wave” and the “Normal (N) wave” observed at SG,
respectively (Hubral, 1983; Jäger et al., 2001). The NIP wave is associated with a point source
exploding at the normal incidence point (NIP) R. The N-wave results in an exploding reflector
experiment.

Inserting eqs. (2), (3a), and (3b) into eq. (1) we obtain
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Figure 1: a) Ray diagram for a paraxial ray in the vicinity of a normal (central) ray in a 2D
laterally inhomogeneous medium. b) Blow-up of Figure 1(a) showing the (x1, x3) 2D local and
(q1, q3) ray-centered (dashed) coordinate systems at SG.

Given P0(xSG = 0, t0), KS and v1 (xSG is the coordinate of the point SG in the x1 axis), the
triplet (β∗

S, KNIP , KN) can be looked upon as the searched-for kinematic parameters in the
prestack data. They help to solve a variety of stacking and inversion problems (Hubral, 1999).
They can be obtained by using the presently existing 2D CRS stack (Jäger et al., 2001) that
results from eq. (4) by substituting KS = 0.

Particular cases

We present three particular reductions of formula (4), which are part of the strategy to search the
three parameters at P0.

Common midpoint (CMP) gather

For this case (m = 0) the equation (4) reduces to

t2CMP (h) = t20 +
2 t0
v1

(
KNIP cos2 β∗

S − cos β∗
S KS

)
h2 . (5)

This expression is commonly written as (Shah, 1973)

t2CMP (h) = t20 +
4 h2

v2
NMO

, (6)

where the NMO velocity vNMO is given by

v2
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2 v1
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S KS)
. (7)
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Figure 2: The relationship between curved, dipping and horizontal surfaces.

For KS = 0 this reduces to Shah’s formula. For a 1-D layered model with a planar horizontal
measurement surface, straight vertical normal ray and incidence angle β∗

S = 0 this expression
reduces to vNMO = vrms, where vrms is the familiar rms velocity (Dix, 1955).

Common shot (CS) gather

For this case (xS = 0) the equation (4) reduces to

t2CS(xG) =
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where according to Hubral (1983) and Chira and Hubral (2001), we have KNIP + KN = 2 K0,
with K0 being the wavefront curvature of the reflected wave that originated from a point source
at SG.

Zero-Offset (ZO) gather

Let us consider coincident shot-receiver pairs at the curved measurement surface and approxi-
mate the zero-offset reflections in the vicinity of SG. For this case (h = 0) the equation (4)
reduces to
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All three formulas (7 to 9) should be considered in the 2D CRS stack according to Jäger et al.
(2001) for a curved measurement surface.

TRANSFORMED MEASUREMENT SURFACES

The moveout formula (4) can be simply transformed to that which would result if the curved
measurement surface at SG would be replaced by the tangent, i.e. the planar dipping surface
at point SG. This would be achieved by substituting KS = 0. It could be further reduced to a
formula, which would result for a horizontal measurement surface passing through SG by using
the dip angle α∗

S of the measurement surface at SG and replacing β∗
S by βS = β∗

S−α∗
S (Figure 2).

βS is the angle between the emerging normal ray and the normal to the horizontal surface.

APPLICATIONS

Let us assume that the coherency-based CRS stack search strategy, based on applying formula (4)
to P0(xSG = 0, t0), has provided for every primary reflection from each subsurface reflector the
three kinematic attributes (β∗

S, KNIP , KN). We can then consider their following applications.

Zero-offset CRS stack for a curved measurement surface

The attributes can be substituted into eq. (4) to perform a 3-parameter zero-offset CRS stack to
simulate from the prestack data a zero-offset trace at each point SG on the curved measurement
surface.

The Figure (3) shows a 2D model consisting of three constant velocity layers with curved
interfaces. The normal ray corresponding to X0 = 1.00 km, it passes through the medium and
reflects on the second (dome-like) interface.
In the Figure (3) the ZO CRS stack operator (black surface) approximates the primary reflection
events in the vicinity of the central point P0 which corresponds to the central (normal) ray. To
perform the ZO CRS stack, we stack along the ZO CRS stack operator (eq. 4) and assign the
stacked value to the point P0. For further details on the implementation of zero-offset CRS stack
see Jäger et al. (2001).

Dix-type traveltime inversions

Without making any assumptions on the velocity model or subsurface reflectors, we can easily
transform all kinematic attributes obtained for the curved measurement surface to those, which
would result for the planar dipping or horizontal surface (Figure 2). The NMO velocity (7) can
then be changed to that of the tangent dipping measurement surface at SG

v2
NMO,T =

2 v1

t0 KNIP cos2 β∗
S

. (10)

It can also be changed to that of the horizontal measurement surface at SG

v2
NMO,H =

2 v1

t0 KNIP cos2 βS

. (11)
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The subscripts T and H denote the tangent dipping and horizontal measurement surface respec-
tively. The latter transformation results from using βS = β∗

S − α∗
S .

SYNTHETIC DATA EXAMPLE

Let us consider the depth model of Figure 4 with four horizontal reflectors and a free measure-
ment surface given by a circular arc with radius rS = 1/KS = 10 km and the apex at x = 3.5 km.
The propagation velocities are for (P) compressional waves in every layer. At various points SG
on the curved measurement surface with an interval ∆x = 0.05 km, we calculated by ray tracing
t0, β∗

S and KNIP . They determined the hyperbolic moveout (eq. 5) for each primary reflection,
which provided the vNMO values given by formula (7). The NMO velocity vNMO (eq. 7) for each
reflector as a function of the horizontal coordinate x is shown as the dotted line in Figure 5.

The transformed velocities vNMO,T (eq. 10) and vNMO,H (eq. 11) for each reflector also are
shown in Figure 5. As they relate to planar measurement surfaces we can call upon existing al-
gorithms (Dürbaum, 1954; Dix, 1955; Shah, 1973; Hubral and Krey, 1980) to recover arbitrarily
layered constant-velocity 2D subsurface models provided the pair (vNMO,H, t0) is given along
the curved measurement surface with respect to each primary reflection.

In the following we have confined ourselves only to the indicated model of Figure 4 with
horizontal reflectors. In this case the inversion strategy for the curved measurement surface
reduces to the familiar standard Dix inversion. This results from transforming vNMO at SG on
the curved surface to vNMO,H as indicated above. It is obvious that for the i-th primary reflection
we have for v2

NMO,H the familiar expression (Dix, 1955)

v2
rms,i =

v2
1 ∆t1 + v2

2 ∆t2 + ... + v2
i ∆ti

t0,i
, i = 1, ..., N , (12)

vi is the velocity in layer i, t0,i is the two-way traveltime to interface below layer i and ∆ti =
t0,i − t0,i−1, is the two-way traveltime in layer i.

We can therefore compute the interval velocity of layer i from the well known formula

vi =

[
v2

rms,i t0,i − v2
rms,i−1 t0,i−1

t0,i − t0,i−1

]1/2

, (13)

and the thickness of layer i from

∆zi = vi
∆ti
2

. (14)

In this way we can recover the exact or true interval velocities shown in Figure 6 and the
exact depth model shown in Figure 4 and Figure 7 as denoted by the continuous lines. To be
more realistic, we computed however by ray tracing the stacking velocities from simulated CMP
gathers for primary reflections recorded on the curved measurement surface with the half-offset
hMAX = 1 km. This we did by fitting a straight line to the t2(h2) trajectory of the CMP gather.
We then assumed in the above Dix-type inversion the computed stacking velocities on the curved
measurement surface to be expressible by the analytic NMO-velocity (eq. 7). In this way we
recovered the model indicated by the dotted lines (Figure 7).
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Figure 4: 2D model constituted of five plane parallel horizontal isovelocity layers.

Would we have performed the inversion with the above standard Dix algorithm, however
assuming that the stacking velocities along the curved surface are equal to vrms then we would
have recovered the interval velocities and the depth model indicated by the crosses. Would we
have assumed that the stacking velocities can be analytically expressed by vNMO,T then we would
have recovered the model indicated by the circles. We can observe that there are significant errors
that result from neglecting the curvature and dip of the measurement surface.

CONCLUSIONS

In this paper we have formulated a new analytic moveout formula (4) for a 2D curved mea-
surement surface. It may find application, as indicated, in a number of modeling, inversion and
stacking problems. The formula was derived for a 2D laterally inhomogeneous velocity model.
It is in fact also valid for a 3D earth model with a curved measurement surface, provided all pa-
rameters in the 2D formula represent those in the plane defined by the tangent to the seismic line
and the emerging normal ray at SG. We also demonstrated that the new normal moveout velocity
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Figure 5: Three different NMO velocities for a)first reflector, b)second reflector, c)third reflector
and d)fourth reflector.
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Figure 6: Four recovered interval velocities for the model of Figure 4.

Figure 7: Recovered model obtained from stacking velocities and two-way times.
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(eq. 7), which considers the surface topography, is much more exact than the NMO velocities for
planar measurement surfaces if it comes to recover the interval velocities and the depths of the
reflectors with a Dix-type inversion.
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